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We present a new approach to the following meta-problem: given a quantitative property of trees,
design a type system such that the desired property for the tree generated by an infinitary ground
λ -term corresponds to some property of a derivation of a type for thisλ -term, in this type system.

Our approach is presented in the particular case of the language finiteness problem for nondeter-
ministic higher-order recursion schemes (HORSes): given anondeterministic HORS, decide whether
the set of all finite trees generated by this HORS is finite. We give a type system such that the HORS
can generate a tree of an arbitrarily large finite size if and only if in the type system we can ob-
tain derivations that are arbitrarily large, in an appropriate sense; the latter condition can be easily
decided.

1 Introduction

In this paper we considerλY-calculus, which is an extension of the simply typedλ -calculus by a fixed-
point operatorY. A term P of λY-calculus that is of sort1 o can be used to generate an infinite tree
BT(P), called the Böhm tree ofP. Trees generated by terms ofλY-calculus can be used to faithfully
represent the control flow of programs in languages with higher-order functions. Traditionally, Higher
Order Recursive Schemes (HORSes) are used for this purpose [8, 12, 17, 16]; this formalism is equivalent
to λY-calculus, and the translation between them is rather straightforward [22]. Collapsible Pushdown
Systems [10] and Ordered Tree-Pushdown Systems [7] are other equivalent formalisms.

Intersection type systems were intensively used in the context of HORSes, for several purposes like
model-checking [13, 16, 5, 21], pumping [14], transformations of HORSes [15, 6], etc. Interestingly,
constructions very similar to intersection types were usedalso on the side of collapsible pushdown sys-
tems; they were alternating stack automata [4], and types ofstacks [19, 11].

In this paper we show how intersection types can be used for deciding quantitative properties of
trees generated byλY-terms. We concentrate on the language finiteness problem for nondeterministic
HORSes: given a nondeterministic HORS, decide whether the set of all finite trees generated by this
HORS is finite.

This problem can be restated in the world ofλY-terms (or standard, deterministic HORSes), gen-
erating a single infinite tree. Here, instead of resolving nondeterministic choices during the generation
process, we leave them in the resulting tree. Those nondeterministic choices are denoted by a distin-
guishedbr (“branch”) symbol, below which we put options that could be chosen. Then to obtain a finite
tree generated by the original HORS we just need to recursively choose in everybr-labeled node which of
the two subtrees we want to consider. Thus, in this setting, the language finiteness problem asks whether
the set of all finite trees obtained this way is finite.
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The difficulty of this problem lies in the fact that sometimesthe same finite tree may be found in
infinitely many different places ofBT(P) (i.e., generated by a nondeterministic HORS in many ways);
thus the actual property to decide is whether there is a common bound on the size of each of these trees.
This makes the problem inaccessible for standard methods used for analyzing HORSes, as they usually
concern only regular properties of the Böhm tree, while boundedness is a problem of different kind. The
same difficulty was observed in [14], where they prove a pumping lemma for deterministic HORSes,
while admitting (Remark 2.2) that their method is too weak toreason about nondeterministic HORSes.

In order to solve the language finiteness problem, we presentan appropriate intersection type system,
where derivations are annotated by flags and markers of multiple kinds. The key property of this type
system is that the number of flags in a type derivation for aλY-termPapproximates the size of some finite
tree obtained by resolving nondeterministic choices in theinfinite treeBT(P). In consequence, there are
type derivations using arbitrarily many flags if, and only if, the answer to the language finiteness problem
is “no”.

The language finiteness problem was first attacked in [1] (forsafe HORSes only), but their algorithm
turned out to be incorrect [2]. To our knowledge, the only known solution of this problem follows from
a recent decidability result for the diagonal problem [9, 6]. This problem asks, given a nondeterministic
HORS and a set of lettersΣ, whether for everyn ∈ N the HORS generates a finite tree in which every
letter fromΣ appears at leastn times. Clearly, a nondeterministic HORS generates arbitrarily large trees
exactly when for some lettera it generates trees having arbitrarily manya letters, i.e., when the answer
to the diagonal problem forΣ = {a} is “yes”.

Our type system is, to some extent, motivated by the algorithm of [6] solving the diagonal problem.
This algorithm works by repeating two kinds of transformations of HORSes. The first of them turns the
HORS into a HORS generating trees having only a fixed number ofbranches, one per each letter fromΣ
(i.e., one branch in our case of|Σ|= 1). The branches are chosen nondeterministically out of some tree
generated by the original HORS; for everya∈ Σ there is a choice witnessing thata appeared many times
in the original tree. Then such a HORS of the special form is turned into a HORS that is of order lower
by one, and generates trees having the same nodes as trees generated by the original HORS, but arranged
differently (in particular, the new trees may have again arbitrarily many branches). After finitely many
repetitions of this procedure, a HORS of order 0 is obtained,and the diagonal problem becomes easily
decidable. In some sense we want to do the same, but instead ofapplying all these transformations one
by one, we simulate all of them simultaneously in a single type derivation. In this derivation, for each
ordern, we allow to place arbitrarily one marker “of ordern”; this corresponds to the nondeterministic
choice of one branch in then-th step of the previous algorithm. We also place some flags “of ordern”,
in places that correspond to nodes remaining after then-th step of the previous algorithm.

The idea of using intersection types for counting is not completely new. Paper [18] presents a type
system that, essentially, allows to estimate the size of theβ -normal form of aλ -term just by looking at
(the number of some flags in) a derivation of a type for this term. A similar idea, but for higher-order
pushdown automata, is present in [19], where we can estimatethe number of♯ symbols appearing on a
particular, deterministically chosen branch of the generated tree. This previous approach also uses inter-
section types, where the derivations are marked with just one kind of flags, denoting “productive” places
of a λ -term (oppositely to our approach, where we have different flags for different orders, and we also
have markers). The trouble with the “one-flag” approach is that it works well only in a completely deter-
ministic setting, where looking independently at each nodeof the Böhm tree we know how it contributes
to the result; the method stops working (or at least we do not know how to prove that it works) in our
situation, where we first nondeterministically perform some guesses in the Böhm tree, and only after that
we want to count something that depends on the chosen values.
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2 Preliminaries

Trees. Let Σ be aranked alphabet, i.e., a set of symbols together with a rank function assigning a
nonnegative integer to each of the symbols. We assume thatΣ contains a distinguished symbolbr of
rank 2, used to denote nondeterministic choices. AΣ-labeled tree is a tree that is rooted (there is a
distinguished root node), node-labeled (every node has a label fromΣ), ranked (a node with label of rank
n has exactlyn children), and ordered (children of a node of rankn are numbered from 1 ton).

