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Traditionally, semantic models of imperative languages use an auxiliary structure which mimics

memory. In this way, ownership and other encapsulation properties need to be reconstructed from

the graph structure of such global memory. We present an alternative syntactic model where memory

is encoded as part of the program rather than as a separate resource. This means that execution can

be modelled by just rewriting source code terms, as in semantic models for functional programs.

Formally, this is achieved by the block construct, introducing local variable declarations, which play

the role of memory when their initializing expressions have been evaluated. In this way, we obtain a

language semantics which directly represents at the syntactic level constraints on aliasing, allowing

simpler reasoning about related properties. To illustrate this advantage, we consider the issue, widely

studied in the literature, of characterizing an isolated portion of memory, which cannot be reached

through external references. In the syntactic model, closed block values, called capsules, provide a

simple representation of isolated portions of memory, and capsules can be safely moved to another

location in the memory, without introducing sharing, by means of affine variables. We prove that the

syntactic model can be encoded in the conventional one, hence efficiently implemented.

1 Introduction

In languages with state and mutations, keeping control of aliasing relations is a key issue for correctness.

This is exacerbated by concurrency mechanisms, since side-effects in one thread can affect the behaviour

of another thread, hence unpredicted aliasing can induce unplanned/unsafe communication.

For these reasons, the last few decades have seen considerable interest in type systems for controlling

sharing and interference, to make programs easier to maintain and understand, notably using qualifiers

to restrict the usage of references [29, 20, 25, 12].

In particular, in an ongoing stream of work [27, 15, 17, 16, 18, 14, 19], we have adopted an in-

novative execution model [26, 9] for imperative languages which, differently from traditional ones, is

a reduction relation on language terms. That is, we do not add an auxiliary structure which mimics

physical memory, but such structure is encoded in the language itself. Whereas this makes no difference

from a programmer’s point of view, it is important on the foundational side, since, as will be informally

illustrated below, language semantics directly represents at the syntactic level constraints on aliasing,

allowing simpler reasoning about related properties.

In this paper, we focus on the operational model itself, rather than on type systems, and formalize its

relation with the conventional model, where an auxiliary global structure mimics memory.
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To informally introduce this syntactic calculus, we show examples of reduction sequences. The main

idea is to use variable declarations to directly represent the memory. That is, a declared variable is not

replaced by its value, as in standard let, but the association is kept and used when necessary, as it

happens, with different aims and technical problems, in cyclic lambda calculi [4, 23, 3]. Assuming a

program (class table) where class C has two fields f1 and f2 of type D, and class D has a field f of type D,

the term

D x=new D(y); D y=new D(x); C w={D z=new D(z); x.f=x; new C(z,z)}; w.f1

starts with two declarations that can be seen as a memory consisting of two mutually referring objects.

Then there is a declaration whose right-hand-side needs to be evaluated and the final expression returns

the value of a field of the object associated with this last variable. The reduction of the term is as follows.

D x=new D(y); D y=new D(x); C w={D z=new D(z); x.f=x; new C(z,z)}; w.f1 −→

D x=new D(x); D y=new D(x); C w={D z=new D(z); new C(z,z)}; w.f1 −→

D x=new D(x); D y=new D(x); D z=new D(z); C w={ new C(z,z)}; w.f1 ∼=

D x=new D(x); D y=new D(x); D z=new D(z); C w=new C(z,z); w.f1 −→

D x=new D(x); D y=new D(x); D z=new D(z); C w=new C(z,z); z −→

D z=new D(z); z

Evaluation proceeds left to right. We emphasize at each step the declarations which can be seen as

the store (in grey). We start evaluating the right-hand-side of the declaration for w, by updating the field f

of x. Then, in order to evaluate the field access w.f1, we need to move the declaration of z outside of the

inner block. A block with no declarations is considered equivalent to its body, as expressed by ∼=. Now

the field access w.f1 can be performed, getting z, and the last step removes declarations (memory) which

are not reachable from z, giving as final result a memory consisting of only one cyclic object.

To illustrate how aliasing constraints are directly represented in this syntactic model, we consider an

important example: how to characterize an isolated portion of memory, which cannot be reached through

external references. This allows programmers (and static analyses) to identify portions of memory that

can be safely handled by a thread. This property has been widely studied in the literature, under different

names and variants, such as isolated [20], unique [8] and externally unique [11], balloon [2], island [13].

In the syntactic calculus, block values with no free variables, called capsules, provide a simple rep-

resentation of portions of memory which are trivially isolated. For instance, in the following example:

(ex1) D x=new D(x); D y=new D(x); Ca w={D z=new D(z); new C(z,z)}; x.f=x

the right-hand side of the declaration of w is a capsule. To allow the programmer to safely rely on the fact

that w denotes an isolated portion of memory, which nobody else in the program can affect, we introduce

the qualifier a, as shown above, for affine variables/parameters, which should be initialized with capsules.

If the term is, instead:

(ex2) D x=new D(x); D y=new D(x); Ca w={D z=new D(z); new C(z,y)}; x.f=x

then the inner block is not a capsule, hence its use to inizialize an affine variable is an error to be

prevented, otherwise a programmer using w would erroneously rely on the capsule property. In the

syntactic calculus, this error can be easily detected at runtime in a modular way, that is, by looking only

at the block itself. For instance, in (EX1) the runtime check succeeds, whereas in (EX2) it fails, hence normal

execution cannot proceed, since the block contains the free variable y.1

1In the formalization presented in this paper, the term is simply stuck. A different choice could be to introduce explicit error

terms. In our previous work [27, 15, 17, 16, 18] we have designed type systems which are able to statically prevent such error.
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Note that, in the conventional calculus, detecting that a reference denotes an isolated portion of

memory requires, instead, a dependency analysis involving surrounding code and memory. For instance,

in the examples (EX1) and (EX2) above, execution will reach respectively the following step:

(EX1) Ca w = new C(ιz,ιz); ιx.f=ιx|µ
(EX2) Ca w = new C(ιz,ιy); ιx.f=ιx|µ

where the domain of the memory µ are object identifiers ι , modeling global names which, differ-

ently from variables, do not support shadowing and α-renaming. Here µ = ιx 7→ new D(ιx), ιy 7→
new D(ιx), ιz 7→ new D(ιz). It is clear that the two situations cannot be distinguished by only looking

locally at the initialization expression of w. Instead, we must check that the memory portion reachable

from such initialization expression is isolated, that is, cannot be reached from references used in other

parts of the program. This is true for (EX1), since there is no sharing between ιz and the reference ιx used in

the external code ιx.f=ιx. For (EX2), instead, there is sharing between ιy and ιx, and indeed the execution

of such external code affects the portion of memory reachable from new C(ιy,ιz). In the general case,

detecting sharing through dependency analysis is an expensive check, which could even be impossible

in a distributed environment.

As said above, by using an affine variable/parameter x the programmer can safely rely on the fact that

x denotes an isolated portion of memory. On the other hand, the capsule property should be preserved

when x is used. This is ensured by the constraint that affine variables/parameters can be used at most

once, and by a special reduction semantics, motivated and described below.

As already shown, for (non-affine) variable declarations reduction is as follows:

D x=new D(x); D y=new D(x); C w={D z=new D(z); new C(z,z)}; w.f1 −→

D x=new D(x); D y=new D(x); D z=new D(z); C w={ new C(z,z)}; w.f1 ∼=

D x=new D(x); D y=new D(x); D z=new D(z); C w=new C(z,z); w.f1 −→ . . .

That is, the block is flattened, hence the capsule property is lost. This corresponds to the fact that, if we

get access to a portion of memory through an ordinary variable, then sharing could be introduced through

such variable, hence, in particular, a portion of memory which was isolated is not guaranteed to remain

such. To preserve the property, affine variables have a special semantics, which allow a capsule to be

moved to another location in the memory, or passed as argument to a method. In the above example,

reduction would be as follows:

D x=new D(x); D y=new D(x); Ca w={D z=new D(z); new C(z,z)}; w.f1 −→

D x=new D(x); D y=new D(x); {D z=new D(z); new C(z,z)}.f1 −→

D x=new D(x); D y=new D(x); {D z=new D(z); new C(z,z).f1} −→

D x=new D(x); D y=new D(x); {D z=new D(z); z} −→

D z=new D(z); z

Differently from the previous reduction, the block occurring as right-hand side of the declaration of w is

not flattened, but, rather, used to replace w. That is, affine variables have a substitution semantics. Then,

the field access is propagated inside the block to be performed.

In Sect.2 and Sect.3 we define the conventional and the syntactic calculus, respectively. In Sect.4 we

show that the syntactic model can be encoded in the conventional one, hence efficiently implemented,

and prove that the dynamic semantics is preserved by the encoding. Finally, in Sect.5 we draw some

conclusions.
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2 The conventional calculus

We illustrate our approach in the context of calculi with an object-oriented flavour, inspired by Feath-

erweight Java [22] (FJ for short). This is only a presentation choice: the ideas and results of the paper

could be rephrased in different imperative calculi, e.g., supporting data type constructors and reference

types. For the same reason, we omit features such as inheritance and late binding, which are orthogonal

to our focus.

The conventional calculus is given in Fig.1. It is similar to other imperative variants of FJ which can

be found in the literature [1, 6, 5]. We assume sets of variables x,y,z, class names C,D, field names f ,

and method names m. We adopt the convention that a metavariable which ends in s is implicitly defined

as a (possibly empty) sequence in which elements may or may not be separated by commas. In particular,

ds (and dvs in the next section) are sequences of d (and dv) and es, vs and xs are sequences of e, v and x

separated by commas.

e ::= x | e.f | e.f=e′ | new C(es) | e.m(es) | {ds e} | ι expression

d ::= C x=e; declaration

v ::= ι value

E ::= [ ] | E .f | E .f=e′ | ι.f=E | new C(vs,E ,es) evaluation context

| E .m(es) | ι.m(vs,E ,es) | {C x=E ; ds e}

(ALPHA) {ds C x=e; ds′ e′} ∼= {ds[y/x] C y=e[y/x]; ds′[y/x] e′[y/x]} (BLOCK-ELIM) { e} ∼= e

(CTX)

e|µ =⇒ e′|µ ′

E [e]|µ =⇒ E [e′]|µ ′
(FIELD-ACCESS) ι.fi|µ =⇒ vi|µ

µ(ι) = new C(v1, . . . ,vn)

fields(C) = C1 f1 . . .Cn fn ∧ 1 ≤ i ≤ n

(FIELD-ASSIGN) ι.fi=v|µ =⇒ v|µ ι.i=v µ(ι) = new C(vs)

fields(C) = C1 f1 . . .Cn fn ∧ 1 ≤ i ≤ n

(NEW) new C(vs)|µ =⇒ ι|µ [new C(vs)/ι] ι 6∈ dom(µ)

(INVK) ι.m(v1, . . . ,vn)|µ =⇒{C1 this=ι; C1 x1=v1; . . .Cn xn=vn; e}|µ
µ(ι) = new C(vs)

meth(C,m) = 〈x1 . . .xn,e〉

(DEC) {C x=ι; ds e}|µ =⇒{ds e}[ι/x]|µ

Figure 1: Conventional calculus

An expression can be a variable (including the special variable this denoting the receiver in a

method body), a field access, a field assignment, a constructor invocation, a method invocation, or a

block consisting of a sequence of local variable declarations and a body. In addition, a (runtime) expres-

sion can be an object identifier ι . Blocks are included to have a more direct correspondence with the

syntactic calculus. In a block, a declaration specifies a type (class name), a variable and an initialization

expression. We assume that in well-formed blocks there are no multiple declarations for the same vari-

able, that is, ds can be seen as a map from variables to expressions: dom(ds) denotes the set of variables

declared in ds and ds(x) the initialization expression for x in ds, if any.

In the examples, we generally omit the brackets of the outermost block, and abbreviate {T x=e; e′}
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by e;e′ when x does not occur free in e′. We also assume integer constants, which are not included in the

formalization.

Expressions are identified modulo congruence, denoted by ∼= , defined as the smallest congruence

satisfying the axioms in the mid section of Fig.1. Rule (ALPHA) is the usual α-conversion. The condition

x,y 6∈ dom(ds ds′) is implicit by well-formedness of blocks. Rule (BLOCK-ELIM) identifies a block without

declarations with its body.