Whent is a Σ-labeled treet, by L (t) we denote the set of all finite trees that can be obtaining by
choosing in everybr-labeled node oft which of the two subtrees we want to consider. More formally,
we consider the following relation→br: we havet →br u if u can be obtained fromt by choosing int a
br-labeled nodex and its childy, and replacing the subtree starting inx by the subtree starting iny (which
removesx and the other subtree ofx). Let →∗

br
be the reflexive transitive closure of→br. ThenL (t)

contains all treesu that do not use thebr label, are finite, and such thatt →∗
br

u.

Infinitary λ -calculus. The set ofsorts (a.k.a. simple types), constructed from a unique basic sorto
using a binary operation→, is defined as usual. The order of a sort is defined by:ord(o) = 0, and
ord(α→β ) = max(1+ord(α),ord(β )).

We consider infinitary, sortedλ -calculus. Infinitary λ -terms(or just λ -terms) are defined by coin-
duction, according to the following rules:

• if a∈ Σ is a symbol of rankr, andPo
1 , . . . ,P

o
r areλ -terms, then(aPo

1 . . . Po
r )

o is aλ -term,

• for every sortα there are infinitely many variablesxα ,yα ,zα , . . . ; each of them is aλ -term,

• if Pα→β andQα areλ -terms, then(Pα→β Qα)β is aλ -term, and

• if Pβ is aλ -term andxα is a variable, then(λxα .Pβ )α→β is aλ -term.

We naturally identifyλ -terms differing only in names of bound variables. We often omit the sort anno-
tations ofλ -terms, but we keep in mind that everyλ -term (and every variable) has a particular sort. A
λ -termP is closedif it has no free variables. Notice that, for technical convenience, a symbol of positive
rank is not aλ -term itself, but always comes with arguments. This is not a restriction, since e.g. instead
of a unary symbola one may use the termλx.ax.

The order of aλ -term is just the order of its sort. Thecomplexityof aλ -termP is the smallest number
msuch that the order of every subterm ofP is at mostm. We restrict ourselves toλ -terms that have finite
complexity.

A β -reduction is defined as usual. We say that aβ -reductionP →β Q is of order nif it concerns
a redex(λx.R)S such thatord(λx.R) = n. In this situation the order ofx is at mostn− 1, but may be
smaller (when other arguments ofR are of ordern−1).

Böhm Trees. We consider Böhm trees only for closedλ -terms of sorto. For such a termP, its Böhm
tree BT(P) is constructed by coinduction, as follows: if there is a sequence ofβ -reductions fromP to a
λ -term of the formaP1 . . . Pr (wherea is a symbol), then the root of the treet has labela andr children,
and the subtree starting in thei-th child isBT(Pi). If there is no sequence ofβ -reductions fromP to a
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λ -term of the above form, thenBT(P) is the full binary tree with all nodes labeled bybr.2 By L (P) we
denoteL (BT(P)).

λY-calculus. The syntax ofλY-calculus is the same as that of finiteλ -calculus, extended by symbols
Y(α→α)→α , for each sortα . A term of λY-calculus is seen as a term of infinitaryλ -calculus if we
replace each symbolY(α→α)→α by the unique infiniteλ -termZ such thatZ is syntactically the same as
λxα→α .x(Z x). In this way, we viewλY-calculus as a fragment of infinitaryλ -calculus.

It is standard to convert a nondeterministic HORSG into a closedλY-term Po such thatL (P) is
exactly the set of all finite trees generated byG . The following theorem, which is our main result, states
that thelanguage finiteness problemis decidable.

Theorem 1. Given a closedλY-term P of sort o, one can decide whetherL (P) is finite.

3 Intersection Type System

In this section we introduce a type system that allows to determine the desired property: whether in
L (P) there is an arbitrarily large tree.

Intuitions. The main novelty of our type system is in using flags and markers, which may label nodes
of derivation trees. To every flag and marker we assign a number, called an order. While deriving a type
for a λ -term of complexitym, we may place in every derivation tree at most one marker of each order
n∈ {0, . . . ,m−1}, and arbitrarily many flags of each ordern∈ {0, . . . ,m}.

Consider first aλ -termM0 of complexity 0. Such a term actually equals its Böhm tree. Our aim is
to describe some finite treet in L (M0), i.e., obtained fromM0 by resolving nondeterministic choices in
some way. We thus just put flags of order 0 in all those (appearances of) symbols inM0 that contribute
to this treet; the type system ensures that indeed all symbols of some finite tree inL (M0) are labeled
by a flag. Then clearly we have the desired property that thereis a derivation with arbitrarily many flags
if, and only if, there are arbitrarily large trees inL (M0).

Next, consider aλ -term M1 that is of complexity 1, and reduces toM0. Of course every finite tree
from L (M0) is composed of symbols appearing already inM1; we can thus already inM1 label (by order-
0 flags) all symbols that contribute to some treet ∈ L (M0) (and an intersection type system can easily
check correctness of such labeling). There is, however, oneproblem: a single appearance of a symbol in
M1 may result in many appearances inM0 (since a function may use its argument many times). Due to
this, the number of order-0 flags inM1 does not correspond to the size oft. We rescue ourselves in the
following way. In t we choose one leaf, we label it by an order-0 marker, and on thepath leading from
the root to this marker we place order-1 flags. On the one hand,L (M0) contains arbitrarily large trees
if, and only if, it contains trees with arbitrarily long paths, i.e., trees with arbitrarily many order-1 flags.
On the other hand, we can perform the whole labeling (and the type system can check its correctness)
already inM1, and the number of order-1 flags inM1 will be precisely the same as it would be inM0.
Indeed, inM1 we have only order-1 functions, i.e., functions that take trees and use them as subtrees of
larger trees; although a tree coming as an argument may be duplicated, the order-0 marker can be placed
in at most one copy. This means that, while reducingM1 to M0, every symbol ofM1 can result in at most

2Usually one uses a special label⊥ of rank 0 for this purpose, but from the perspective of our problem both definitions are
equivalent.
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one symbol ofM0 lying on the selected path to the order-0 marker (beside of arbitrarily many symbols
outside of this path).

This procedure can be repeated forM2 of complexity 2 that reduces toM1 via β -reductions of order 2
(and so on for higher orders). We now place a marker of order 1 in some leaf ofM1; afterwards, we place
an order-2 flag in every node that is on the path to the marked leaf, and that has a child outside of this path
whose some descendant is labeled by an order-1 flag. In effect, for some choice of a leaf to be marked,
the number of order-2 flags approximates the number of order-1 flags, up to logarithm. Moreover, the
whole labeling can be done inM2 instead of inM1, without changing the number of order-2 flags.

In this intuitive description we have talked about labeling“nodes of aλ -term”, but formally we label
nodes of a derivation tree that derives a type for the term, inour type system. Every such node contains
a type judgment for some subterm of the term.

Type Judgments. For every sortα we define the setT α of typesof sort α , and the setFα of full
typesof sortα . This is done as follows, whereP denotes the powerset:

T
α→β = P(Fα

ord(α→β))×T
β , T

o = o,

F
α
k = {(k,F,M,τ) | F,M ⊆ {0, . . . ,k−1}, F ∩M = /0, τ ∈ T

α} , F
α =

⋃

k∈N

F
α
k .

Notice that the setsT α andFα
k are finite (unlikeFα ). A type (T,τ) ∈ T α→β is denoted asT→τ . A

full type τ̂ = (k,F,M,τ) ∈ Fα
k consists of its orderk, a setF of flag orders, a setM of marker orders,

and a typeτ ; we writeord(τ̂) = k. In order to distinguish types from full types, the latter are denoted by
letters with a hat, likêτ .

A type judgmentis of the formΓ ⊢ P : τ̂ ⊲c, whereΓ, called atype environment, is a function that
maps every variablexα to a subset ofFα , P is a λ -term, τ̂ is a full type of the same sort asP (i.e.,
τ̂ ∈ F β whenP is of sortβ ), andc∈ N.

As usual for intersection types, the intuitive meaning of a typeT→τ is that aλ -term having this type
can return aλ -term having typeτ , while taking an argument for which we can derive all full types from
T. Moreover, inT o there is just one typeo, which can be assigned to everyλ -term of sorto. Suppose
that we have derived a type judgmentΓ ⊢ P : τ̂ ⊲c with τ̂ = (m,F,M,τ). Then

• τ is the type derived forP;

• Γ contains full types that could be used for free variables ofP in the derivation;

• m bounds the order of flags and markers that could be used in the derivation: flags could be of
order at mostm, and markers of order at mostm−1;

• M ⊆ {0, . . . ,m−1} contains the orders of markers used in the derivation, together with those pro-
vided by free variables (i.e., we imagine that some derivations, specified by the type environment,
are already substituted in our derivation for free variables); we, however, do not include markers
provided by arguments of the term (i.e., coming from the setsTi whenτ = T1→ . . .→Tk→o);

• F contains those numbersn∈ {0, . . . ,m−1} (excludingn=m) for which a flag of ordern is placed
in the derivation itself, or provided by a free variable, or provided by an argument; for technical
convenience we, however, removen from F whenevern∈ M (whenn∈ M, the information about
order-n flags results in placing an order-(n+1) flag, and need not to be further propagated);

• c, called aflag counter, counts the number of order-m flags present in the derivation.
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Type System. Before giving rules of the type system, we need a few definitions. We use the symbol⊎
to denote disjoint union. WhenA⊆ N andn∈ N, we writeA↾<n for {k∈ A | k< n}, and similarlyA↾≥n

for {k∈ A | k≥ n}. By ε we denote the type environment mapping every variable to /0,and byΓ[x 7→ T]
the type environment mappingx to T and every other variabley to Γ(y).

Let us now say how a type environmentΓ from the conclusion of a rule may be split into type envi-
ronments(Γi)i∈I used in premisses of the rule: we say thatSplit(Γ | (Γi)i∈I ) holds if and only if for every
variablex it holds Γi(x) ⊆ Γ(x) for every i ∈ I , and every full type fromΓ(x) providing some markers
(i.e.,(k,F,M,τ) with M 6= /0) appears in someΓi(x). Full types with emptyM may be discarded and du-
plicated freely. This definition forbids to discard full types with nonemptyM, and from elsewhere it will
follow that they cannot be duplicated. As a special caseSplit(Γ | Γ′) describes how a type environment
can be weakened.

All type derivations are assumed to be finite (although we derive types mostly for infiniteλ -terms,
each type derivation analyzes only a finite part of a term). Rules of the type system will guarantee that
the ordermof derived full types will be the same in the whole derivation(although in type environments
there may be full types of different orders).

We are ready to give the first three rules of our type system:

Γ ⊢ Pi : τ̂ ⊲c i ∈ {1,2}

Γ ⊢ brP1P2 : τ̂ ⊲c
(BR)

Split(Γ | ε [x 7→ {(k,F,M′,τ)}]) M↾<k = M′

Γ ⊢ x : (m,F,M,τ)⊲0
(VAR)

Γ′[x 7→ T] ⊢ P : (m,F,M,τ)⊲c Split(Γ | Γ′) Γ′(x) = /0

Γ ⊢ λx.P : (m,F,M \
⋃

(k,F ′,M′,σ)∈TM′,T→τ)⊲c
(λ )

We see that to derive a type for the nondeterministic choicebrP1P2, we need to derive it either forP1

or for P2.
The (VAR) rule allows to have in the resulting setM some numbers that do not come from the setM′

assigned tox by the type environment; these are the orders of markers placed in the leaf using this rule.
Notice, however, that we allow here only orders not smaller thank (which is the order of the superterm
λx.P binding this variablex). This is consistent with the intuitive description of the type system (page
51), which says that a marker of ordern can be put in a place that will be a leaf after performing allβ -
reductions of orders greater thann. Indeed, the variablex remains a leaf after performingβ -reductions of
orders greater thank, but while performingβ -reductions of orderk this leaf will be replaced by a subterm
substituted forx. Recall also that, by definition of a type judgment, we require that(k,F,M′,τ) ∈ Fα

k
and(m,F,M,τ) ∈ Fα

m , for appropriate sortα ; this introduces a bound on maximal numbers that may
appear in the setsF andM.

Example 1. Denotingρ̂1 = (1, /0,{0},o) we can derive:

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0
(VAR)

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0,1},o)⊲0
(VAR)

In the derivation on the right, the marker of order 1 is placedin the conclusion of the rule.