The class table is abstractly modelled by the following functions:

• fields(C) gives, for each declared class C, the sequence C1 f1 . . .Cn fn of its fields declarations.

• meth(C,m) gives, for each method m declared in class C, the pair consisting of its parameters and

body.

The reduction relation =⇒ is defined on pairs e|µ where a memory µ is a finite map from object

identifiers ι into object states of shape new C(vs). Values are object identifiers (we do not identify the

two sets since, extending the language, values would be extended to include, e.g., primitive values such

as integers).

Evaluation contexts and reduction rules are straightforward. In rule (FIELD-ASSIGN), we denote by

µ ι .i=v the memory where the i-th field of the object state associated to ι has been replaced by v. In

rule (INVK), we take advantage of the block construct to provide a modular semantics, where a method

call is reduced to a block where declarations of the appropriate type for this and the parameters

are initialized with the receiver and the arguments, respectively, and the body is the method body.

Indeed, this rule plus a sequence of applications of rule (DEC) is equivalent to the standard FJ rule

ι.m(v1, . . . ,vn)|µ =⇒ e[ι/this][v1/x1 . . .vn/xn]|µ . Local variable declarations have the standard sub-

stitution semantics, and are elaborated in the usual left-to-right order (no recursion is allowed).

3 The syntactic calculus

The syntax of the expressions, given in Fig.2, is the same as the conventional calculus, except that runtime

expressions (object identifiers) are not needed. To lighten the notation, we use the same metavariables.

e ::= x | e.f | e.f=e′ | new C(es) | e.m(es) | {X
ds e} expression

d ::= T x=e; declaration

T ::= Cq declaration type

q ::= ε | a optional qualifier

v ::= x | {X
dvs x} value

dv ::= C x=new C(xs); evaluated declaration

E ::= [ ] | E .f | E .f=e′ | x.f=E | new C(xs,E ,es) | E .m(es) | x.m(vs,E ,es) | Eb evaluation context

Eb ::= {X
dvs C y=E ; ds e} | {X

dvs E } block context

Ev ::= [ ].f | [ ].f=e′ | x.f=[ ] | new C(xs, [ ],es) | [ ].m(es) value context

Figure 2: Syntactic calculus: syntax, values, and evaluation contexts

Moreover, some annotations are inserted in terms. Namely:

• Local variable declarations (and method parameters) are possibly annotated with a qualifier a,

which, if present, indicates that the variable is affine. An affine variable can occur at most once

in its scope, and should be initialized with a capsule, that is, an isolated portion of store. In this
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way, it can be used as a temporary reference, to “move” a capsule to another location in the store,

without introducing sharing.

• Blocks are annotated with a set X of variables, assumed to be a subset of the declared variables.

During reduction, if a block {X
ds e} should reduce to a capsule, only declarations of variables

which are not in X can be safely moved outside of the block, see rule (MOVE-DEC). In this paper, since

our focus is on the operational model, we do not care about how block annotations are generated.

Of course, a trivial overapproximation consists in taking as X the set of all declared variables;

a better approximation is taking only those which are used (that is, have some free occurrence in

initialization expressions/body), or, even better, only those which are transitively used by the body,

in the sense formally defined below. We have shown in previous work [17, 16, 18] that through a

type and effect system it is possible to obtain a much more precise approximation, computing X to

be the set of the variables which will be possibly connected with the final result of the block.

A sequence dvs of evaluated declarations plays the role of the memory in the conventional calculus,

that is, each dv can be seen as an association of an object state new C(xs) to a reference.

A value is a reference to an object, possibly enclosed in a block where all declarations are evaluated

(hence, correspond to a local memory).

We assume that, in a block value {X
dvs x}, dvs 6= ε and dvs|x = dvs, where, given a sequence of declara-

tions ds ≡ T1 x1=e1; . . .Tn xn=en; and an expression e, ds|e are the declarations of variables (transitively)

used by e, that is, free either in e or in some ei such that xi is transitively used by e.

We write FV(ds) and FV(e) for the free variables of a sequence of declarations and of an expression,

respectively, and X[y/x], ds[y/x], and e[y/x] for the capture-avoiding variable substitution on a set of

variables, a sequence of declarations, and an expression, respectively, all defined in the standard way.

In the syntactic calculus, capsules can be characterized in a very simple way: indeed, a value is a

capsule, written caps(v), if it is a closed block value, that is, of shape {dvs x} with no free variables.

The above requirement that all local variables must be transitively used by x is needed, indeed, since

otherwise a block value containing unused free variables, e.g., {C x=new C(); Dy=new D(z); x} would

be not recognized to be a capsule. Unused evaluated declarations are removed by rule (GARBAGE).

Evaluation contexts E are mostly standard. Note that values are assumed to be references, apart

from arguments of method calls, which are allowed to be block values. This models the fact that block

values (hence, capsules) are first-class values which can be passed to methods. However, they need to

be “opened” when we perform an actual operation on them. We distinguish, among evaluation context,

block contexts, Eb, having the shape of a block, which play a special role in the reduction rules.

The hole binders of a context E , dubbed HB(E ), are the variables bound by the context, defined by:

• HB([ ]) = /0, HB(E .f ) = · · ·= HB(x.m(vs,E ,es)) = HB(E )

• HB({X
dvs C y=E ; ds e}) = dom(dvs ds)∪{y}∪HB(E ) and HB({X

dvs E }) = dom(dvs)∪HB(E ).

Moreover, given Eb = {X
dvs C y=E ; ds e} or Eb = {X

dvs E }, we define

• get(Eb,x) = dvs(x), i.e., the object state associated to x in dvs, if x ∈ dom(dvs), and

• inner(Eb) = HB(E ), i.e., the set of variables declared in the direct subcontext E of Eb.

A value context Ev is an evaluation context with the shape of either a field access, or a field assign-

ment, or a constructor invocation, or a method invocation, where the hole (expected to be filled with a

block value) is a direct subterm (the receiver in the last case).

Expressions are identified modulo congruence, denoted by ∼=, defined as the smallest congruence

satisfying the axioms in Fig.3. Rules (ALPHA) and (BLOCK-ELIM) are as in the conventional calculus. Rule
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(ALPHA) {X
ds C x=e; ds′ e′} ∼= {X[y/x]

ds[y/x] C y=e[y/x]; ds′[y/x] e′[y/x]} (BLOCK-ELIM) { /0
e} ∼= e

(REORDER) {X
ds dv ds′ e} ∼= {X

dv ds ds′ e}

Figure 3: Syntactic calculus: congruence rules

(REORDER) states that we can move evaluated declarations in an arbitrary order. Note that, instead, ds and

ds′ cannot be swapped, because this could change the order of side effects.

Reduction rules are given in Fig.4. We explicitly distinguish the relation
c

−→ defined by computa-

tional rules only, and reduction −→, defined as its contextual closure. In other words, in rule (CTX) we

assume that E is a maximal context. This simplifies proofs in Sect.4. More importantly, in this way we

can prevent reduction of a constructor call in a declaration context, see comments to rule (NEW) below.

(CTX)

e
c

−→e′

E [e]−→ E [e′]
(NEW) E [new C(xs)]−→ E [{{x}

C x=new C(xs); x}] E 6= E
′[{X

dvs C y=[ ]; ds e}]

(FIELD-ACCESS) Eb[x.fi]
c

−→Eb[xi]

get(Eb,x) = new C(x1, . . . ,xn)∧ x 6∈ inner(Eb)
fields(C) = C1 f1 . . .Cn fn ∧ 1 ≤ i ≤ n

xi 6∈ inner(Eb)

(FIELD-ASSIGN) Eb[x.fi=y]
c

−→E
x.i=y

b [y]

get(Eb,x) = new C(xs)∧ x 6∈ inner(Eb)
fields(C) = C1 f1 . . .Cn fn ∧ 1 ≤ i ≤ n

y 6∈ inner(Eb)

(INVK) Eb[x.m(v1, . . . ,vn)]
c

−→Eb[{Cthis=x; C
q1
1 x1=v1; , . . . ,Cqn

n xn=vn; e}]

get(Eb,x)=new C(xs)

x 6∈ inner(Eb)
meth(C,m)=〈Cq1

1 x1, . . . ,C
qn
n xn,e〉

(ALIAS-ELIM) {X
dvs C x=y; ds e}

c
−→{X\{x}

dvs ds[y/x] e[y/x]}

(AFFINE-ELIM) {X
dvs Ca x=v; ds e}

c
−→{X\{x}

dvs ds[v/x] e[v/x]} caps(v)

(GARBAGE) {X
dvs ds e}

c
−→{X\dom(dvs)

ds e} (FV(ds)∪FV(e))∩dom(dvs) = /0

(MOVE-DEC) {Y
dvs Cq x={X

dvs′ ds e}; ds′ e′}
c

−→{Y
dvs dvs′ Cq x={X

ds e}; ds′ e′}

FV(dvs′)∩dom(ds) = /0

FV(dvs ds′ e′)∩dom(dvs′)= /0

q = a⇒ dom(dvs′)∩X= /0

(MOVE-BODY) {Y
dvs {X

dvs′ ds e}}
c

−→{Y
dvs dvs′ {X

ds2 e}}
FV(dvs′)∩dom(ds) = /0

FV(dvs)∩dom(dvs′) = /0

(MOVE-SUBTERM) Ev[{
X

dvs dvs′ x}]
c

−→{X∩dom(dvs)
dvs Ev[{

X\dom(dvs)
dvs′ x}]}

FV(dvs)∩dom(dvs′) = /0

FV(Ev)∩dom(dvs) = /0

Figure 4: Syntactic calculus: reduction rules

Rule (CTX) is the usual contextual closure.

In rule (NEW), a constructor invocation where all arguments are references is reduced to an elementary

block where a new object is allocated. However, this reduction is not allowed when the constructor

invocation occurs as right-hand side of a declaration, to prevent non-terminating reduction sequences
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such as the following:

{C x=new C(x); x} −→ {C x={C x=new C(x); x}; x} −→ ·· ·
Note that, if the constructor invocation occurs, instead, on the right-side of a declaration of an affine

variable, the rule is applicable and does not produce a non-terminating reduction sequence. For instance:

{Ca x=new C(x); x} −→ {Ca x={C x=new C(x); x}; x}
and rule (NEW) is no longer applicable.

In rule (FIELD-ACCESS), a field access of shape x.f is evaluated in the block context containing the

first enclosing (evaluated) declaration for x, as expressed by the first side condition and the definition of

get(Eb,x). The fields of the class C of x are retrieved from the class table. If f is the name of a field

of C, say, the i-th, then the field access is reduced to the reference xi stored in this field. The condition

xi 6∈ inner(Eb) ensures that there are no inner declarations for xi (otherwise xi would be erroneously

bound). This can always be obtained by rule (ALPHA) of Fig.3. For instance, assuming a class table where

class A has an int field, and class B has an A field f, without this side condition, the term:

A a=new A(0); B b=new B(a); {A a=new A(1); b.f}

would reduce to

A a=new A(0); B b=new B(a); {A a=new A(1); a}

whereas this reduction is forbidden by the side condition. However, by rule (ALPHA) of Fig.3, the term is

congruent to one that can be reduced to

A a=new A(0); B b=new B(a); {A a1=new A(1); a}

In rule (FIELD-ASSIGN), a field assignment of shape x.f=y is evaluated in the block context containing

the first enclosing (evaluated) declaration for x, as expressed by the first side condition. The fields of the

class C of x are retrieved from the class table. If f is the name of a field of C, say, the i-th, then this first

enclosing declaration is updated, by replacing the i-th constructor argument by y obtaining the declaration

C x=new C(x1,xi−1,y,xi+1, . . . ,xn); as expressed by the notation E
x.i=y

b (whose obvious formal definition

is omitted). Analogously to rule (FIELD-ACCESS), we have the side condition that y 6∈ inner(Eb). This

side condition, requiring that there are no inner declarations for y, prevents scope extrusion, since if

y ∈ inner(Eb), E
x.i=y
b would take y outside the scope of its definition. For example, without this side

condition, the term

A a=new A(0); B b=new B(a); {A a1=new A(1); b.f=a1}

would reduce to

A a=new A(0); B b=new B(a1); {A a1=new A(1); a1}

which is not correct since a1 is a free variable. The rules (MOVE-DEC) and (MOVE-BODY) (see below) can be

used to move the declaration of y outside its declaration block. So the term reduces, instead, to