The (λ ) rule allows to use (in a subderivation concerning theλ -term P) the variablex with all full
types given in the setT. When the sort ofλx.P is α→β , by definition ofT α→β we have that all full
types inT have the same orderk= ord(α→β ) (since(T→τ)∈T α→β ). Recall that we intend to store in
the setM the markers contained in the derivation itself and those provided by free variables, but not those
provided by arguments. Because of this, in the conclusion ofthe rule we remove fromM the markers
provided byx. This operation makes sense only because there is at most onemarker of each order, so
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markers provided byx cannot be provided by any other free variable nor placed in the derivation itself.
The setF , unlikeM, stores also flags provided by arguments, so we do not need to remove anything from
F.

Example 2. The (λ ) rule can be used, e.g., in the following way (wherea is a symbol of rank 1):

ε [x 7→ {ρ̂1}] ⊢ ax : (2,{1},{0},o)⊲0

ε ⊢ λx.ax : (2,{1}, /0,{ρ̂1}→o)⊲0
(λ )

ε [x 7→ {ρ̂1}] ⊢ ax : (2, /0,{0,1},o)⊲1

ε ⊢ λx.ax : (2, /0,{1},{ρ̂1}→o)⊲1
(λ )

Notice that in the conclusion of the rule, in both examples, we remove 0 from the set of marker orders,
because the order-0 marker is provided byx.

The next two rules use a predicateCompm, saying how flags and markers from premisses contribute
to the conclusion. It takes “as input” pairs(Fi,ci) for i ∈ I ; each of them consists of the set of flag
ordersFi and of the flag counterci from some premiss. Moreover, the predicate takes a set of marker
ordersM from the current type judgment (it contains orders of markers used in the derivation, including
those provided by free variables). The goal is to compute theset of flag ordersF and the flag counter
c that should be placed in the current type judgment. First, for eachn ∈ {1, . . . ,m} consecutively, we
decide whether a flag of ordern should be placed on the current type judgment. We follow herethe rules
mentioned in the intuitive description. Namely, we place a flag of ordern if we are on the path leading
to the marker of ordern−1 (i.e., if n−1∈ M), and simultaneously we receive an information about a
flag of ordern−1. By receiving this information we mean that either a flag of ordern−1 was placed on
the current type judgment, orn−1 belongs to some setFi. Actually, we place multiple flags of ordern:
one per each flag of ordern−1 placed on the current type judgment, and one per each setFi containing
n−1. Then, we computeF andc. In c we store the number of flags of the maximal orderm: we sum all
the numbersci , and we add the number of order-m flags placed on the current type judgment. InF we
keep elements of allFi, and we add the ordersn of flags that were placed on the current type judgment.
We, however, remove fromF all elements ofM. This is because every flag of some ordern−1 should
result in creating at most one flag of ordern, in the closest ancestor that lies on the path leading to the
marker of ordern−1. If we have created an order-n flag on the current type judgment, i.e., ifn−1∈ M,
we do not want to do this again in the parent.

Below we give a formal definition, in whichf ′n contains the number of order-n flags placed on the
current type judgment, whilefn additionally counts the number of premisses for whichn∈ Fi . We say
thatCompm(M;((Fi,ci))i∈I ) = (F,c) when

F = {n∈ {0, . . . ,m−1} | fn > 0∧n 6∈ M} , c= f ′m+∑
i∈I

ci , where, forn∈ {0, . . . ,m},

fn = f ′n+∑
i∈I

|Fi ∩{n}|, f ′n =

{

fn−1 if n−1∈ M,
0 otherwise.

We now present a rule for constants other thanbr:

Γi ⊢ Pi : (m,Fi,Mi ,o)⊲ci for eachi ∈ {1, . . . , r} M = M′⊎M1⊎ ·· ·⊎Mr

(m= 0)⇒ (F ′ = /0∧c′ = 1) (m> 0)⇒ (F ′ = {0}∧c′ = 0) (r > 0)⇒ (M′ = /0)
a 6= br Split(Γ | Γ1, . . . ,Γr) Compm(M;(F ′,c′),(F1,c1), . . . ,(Fr ,cr)) = (F,c)

Γ ⊢ aP1 . . . Pr : (m,F,M,o)⊲c
(CON)

Here, the conditions in the second line say that in a node using the (CON) rule we always place a
flag of order 0 (viaF ′ or via c′, depending onm), and that if the node is a leaf (i.e.,r = 0), then we
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are allowed to place markers of arbitrary order (viaM′). Then to theCompm predicate, beside of pairs
(Fi ,ci) coming from premisses, we also pass the information(F ′,c′) about the order-0 flag placed in the
current node; this predicate decides whether we should place also some flags of positive orders. Let us
emphasize that in this rule (and similarly in the next rule) we have a disjoint unionM′⊎M1⊎ ·· · ⊎Mr ,
which ensures that a marker of any order may be placed only in one node of a derivation.

Example 3. The (CON) rule may be instantiated in the following way:

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0

ε [x 7→ {ρ̂1}] ⊢ ax : (2,{1},{0},o)⊲0
(CON)

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0,1},o)⊲0

ε [x 7→ {ρ̂1}] ⊢ ax : (2, /0,{0,1},o)⊲1
(CON)

In the left example, flags of order 0 and 1 are placed in the conclusion of the rule (a flag of order 0 is
created because we are in a constant; since the marker of order 0 is visible, we do not put 0 into the set of
flag orders, but instead we create a flag of order 1). In the right example, a marker of order 1 is visible,
which causes that this time flags of order 0, 1, and 2 are placedin the conclusion of the(CON) rule (again,
we do not put 0 nor 1 into the set of flag orders, because of 0 and 1in the set of marker orders).

The next rule describes application:

Γ′ ⊢ P : (m,F ′,M′,{(ord(P),Fi↾<ord(P),Mi↾<ord(P),τi) | i ∈ I}→τ)⊲c′

Γi ⊢ Q : (m,Fi,Mi,τi)⊲ci for eachi ∈ I M = M′⊎
⊎

i∈I Mi

ord(P)≤ m Split(Γ | Γ′,(Γi)i∈I ) Compm(M;(F ′,c′),((Fi↾≥ord(P),ci))i∈I ) = (F,c)

Γ ⊢ PQ : (m,F,M,τ)⊲c
(@)

In this rule, it is allowed (but in fact useless) that for two different i ∈ I the full types(m,Fi,Mi ,τi)
are equal. It is also allowed thatI = /0, in which case no type needs to be derived forQ. Observe
how flags and markers coming from premisses concerningQ are propagated: only flags and markers
of order n < ord(P) are visible toP, while only flags of ordern ≥ ord(P) are passed to theCompm
predicate. This can be justified if we recall the intuitions staying behind the type system (see page 51).
Indeed, while considering flags and markers of ordern, we should imagine theλ -term obtained from the
currentλ -term by performing allβ -reductions of all orders greater thann; the distribution of flags and
markers of ordern in the currentλ -term actually simulates their distribution in this imaginary λ -term.
Thus, ifn< ord(P), then our application will disappear in this imaginaryλ -term, andQ will be already
substituted somewhere inP; for this reason we need to pass the information about flags and markers of
ordern from Q to P. Conversely, ifn≥ ord(P), then in the imaginaryλ -term the considered application
will be still present, and in consequence the subterm corresponding toP will not see flags and markers
of ordern placed in the subterm corresponding toQ.

Example 4. Denote byτ̂f andτ̂m the types derived in Example 2:

τ̂f = (2,{1}, /0,{ρ̂1}→o) , and τ̂m = (2, /0,{1},{ρ̂1}→o) .

Then, using the(@) rule, we can derive (wheree is a symbol of rank 0, andf a variable):

ε [ f 7→ {τ̂m}] ⊢ f : τ̂m ⊲0
(VAR)

ε ⊢ e : (2,{1},{0},o)⊲0
(CON)

ε [ f 7→ {τ̂f , τ̂m}] ⊢ f e : (2, /0,{0,1},o)⊲1
(@)

Recall thatρ̂1 = (1, /0,{0},o). In the conclusion of the(@) rule the information about a flag of order 1
(from the second premiss) meets the information about the marker of order 1 (from the first premiss), and
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thus a flag of order 2 is placed, which increases the flag counter. Notice that we have discarded the full
type τ̂f assigned tof in the type environment; this is allowed becauseτ̂f provides no markers (equally
well τ̂f could be assigned tof also in one or two of the premisses, and discarded there). On the other
hand, the full typêτm provides markers, so it cannot be discarded nor duplicated (in particular, we could
not pass it to the conclusion of the(CON) rule).

The key property of the type system is described by the following theorem.

Theorem 2. Let P be a closedλ -term of sort o and complexity m. ThenL (P) is infinite if and only if
for arbitrarily large c we can deriveε ⊢ P : ρ̂m⊲c, whereρ̂m = (m, /0,{0, . . . ,m−1},o).

The left-to-right implication of Theorem 2 (completeness of the type system) is shown in Section
4, while the opposite implication (soundness of the type system) in Section 5. In Section 6 we discuss
how Theorem 1 follows from Theorem 2. Before all that, we givea few more examples of derivations,
illustrating the type system and Theorem 2.

Example 5. In this example we analyze theλ -termP1 = R(λx.ax), whereR is defined by coinduction
asR= (λ f .br ( f e)(R(λx. f ( f x)))). As previously,a ande are symbols of rank 1 and 0, respectively.
In L (P1) there are trees that consist of a branch ofa symbols ended with ane symbol, but only those
where the number ofa symbols is 2k for somek∈N. Notice that the complexity ofP1 is 2.

Continuing Example 4, we derive the full typêσR = (2, /0,{0},{τ̂f , τ̂m}→o) for R:

ε [ f 7→ {τ̂f , τ̂m}] ⊢ f e : (2, /0,{0,1},o)⊲1

ε [ f 7→ {τ̂f , τ̂m}] ⊢ br ( f e)(R(λx. f ( f x))) : (2, /0,{0,1},o)⊲1
(BR)

ε ⊢ R : σ̂R⊲1
(λ )

Next, we derive the same full type forR, but using the second argument of thebr symbol; this results
in greater values of the flag counter. We start by deriving thefull type τ̂f for the subtermλx. f ( f x):

ε [ f 7→ {τ̂f}] ⊢ f : τ̂f ⊲0

ε [ f 7→ {τ̂f}] ⊢ f : τ̂f ⊲0 ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0

ε [ f 7→ {τ̂f},x 7→ {ρ̂1}] ⊢ f x : (2,{1},{0},o)⊲0
(@)

ε [ f 7→ {τ̂f},x 7→ {ρ̂1}] ⊢ f ( f x) : (2,{1},{0},o)⊲0
(@)

ε [ f 7→ {τ̂f}] ⊢ λx. f ( f x) : τ̂f ⊲0
(λ )

In the above derivation there are no flags nor markers. Next, we deriveτ̂m for the same subterm:

ε [ f 7→ {τ̂f}] ⊢ f : τ̂f ⊲0

ε [ f 7→ {τ̂m}] ⊢ f : τ̂m ⊲0 ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0

ε [ f 7→ {τ̂m},x 7→ {ρ̂1}] ⊢ f x : (2, /0,{0,1},o)⊲0
(@)

ε [ f 7→ {τ̂f , τ̂m},x 7→ {ρ̂1}] ⊢ f ( f x) : (2, /0,{0,1},o)⊲1
(@)

ε [ f 7→ {τ̂f , τ̂m}] ⊢ λx. f ( f x) : τ̂m ⊲1
(λ )

Below the lower(@) rule the information about a flag of order 1 meets the information about the marker
of order 1, and thus a flag of order 2 is placed, which increasesthe flag counter. We continue with the
λ -termR:

ε ⊢ R : σ̂R⊲c ε [ f 7→ {τ̂f}] ⊢ λx. f ( f x) : τ̂f ⊲0 ε [ f 7→ {τ̂f , τ̂m}] ⊢ λx. f ( f x) : τ̂m ⊲1

ε [ f 7→ {τ̂f , τ̂m}] ⊢ R(λx. f ( f x)) : (2, /0,{0,1},o)⊲c+1
(@)

ε [ f 7→ {τ̂f , τ̂m}] ⊢ br ( f e)(R(λx. f ( f x))) : (2, /0,{0,1},o)⊲c+1
(BR)

ε ⊢ R : σ̂R⊲c+1
(λ )
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In this fragment of a derivation no flag nor marker is placed. In particular, there is no order-2 flag in
conclusion of the(@) rule, although its second premiss provides a flag of order 1 while the third premiss
provides the marker of order 1. We recall from the definition of the (@) rule that the information about
flags and markers coming from the arguments is divided into two parts. Numbers smaller than the order
of the operator (ord(R) = 2 in our case) are passed to the operator, while only greater numbers (≥ 2 in
our case) contribute in creating new flags via theComppredicate.