A a=new A(0); B b=new B(a); A a1=new A(1); b.f=a1

by applying first rule (MOVE-BODY), and then congruence rule (BLOCK-ELIM). Now the term correctly reduces

to

A a=new A(0); B b=new B(a1); A a1=new A(1); a1

In rule (INVK), a method call of shape x.m(v1, ..,vn) is evaluated in the block context containing the

first enclosing (evaluated) declaration for x, as expressed by the first side condition. Method m of C, if

any, is retrieved from the class table. The call is reduced to a block where declarations of the appropriate

type for this and the parameters are initialized with the receiver and the arguments, respectively, and
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the body is the method body. If a parameter is affine, then the corresponding argument will be checked to

be a capsule when the formal parameter will be substituted with the associated value by rule (AFFINE-ELIM),

see below. We assume that parameters which are affine occur at most once in the body of the method.

The following two rules eliminate declarations from a block.

In rule (ALIAS-ELIM), a reference (non affine variable) x which is initialized as an alias of another reference

y is eliminated by replacing all its occurrences. In rule (AFFINE-ELIM), an affine variable is eliminated by

replacing its unique occurrence with the value associated to its declaration. The rule can only be applied

if such value is a capsule. Such side condition formally models that execution includes a runtime check

in this case, as it happens, e.g., in Java downcasts. Note also that, even ignoring the a qualifier in the

latter, the two rules do not overlap, since a reference y is trivially not a capsule.

Rule (GARBAGE) states that we can remove an unused sequence of evaluated declarations from a block.

Note that it is only possible to safely remove declarations which are evaluated, since they do not have

side effects.

With the remaining rules we can move a sequence of evaluated declarations from a block to the

directly enclosing block, as it happens with rules for scope extension in the π-calculus [24].

In rules (MOVE-DEC) and (MOVE-BODY), the inner block is the right-hand side of a declaration, or the body,

respectively, of the enclosing block. The first two side conditions ensure that moving the declarations

dvs′ does cause neither scope extrusion nor capture of free variables. More precisely: the first prevents

moving outside a declaration dvs′ which depends on local variables of the inner block. The second

prevents capturing with dvs′ free variables of the enclosing block. Note that the second condition can

be obtained by α-conversion of the inner block, but the first cannot. Finally, when the block initializes

an affine variable, the third side condition of rule (DEC) forbids to move outside the block declarations of

variables that are in the annotation X of the block. Indeed, annotations can be rough or very precise, as

discussed before, but in any case such that variables not in X cannot be possibly connected to the final

result of the block, hence can be safely moved outside without “breaking” the capsule property (that the

block should ultimately reduce to a closed expression). In case of a non affine declaration, instead, this

is not a problem.

Rule (MOVE-SUBTERM) handles the cases when the inner block is a subterm of a field access, field assign-

ment, constructor invocation, or method invocation. Note that in this case the inner block is necessarily

a (block) value. We use value contexts to express all such cases in a compact way.

4 Preservation of semantics

In this section, for clarity, we use ê and d̂s to range over expressions and sequences of declarations of the

conventional calculus, which could include object identifiers.

We show that, if an expression has a reduction sequence in the syntactic calculus, then it has an

“equivalent” reduction sequence in the conventional calculus. Note that the converse does not hold, since

an expression which is stuck in the syntactic calculus, since a capsule runtime check (side condition of

rule (AFFINE-ELIM)) fails, could reduce in the conventional calculus. That is, in the syntactic calculus, by

declaring x affine, the programmer can rely on the fact that during computation x will always denote an

isolated portion of memory2, otherwise an exception would be raised.

In order to state the preservation results (Theorem 1 and Corollary 1), we define a matching relation
ρ

! between expressions e of the syntactic calculus and pairs ê|µ of the conventional calculus. The

2Hence, nobody else in the program can affect memory reachable from x, hence such memory can be safely handled by a

thread.
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relation is labelled by an injective mapping ρ from object identifiers in the domain of µ to variables.

Intuitively, e
ρ

! ê|µ holds if variables in the image of ρ are all those declared in evaluated declarations

in e and all such declarations are removed in ê. More precisely, since the same variable could be declared

in different blocks inside an expression, the mapping ρ should be from object identifiers to binding

occurrences of variables. To make the formal treatment simpler, we can assume that each variable is

declared at most once in expressions of the syntactic calculus. This can be obtained by α-renaming.

Formally the relation is inductively defined by the rules in Fig.5.

A variable in the syntactic calculus is matched in the conventional calculus by a pair where the

expression is the corresponding object identifier in ρ , if any, rule (OID), otherwise the variable itself, rule

(VAR). The former case happens when the variable declaration is evaluated in the syntactic calculus.

Rules (FIELD-ACCESS), (FIELD-ASSIGN), (NEW), and (INVK) just propagate matching to subterms. For es =
e1, . . . ,en, ês = ê1, . . . , ên, we use es

ρ

! ês|µ to abbreviate ei
ρ

! êi|µ ∀i ∈ 1..n.

In rule (BLOCK), a block {x
dvs ds e} in the syntactic calculus is matched by a block and mem-

ory {d̂s ê}|µ of the conventional calculus if evaluated declarations dvs are matched by memory µ , as

expressed by the auxiliary judgment dvs
ρ

! µ , and matching is propagated to other subterms. For

ds = d1 . . .dn, d̂s = d̂1 . . . d̂n, we use ds
ρ

! d̂s|µ to abbreviate di
ρ

! d̂i|µ ∀i ∈ 1..n, and analogously for

dvs
ρ

! µ .