By composing the above fragments of a derivation, we can derive ε ⊢ R : σ̂R⊲ c for everyc ≥ 1.
Recall that in Examples 1-3 we have derivedε ⊢ λx.ax : τ̂f ⊲0 andε ⊢ λx.ax : τ̂m ⊲1. Together with the
above, this allows to derive forP1 the full typeρ̂2 = (2, /0,{0,1},o) (appearing in Theorem 2):

ε ⊢ R : σ̂R⊲c ε ⊢ λx.ax : τ̂f ⊲0 ε ⊢ λx.ax : τ̂m ⊲1

ε ⊢ P1 : ρ̂2⊲c+1
(@)

We can notice a correspondence between a derivation with flagcounterc+1 and a tree inL (P) of size
2c−1+1. We remark that in every of these derivations only three flags of order 0 and only three flags of
order 1 are present, in the three nodes using the(CON) rule.

Example 6. Consider a similarλ -termP2 = R(λx.bxx), whereR is as previously, andb is a symbol of
rank 2. InL (P2) we have, for everyk∈N, a full binary tree in which every branch consist of 2k symbols
b and ends with anesymbol.

This time for the subtermλx.bxxwe need to derive three full types:

τ̂ ′
0 = (2,{0}, /0,{(1,{0}, /0,o)}→o) ,

τ̂ ′
f = (2,{1}, /0,{(1,{0}, /0,o), ρ̂1}→o) , and

τ̂ ′
m = (2, /0,{1},{(1,{0}, /0,o), ρ̂1}→o) .

The last one is derived with flag counter 1. Notice thatτ̂ ′
f
andτ̂ ′

m need now two full types for the argument
x; the new one(1,{0}, /0,o) describes the subtree that is not on the path to the order-0 marker. We also
have a new full typêτ ′

0 that describes the use ofλx.bxxoutside of the path to the order-0 marker.
Then, similarly as in the previous example, for everyc ≥ 1 we can deriveε ⊢ R : σ̂ ′

R⊲ c, where
σ̂ ′

R = (2, /0,{0},{τ̂ ′
0, τ̂ ′

f
, τ̂ ′

m}→o). Again, this allows to deriveε ⊢ P2 : ρ̂2 ⊲c+1. This time a derivation
with flag counterc+1 corresponds to a tree inL (P) of size 2h−1 with h= 2c−1+1.

Example 7. Next, consider theλ -termP3 =R(λx.x). The only tree inL (P3) consists of a singleenode.
Let us see how the derivation from Example 5 has to be modified.The full type τ̂m can still be derived
for λx.x (although with flag counter 0 now), but instead ofτ̂f we have to usêτ ′′

f
= (2, /0, /0,{ρ̂1}→o) that

provides no flag of order 1:

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0
(VAR)

ε ⊢ λx.x : τ̂ ′′
f ⊲0

(λ )
ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0,1},o)⊲0

(VAR)

ε ⊢ λx.x : τ̂m ⊲0
(λ )

Next, forR we want to derive the full typêσ ′′
R = (2, /0,{0},{τ̂ ′′

f
, τ̂m}→o). We can easily adopt every

of the previous derivations forε ⊢ R : σ̂R⊲ c: we basically replace everŷτf by τ̂ ′′
f
. The key point is

that while deriving the full typêτm for the subtermλx. f ( f x), previously in the lower(@) rule we have
received information about an order-1 flag, and thus we have created an order-2 flag and increased the
flag counter; this time there is no information about an order-1 flag, and thus we do not create an order-2
flag and do not increase the flag counter. In consequence, evenif this part of the derivation is repeated
arbitrarily many times, the value of the flag counter of the whole derivation remains 1.
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Example 8. Finally, consider theλ -term P4 = (λg.P3)(λx.a(a(. . . (ax) . . . )), which β -reduces toP3.
Notice that we can create the following derivation:

ε [x 7→ {ρ̂1}] ⊢ x : (2, /0,{0},o)⊲0
(VAR)

ε [x 7→ {ρ̂1}] ⊢ ax : (2,{1},{0},o)⊲0
(CON)

...
(CON)

ε [x 7→ {ρ̂1}] ⊢ a(a(. . . (ax) . . . )) : (2,{1},{0},o)⊲0
(CON)

ε ⊢ λx.a(a(. . . (ax) . . . )) : τ̂f ⊲0
(λ )

Every(CON) rule used in this derivation places in its conclusion an order-0 flag and an order-1 flag. This
derivation can be used as a part of a derivation forP4:

ε [g 7→ {τ̂f}] ⊢ P3 : ρ̂2⊲1

ε ⊢ λg.P3 : (2, /0,{0,1},{τ̂f}→o)⊲1
(λ )

ε ⊢ λx.a(a(. . . (ax) . . . )) : τ̂f ⊲0

ε ⊢ P4 : ρ̂2⊲1
(@)

Becausêτf provides no markers, it can be removed from the type environment and thus forP3 we can
use the derivation from the previous example. We thus obtaina derivation forP4 in which there are many
order-0 and order-1 flags (but only one flag of order 2). This shows that in the flag counter we indeed
need to count only the number of flags of the maximal order (not, say, the total number of flags of all
orders).

4 Completeness

The proof of the left-to-right implication of Theorem 2 is divided into the following three lemmata.
Recall that aβ -reductionP→β Q is of ordern if it concerns a redex(λx.R)Ssuch thatord(λx.R) = n.
The number of nodes of a treet is denoted|t|. As in Theorem 2, we denotêρm= (m, /0,{0, . . . ,m−1},o).

Lemma 3. Let P be a closedλ -term of sort o and complexity m, and let t∈ L (P). Then there exist
λ -terms Qm,Qm−1, . . . ,Q0 such that P= Qm, and for every k∈ {1, . . . ,m} the term Qk−1 can be reached
from Qk using onlyβ -reductions of order k, and we can deriveε ⊢ Q0 : ρ̂0⊲ |t|.

Lemma 4. Suppose that we can deriveε ⊢ P : ρ̂m⊲c. Then we can also deriveε ⊢ P : ρ̂m+1⊲c′ for some
c′ ≥ log2 c.

Lemma 5. Suppose that P→β Q is a β -reduction of order m, and we can deriveΓ ⊢ Q : τ̂ ⊲ c with
ord(τ̂) = m. Then we can also deriveΓ ⊢ P : τ̂ ⊲c.

Now the left-to-right implication of Theorem 2 easily follows. Indeed, take a closedλ -term P of
sort o and complexitym such thatL (P) is infinite, and take anyc∈ N. By logk

2 we denote thek-fold
application of the logarithm: log02 x= x and logk+1

2 x= log2(logk
2x). SinceL (P) is infinite, it contains

a treet so big that logm2 |t| ≥ c. We apply Lemma 3 to this tree, obtainingλ -termsQm,Qm−1, . . . ,Q0

and a derivation ofε ⊢ Q0 : ρ̂0 ⊲ |t|. Then repeatedly for everyk ∈ {1, . . . ,m} we apply Lemma 4,
obtaining a derivation ofε ⊢ Qk−1 : ρ̂k ⊲ ck for someck ≥ logk

2 |t|, and Lemma 5 for everyβ -reduction
(of orderk) betweenQk andQk−1, obtaining a derivation ofε ⊢ Qk : ρ̂k ⊲ck. We end with a derivation
of ε ⊢ P : ρ̂m⊲cm, wherecm ≥ logm

2 |t| ≥ c, as needed. In the remaining part of this section we prove the
three lemmata.
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Proof of Lemma 3 (sketch).Recall thatt ∈ L (P) is a finite tree, thus it can be found in some finite
prefix of the Böhm tree ofP. By definition, this prefix will be already expanded after performing some
finite number ofβ -reductions fromP. We need to observe that theseβ -reductions can be rearranged,
so that those of higher order are performed first. The key point is to observe that when we perform a
β -reduction of some orderk, then no newβ -redexes of higher order appear in the term. Indeed, suppose
that (λx.R)S is changed intoR[S/x] somewhere in a term, whereord(λx.R) = k. One new redex that
may appear is whenR starts with aλ , and to the wholeR[S/x] some argument is applied; this redex is
of orderord(R)≤ k. Some other redexes may appear whenSstarts with aλ , and is substituted for such
appearance ofx to which some argument is applied; but this redex is of orderord(S)< k.

We can thus find a sequence ofβ -reductions in whichβ -reductions are arranged according to their
order, that leads fromP to someQ0 such thatt can be found in the prefix ofQ0 that is already expanded
to a tree. It is now a routine to use the rules of our type systemand deriveε ⊢ Q0 : ρ̂0 ⊲ |t|: in every
br-labeled node we choose the subtree in whicht continues, and this effects in counting the number of
nodes oft in the flag counter.

Proof of Lemma 4.Consider some derivation ofε ⊢ P : ρ̂m⊲ c. In this derivation we choose a leaf in
which we will put the order-m marker, as follows. Starting from the root of the derivation, we repeatedly
go to this premiss in which the flag counter is the greatest (arbitrarily in the case of a tie). In every node
that is not on the path to the selected leaf, we replace the current type judgmentΓ ⊢ Q : (m,F,M,τ) ⊲d
by Γ ⊢ Q : (m+1,F ′,M,τ)⊲0, whereF ′ = F ∪{m} if d > 0, andF ′ = F otherwise. In the selected leaf
and all its ancestors, we change the order fromm to m+1, we addm to the set of marker orders, and we
recalculate the flag counter.

Let us see how such transformation changes the flag counter onthe path to the selected leaf. We
will prove (by induction) that the previous valued and the new valued′ of the flag counter in every
node on this path satisfyd′ ≥ log2d. In the selected leaf itself, the flag counter (being either 0or
1) remains unchanged; we haved′ = d ≥ log2 d. Next, consider any proper ancestor of the selected
node. Letk be the number of those of its children in which the flag counterwas positive, plus the
number of order-m flags placed in the considered node itself. Let alsodmax andd′

max be the previous
value and the new value of the flag counter in this child that isin the direction of the selected leaf.
By construction, the flag counter in this child was maximal, which impliesk · dmax ≥ d, while by the
induction assumptiond′

max≥ log2 dmax. To d′ we take the flag counter only from the special child, while
for other children with positive flag counter we add 1, i.e.,d′ = k− 1+ d′

max. Altogether we obtain
d′ = k−1+d′

max≥ k−1+ log2 dmax≥ log2(k ·dmax)≥ log2 d, as required.

Proof of Lemma 5.We consider the base case whenP= (λx.R)SandQ= R[S/x]; the general situation
(redex being deeper inP) is easily reduced to this one. In the derivation ofΓ ⊢ Q : τ̂ ⊲c we identify the
setI of places (nodes) where we derive a type forSsubstituted forx. For i ∈ I , let Σi ⊢ S: σ̂i ⊲di be the
type judgment ini. We change the nodes inI into leaves, where we instead deriveε [x 7→ {σ̂i}] ⊢ x : σ̂i ⊲0.
It should be clear that we can repair the rest of the derivation, by changing type environments, replacing
S by x in λ -terms, and decreasing flag counters. In this way we obtain derivations ofΣi ⊢ S : σ̂i ⊲ di

for every i ∈ I , and a derivation ofΣ′ ⊢ R : τ̂ ⊲ d, whereΣ′ = Σ[x 7→ {σ̂i | i ∈ I}] with Σ(x) = /0, and
Split(Γ | Σ,(Σi)i∈I ), andc= d+Σi∈I di . To the latter type judgment we apply the(λ ) rule, and then we
merge it with the type judgments forSusing the(@) rule, which results in a derivation forΓ ⊢ P : τ̂ ⊲c.
We remark that differenti ∈ I may give identical type judgments forS (as long as the set of markers
in σ̂i is empty); this is not a problem. The(@) rule requires thatord(σ̂i) = ord(λx.R); we have that
ord(σ̂i) = ord(τ̂), andord(τ̂) = m= ord(λx.R) by assumption.
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5 Soundness

In this section we sketch the proof of the right-to-left implication of Theorem 2. We, basically, need to
reverse the proof from the previous section. The following new fact is now needed.

Lemma 6. If we can deriveΓ ⊢ P : (m,F,M,τ)⊲c with m−1 6∈ M and ord(P)≤ m−1, then c= 0.

A simple inductive proof is based on the following idea: flagsof orderm are created only when a
marker of orderm− 1 is visible; the derivation itself (together with free variables) does not provide it
(m−1 6∈ M), and the arguments, i.e. setsT1, . . . ,Tk in τ = T1→ . . .→Tk→o, may provide only markers of
order at mostord(P)−1≤ m−2 (see the definition of a type), thus no flags of ordermcan be created.