(OID)

x
ρ

! ι|µ
ρ(ι) = x (VAR)

x
ρ

! x|µ
x 6∈ img(ρ)

(FIELD-ACCESS)

e
ρ

! ê|µ

e.f
ρ

! ê.f |µ
(FIELD-ASSIGN)

e
ρ

! ê|µ e′
ρ

! ê′|µ

e.f=e′
ρ

! ê.f=ê′|µ

(NEW)

es
ρ

! ês|µ

new C(es)
ρ

! new C(ês)|µ
(INVK)

e
ρ

! ê|µ es
ρ

! ês|µ

e.m(es)
ρ

! ê.m(ês)|µ

(BLOCK)

dvs
ρ

! µ ds
ρ

! d̂s|µ e
ρ

! ê|µ

{X
dvs ds e}

ρ

! {d̂s ê}|µ
(DEC)

e
ρ

! ê|µ

Cq x=e;
ρ

! C x=ê; |µ
Cq x=e; 6= dv

(EV-DEC)

C x=new C(x1, . . . ,xn);
ρ

! µ
µ(ρ−1(x)) = new C(ρ

−1(x1), . . . ,ρ
−1(xn))

Figure 5: Matching relation between terms

The matching relation can be extended, in the obvious way, to evaluation contexts of the syntactic

calculus and pairs evaluation context and memory of the conventional calculus, i.e., E
ρ

! Ê |µ . The

formal definition is given in Fig.6.

It is easy to show the following lemma.

Lemma 1. E [e]
ρ

! ê′|µ if and only if ê′ = Ê [ê] such that E
ρ

! Ê |µ and e
ρ

! ê|µ .

Note that, when E [e] is closed, all the free variables in e are declared in E and their declaration is

evaluated. Therefore, the previous lemma implies that they are in the image of ρ , and so in ê they match

object identifiers.

The following lemma asserts the conditions on which a value in the syntactic calculus is matched by

a pairs of value and memory in the conventional one.

Lemma 2. Let v be such that v
ρ

! ê|µ for some ê, ρ and µ . Then:

1. if v = x, then either ê = ι for some ι and ρ(ι) = x, or ê = x
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(C-EMPTY)

[ ]
ρ

! [ ]|µ
(C-FIELD-ACCESS)

E
ρ

! Ê |µ

E .f
ρ

! Ê .f |µ

(C-FIELD-ASSIGN-L)

E
ρ

! Ê |µ e
ρ

! ê|µ

E .f=e
ρ

! Ê .f=ê|µ
(C-FIELD-ASSIGN-R)

E
ρ

! Ê |µ x
ρ

! ι|µ

x.f=E
ρ

! ι.f=Ê |µ

(C-NEW)

E
ρ

! Ê |µ es
ρ

! ês|µ xs
ρ

! ι1, . . . , ιn|µ

new C(xs,E ,es)
ρ

! new C(ι1, . . . , ιn, Ê , ês)|µ

(C-INVK-RCV)

E
ρ

! Ê |µ es
ρ

! ês|µ

E .m(es)
ρ

! Ê .m(ês)|µ
(C-INVK-ARG)

E
ρ

! Ê |µ es
ρ

! ês|µ vs
ρ

! ι1, . . . , ιn|µ

x.m(vs,E ,es)
ρ

! ι.m(ι1, . . . , ιn, Ê , ês)|µ

(C-BLK-DEC)

dvs
ρ

! µ E
ρ

! Ê |µ ds
ρ

! d̂s|µ e
ρ

! ê|µ

{X
dvs C y=E ; ds e}

ρ

! {C y=Ê ; d̂s ê}|µ
(C-BLK-BODY)

dvs
ρ

! µ E
ρ

! Ê |µ

{X
dvs E }

ρ

! Ê |µ

Figure 6: Matching relation between evaluation contexts

2. if v = {X
dvs x}, then ê = ι and ρ(ι) = x.

Proof. 1. The judgment x
ρ

! ê|µ has been necessarily derived by rule either (OID) or (VAR) in Fig.5.

2. First observe that dvs cannot be empty and that C x=new C(xs); must be in dvs. The judgment

{X
dvs x}

ρ

! ê|µ has been necessarily derived by rule (BLOCK) in Fig.5. Therefore dvs
ρ

! µ , and,

since for each declaration in dvs we have applied rule (EV-DEC), all the variables in dvs must be in

the image of ρ and ê = ι such that ρ(ι) = x.

From the previous lemma we have that, if all the free variables of v are in the image of ρ , then v can

only match an object identifier.

A step in the reduction of a closed expression e in the syntactic calculus can be simulated by a pos-

sibly empty sequence of reduction steps of the matching configuration ê|µ in the conventional calculus.

Theorem 1. If FV(e) = /0, e
ρ

! ê|µ , and e −→ e′, then ê|µ =⇒⋆ ê′|µ ′ such that e′
ρ′

! ê′|µ ′, for some

ê′, ρ ′, µ ′ such that ρ ⊆ ρ ′, dom(µ)⊆ dom(µ ′).

Proof. If e −→ e′, then either rule (CTX) or rule (NEW) of Fig.4 were applied.

Consider first rule (CTX). Then e = E [e1], e′ = E [e′1] and e1
c

−→e′1. From e
ρ

! ê|µ and Lemma 1 we have

that ê = Ê [ê1] where E
ρ

! Ê |µ and e1
ρ

! ê1|µ .

By cases on the reduction rule of Fig.4 applied to reduce e1 to e′1. We consider (FIELD-ASSIGN), (AFFINE-ELIM),

(MOVE-DEC) and (MOVE-SUBTERM). The proof for the other rules is similar.

Rule (FIELD-ASSIGN). Then

(i) e1 = Eb[x.fi=y],

(ii) e′1 = E
x.i=y

b [y],

(iii) get(Eb,x) = new C(x1, . . . ,xn), and

(iv) fields(C) = C1 f1 . . .Cn fn ∧ 1 ≤ i ≤ n.
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From e1
ρ

! ê1|µ and Lemma 1 we have that ê1 = Êb[ê2] with Eb
ρ

! Êb|µ and x.fi=y
ρ

! ê2|µ for some

ê2. Since e is a closed term we get that x and y are defined in the evaluated declarations of E [Eb].
Therefore ê2 is ι.fi=ι ′ for some ι and ι ′ such that ρ(ι) = x and ρ(ι ′) = y. Moreover, from rules (BLOCK)

and (EV-DEC) and (iii), it must be µ(ι) = new C(ι1, . . . , ιn) for some ιi such that ρ(ιi) = xi for i ∈ 1, . . . ,n.