We say that aλ -term of the formPQ is an applicationof order nwhenord(P) = n, and that an
(@) rule is of order n if it derives a type for an application of ordern. We can successively remove
applications of the maximal order from a type derivation.

Lemma 7. Suppose thatε ⊢ P : ρ̂m⊲c for m> 0 is derived by a derivation D in which the(@) rule of
order m is used n times. Then there exists Q such that P→β Q andε ⊢ Q : ρ̂m⊲c can be derived by a
derivation D′ in which the(@) rule of order m is used less than n times.

Recall from the definition of the type system that the(@) rule of orders higher thanm cannot be
used while deriving a full type of orderm. Thus inD we have type judgments only for subterms ofP
of order at mostm (althoughP may also have subterms of higher orders), and in type environments we
only have variables of order at mostm− 1. In order to prove Lemma 7 we choose inP a subtermRS
with ord(R) = m such that there is a type judgment forRSin some nodes ofD (at least one), but no
descendants of those nodes use the(@) rule of orderm. SinceR is of orderm, it cannot be an application
(then we would choose it instead ofRS) nor a variable; thusR= λx.R′. We obtainQ by reducing the
redex(λx.R′)S; the derivationD′ is obtained by performing a surgery onD similar to that in the proof
of Lemma 5 (but in the opposite direction). Notice that everyfull type (m,F,M,τ) (derived forS) with
nonemptyM is used for exactly one appearance ofx in the derivation forR′; full types with emptyM may
be used many times, or not used at all, but thanks to Lemma 6 duplicating or removing the corresponding
derivations forSdoes not change the flag counter. In the derivations forR′[S/x] no (@) rule of orderm
may appear, and the applicationRSdisappears, so the total number of(@) rules of orderm decreases.

When all(@) rules of ordermare eliminated, we can decreasem.

Lemma 8. Suppose thatε ⊢ P : ρ̂m⊲c for m> 0 is derived by a derivation D in which the(@) rule of
order m is not used. Then we can also deriveε ⊢ P : ρ̂m−1⊲c′ for some c′ ≥ c.

The proof is easy; we simply decrease the orderm of all derived full types by 1, and we ignore flags
of orderm and markers of orderm−1. To obtain the inequalityc′ ≥ c we observe that when no(@) rule
of orderm is used, the information about flags of orderm−1 goes only from descendants to ancestors,
and thus every flag of orderm is created because of a different flag of orderm−1.

By repeatedly applying the two above lemmata, out of a derivation of ε ⊢ P : ρ̂m⊲ c we obtain a
derivation ofε ⊢Q : ρ̂0⊲c′, whereP→∗

β Q andc′ ≥ c. Sinceρ̂0 is of order 0, using the latter derivation it
is easy to find in the already expanded part ofQ (and thus inL (Q)=L (P)) a treet such that|t|= c′ ≥ c.

6 Effectiveness

Finally, we show how Theorem 1 follows from Theorem 2, i.e., how given aλY-termP of complexitym
we can check whetherε ⊢P : ρ̂m⊲c can be derived for arbitrarily largec. We say that two type judgments
are equivalent if they differ only in the value of the flag counter. Let us consider a setD of all derivations
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of ε ⊢ P : ρ̂m⊲c in which on each branch (i.e., each root-leaf path) there areat most three type judgments
from every equivalence class, and among premisses of each(@) rule there is at most one type judgment
from every equivalence class. These derivations use only type judgmentsΓ ⊢ Q : τ̂ ⊲d with Q being a
subterm ofP and withΓ(x) 6= /0 only for variablesx appearing inP. Since a finiteλY-term, even when
seen as an infinitaryλ -term, has only finitely many subterms, this introduces a common bound on the
height of all derivations inD , and on their degree (i.e., on the maximal number of premisses of a rule).
It follows that there are only finitely many derivations inD , and thus we can compute all of them.

We claim thatε ⊢ P : ρ̂m ⊲ c can be derived for arbitrarily largec if and only if in D there is a
derivation in which on some branch there are two equivalent type judgments with different values of the
flag counter (and the latter condition can be easily checked). Indeed, having such a derivation, we can
repeat its fragment between the two equivalent type judgments, obtaining derivations ofε ⊢ P : ρ̂m⊲ c
with arbitrarily largec. We use here an additivity property of our type system: if outof Γ ⊢ Q : τ̂ ⊲d
we can deriveΓ′ ⊢ Q′ : τ̂ ′ ⊲d′, then out ofΓ ⊢ Q : τ̂ ⊲d+ k we can deriveΓ′ ⊢ Q′ : τ̂ ′ ⊲d′+ k, for every
k ≥ −d. Conversely, take a derivation ofε ⊢ P : ρ̂m⊲c for some large enoughc. Suppose that some of
its (@) rules uses two equivalent premisses. These premisses concern the argument subterm, which is
of smaller order than the operator subterm, and thus of orderat mostm− 1. The set of marker orders
in these premisses has to be empty, as the sets of marker orders from all premisses have to be disjoint.
Thus, by Lemma 6, the flag counter in our two premisses is 0. In consequence, we can remove one of
the premisses, without changing anything in the remaining part of the derivation, even the flag counters.
In this way we clean the whole derivation, so that at the end among premisses of each(@) rule there is
at most one type judgment from every equivalence class. The degree is now bounded, and at each node
the flag counter grows only by a constant above the sum of flag counters from the children. Thus, ifc
is large enough, we can find on some branch two equivalent typejudgments with different values of the
flag counter. Then, for some pairs of equivalent type judgments, we remove the part of the derivation
between these type judgments (and we adopt appropriately the flag counters in the remaining part). It it
not difficult to perform this cleaning so that the resulting derivation will be inD , and simultaneously on
some branch there will remain two equivalent type judgmentswith different values of the flag counter.

7 Conclusions

In this paper, we have shown an approach for expressing quantitative properties of Böhm trees using
an intersection type system, on the example of the finitenessproblem. It is an ongoing work to apply
this approach to the diagonal problem, which should give a better complexity than that of the algorithm
from [6]. Another ongoing work is to obtain an algorithm for model checking Böhm trees with respect
to the Weak MSO+U logic [3]. This logic extends Weak MSO by a new quantifier U, expressing that
a subformula holds for arbitrarily large finite sets. Furthermore, it seems feasible that our methods may
help in proving a pumping lemma for nondeterministic HORSes.
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