From (iv) and rule (CTX) with premise (INVK) of Fig.1 we get Êb[ι.fi=ι ′]|µ =⇒ Êb[ι
′]|µ ι .i=ι

′
. Since we have

assumed no shadowing of variables, in E there is no declaration of x and so

(a) E
ρ

! Ê |µ ι .i=ι ′ .

From Eb
ρ

! Êb|µ , ρ(ι) = x, ρ(ι ′) = y and µ(ι) = new C(ι1, . . . , ιn) we get

(b) E
x.i=y

b

ρ

! Êb|µ
ι .i=ι ′ .

Finally from (a), (b), ρ(ι ′) = y and Lemma 1 we derive that E [E x.i=y
b [y]]

ρ

! Ê [Êb[ι
′]]|µ ι .i=ι ′ .

Rule (AFFINE-ELIM). Then

(i) e1 = {X
dvs Ca x=v; ds eb},

(ii) e′1 = {X\{x}
dvs ds[v/x] eb[v/x]} and

(iii) caps(v).

From (iii) v is closed and so v = {Y
dvs′ y} for some Y , dvs′, and y. From e1

ρ

! ê1|µ , (i), rule (BLOCK) of

Fig.5, Lemma 2.2 we have that

(a) ê1 = {C x=ι ; d̂s êb}, dvs dvs′
ρ

! µ , ds
ρ

! d̂s|µ , eb
ρ

! êb|µ ,

(b) ρ(ι) = y and v
ρ

! ι |µ .

Applying reduction rule (DEC) of Fig.1 we get {C x=ι ; d̂s êb}|µ =⇒{d̂s êb}[ι/x]|µ . Since Ca x=v; is not

an evaluated declaration x 6∈ img(ρ). Therefore the occurrence of x in e1 is in the matching relation with

an occurrence of x in ê1 and there is only one such occurrence. Therefore from (a) and (b) we have

(c) {X\{x}
dvs ds[v/x] eb[v/x]}

ρ

! {d̂s êb}[ι/x]|µ .

From E
ρ

! Ê |µ , (i), (a), (c) and Lemma 1 we derive that E [e1]
ρ

! E [ê1]|µ .

Rule (MOVE-DEC). Then

(i) e1 = {Y
dvs Cq x={X

dvs′ ds eb}; ds′ e′} and

(ii) e′1 = {Y
dvs dvs′ Cq x={X

ds eb}; ds′ e′}

We consider two cases:

1. either {X
ds eb} ∼= new C(x1, . . . ,xn) for some x1, . . . ,xn

2. or this is not the case.

Case 1. Then

(iii) e1 = {Y
dvs Cq x={X

dvs′ new C(x1, . . . ,xn)}; ds′ e′} and

(iv) e′1 = {Y
dvs dvs′ Cq x=new C(x1, . . . ,xn); ds′ e′}.

From e1
ρ

! ê1|µ , Lemma 1 and rules (NEW) and (BLOCK) of Fig.5 we have that

(a) ê1 = {C x=new C(ι1, . . . , ιn); d̂s
′
ê′},

(b) dvs dvs′
ρ

! µ , ds′
ρ

! d̂s
′
|µ , e′

ρ

! ê′|µ and

(c) ρ(ιi) = xi for i ∈ 1, . . . ,n.
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Applying reduction rule (NEW) of Fig.1 we have that new C(ι1, . . . , ιn)|µ =⇒ ι |µ ′ where ι 6∈ dom(µ)

and µ ′ = µ [new C(ι1, . . . , ιn)/ι ]. Then, applying rule (BLOCK) of Fig.1 we get {C x=ι ; d̂s
′

ê′}|µ ′ =⇒

{d̂s
′
[ι/x] ê′[ι/x]}|µ ′. Let ρ ′ = ρ [x/ι ], from (iv), (b), (c) and rule (BLOCK) of Fig.5 we get that e′1

ρ′

!

{d̂s
′
[ι/x] ê′[ι/x]}|µ ′, and so by Lemma 1 we derive E [e′1]

ρ′

! Ê [{d̂s
′
[ι/x] ê′[ι/x]}]|µ ′ where ρ ⊆ ρ ′ and

dom(µ)⊆ dom(µ ′).
Case 2. In this case from e1

ρ

! ê1|µ , Lemma 1 and rule (BLOCK) of Fig.5 we get

(d) ê1 = {C x={̂ds eb}; d̂s
′
ê′} where

(e) dvs dvs′
ρ

! µ , ds′
ρ

! d̂s
′
|µ , e′

ρ

! ê′|µ , and {ds eb}
ρ

! {̂ds eb}|µ

From (ii), (d), (e) and rule (BLOCK) of Fig.5 we derive that e′1
ρ

! ê′1|µ and by Lemma 1 we have E [e′1]
ρ

!

Ê [ê′1]|µ . Since Ê [ê′1]|µ reduces in 0 steps to itself we get the result.

Rule (MOVE-SUBTERM). We consider the value context new C(x1, . . . ,xn, [ ],es). The other contexts are

similar and easier. Then

(i) e1 = new C(x1, . . . ,xn,{
X

dvs dvs′ x},es) and

(ii) e′1 = {X∩dom(dvs)
dvs new C(x1, . . . ,xn,{

X
dvs′ x},es)}.

From e1
ρ

! ê1|µ , (i), rule (NEW) and rule (BLOCK) of Fig.5, we have that

(a) ê1 = new C(ι1, . . . , ιn, ι , ês),

(b) dvs dvs′
ρ

! µ , x1, . . . ,xn
ρ

! ι1, . . . , ιn|µ , {X
dvs dvs′ x}

ρ

! ι |µ and es
ρ

! ês|µ .

From (b) we derive that {X
dvs′ x}

ρ

! ι |µ . Therefore

(c) {X∩dom(dvs)
dvs new C(x1, . . . ,xn,{

X
dvs′ x},es)}

ρ

! new C(ι1, . . . , ιn, ι , ês)|µ .

From E
ρ

! Ê |µ , (i), (a) and Lemma 1 we derive that E [e1]
ρ

! Ê [ê1]|µ . Since Ê [ê1]|µ reduces in 0

steps to itself we get the result.

Consider now rule (NEW). Then

(i) e = E [new C(x1, . . . ,xn)] and

(ii) e′ = E [{{x}
C x=new C(x1, . . . ,xn); x}].

From e
ρ

! ê|µ , Lemma 1 and rule (NEW) of Fig.5 we have that

(a) ê = Ê [new C(ι1, . . . , ιn)] ,

(b) E
ρ

! Ê |µ and ρ(ιi) = xi for i ∈ 1, . . . ,n.

Applying rule (NEW) of Fig.1 we have that newC(ι1, . . . , ιn)|µ =⇒ ι |µ ′ where µ ′ = µ [newC(ι1, . . . , ιn)/ι ]

and ι 6∈ dom(µ). Let ρ ′ = ρ [x/ι ], from (ii) and rule (BLOCK) of Fig.5 we get that e′
ρ′

! ι |µ ′ with ρ ⊆ ρ ′

and dom(µ)⊆ dom(µ ′), which proves the result.

Corollary 1. If FV(e) = /0, e −→⋆ v, and e
ρ

! ê|µ , then ê|µ =⇒⋆ ι |µ ′ with v
ρ′

! ι |µ ′ for some ρ ′,µ ′

such that ρ ⊆ ρ ′, and dom(µ)⊆ dom(µ ′).

Proof. By arithmetic induction on the number of steps.

Base If e −→0 v, then e = v, and v
ρ

! ê|µ . Since e has no free variables, we have that v = {X
dvs x} for

some X, dvs, and x. From Lemma 2.2, ê = ι for some ι such that ρ(ι) = x. Therefore ι |µ reduces

in zero steps to ι |µ and the thesis holds.
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Inductive step If e −→n+1 v, then e −→ e′ and e′ −→n v. By inductive hypothesis we have that, if

e′
ρ′

! ê′|µ ′, then ê′|µ ′ =⇒⋆ ι |µ ′′ and v
ρ′′

! ι |µ ′′, for some ρ ′′,µ ′′ such that ρ ′ ⊆ ρ ′′, dom(µ ′) ⊆
dom(µ ′′). Then, the thesis follows by Theorem 1.

The crucial point for the preservation theorem is that the substitution semantics, modeling “moving”

capsules from a location to another in the memory, see rule (AFFINE-ELIM), is indeed equivalent to the

conventional semantics. Note that this only holds for variables which are used at most once. Consider,

for instance, the following reduction sequence in the syntactic calculus, where we omit block annotations

for simplicity and we mention rule (CTX) only when the context is different from [ ]:

{Ca x=new C(0); x.f} −→ (NEW)
{Ca x={C y=new C(0); y}; x.f} −→ (AFFINE-ELIM)
{C y=new C(0); y}.f −→ (MOVE-SUBTERM)
{C y=new C(0); y.f} −→ (FIELD-ACCESS)
{C y=new C(0); 0} −→ (GARBAGE)
0

In the conventional calculus, we get the following corresponding reduction sequence:

{C x=new C(0); x.f}| /0 =⇒ (NEW)+ (CTX)
{C x=ι ; x.f}|ι 7→ new C(0) =⇒ (DEC)
ι.f |ι 7→ new C(0) =⇒0

ι.f |ι 7→ new C(0) =⇒ (FIELD-ACCESS)
0|ι 7→ new C(0)=⇒0

0|ι 7→ new C(0)

Consider, instead, a similar example where the affine variable is used twice:

e = {Ca x={C y=new C(0); y}; x.f=3;x.f} −→ (AFFINE-ELIM)
e′ = {C y=new C(0); y}.f=3;{C y=new C(0); y}.f −→ (MOVE-SUBTERM)+ (CTX)

{C y=new C(0); y.f=3};{C y=new C(0); y}.f −→ (FIELD-ASSIGN)+ (CTX)
{C y=new C(3); 3};{C y=new C(0); y}.f −→ (GARBAGE)+ (CTX)
3;{C y=new C(0); y}.f −→ (GARBAGE)
{C y=new C(0); y}.f −→⋆ as above

0

(To understand the second (GARBAGE) reduction, recall that e;e′ is an abbreviation for {T x=e; e′} if x not

free in e′.)

The term ê equivalent to e through ρ(ι) = y, with the conventional semantics, reduces to 3:

ê = {C x=ι ; x.f=3;x.f}|ι 7→ new C(0)=⇒ (DEC)
ê′ = ι.f=3;ι.f |ι 7→ new C(0)=⇒ (FIELD-ASSIGN)

3;ι.f |ι 7→ new C(3)=⇒ (GARBAGE)
ι.f |ι 7→ new C(3)=⇒ (FIELD-ACCESS)
3|ι 7→ new C(3)

Hence, in this case the two reduction sequences are not equivalent, and Theorem 1 does not hold. Indeed,

the first reduction step in the syntactic calculus does not preserve the matching relation. Notably, there

is no way to find a mapping making terms e′ and ê′ to match, since such mapping should map ι in

two different variables, one declared in the first block and one in the second (the fact that they are two

different variables can be made explicit by α-renaming term e′). In more informal words, the substitution

semantics duplicates memory (rather than just moving) if adopted for non-affine variables.
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5 Conclusion

In this paper we presented a calculus for an imperative object-oriented language whose distinguished

features are the following.

• Local variable declarations are used to directly represent the memory. That is, a declared (non

affine) variable is not replaced by its value, as in standard let, but the association is kept and used

when necessary.

• In this way, there are language values (block values) which represent (a portion of) memory, and

the fact that such portion of memory is isolated can be modularly checked by inspecting only the

value itself, without any need to explore the whole graph structure of the global memory as it

would be in the conventional model.

• To safely handle capsules, the syntactic calculus supports affine variables with a special semantics.

Runtime checks ensure that their initializing value is a capsule, and their (unique by definition)

occurrence is replaced by their capsule value (rule (AFFINE-ELIM)).

• Block annotations allow a variable declaration to be moved outside of a block only if such variable

will not be part of its final result. This additional runtime check prevents to “break” capsules

before they are moved.

In previous work [9, 27, 15, 17, 18, 19, 14], we have designed type systems which statically ensure

that such runtime checks succeed, hence execution is not stuck. In this paper we prove that the syntactic

calculus preserves the standard semantics of imperative calculi relying on a global memory. In such

calculi reasoning about program properties such as sharing requires the formalization of invariants on

the memory and the proof of their preservation under reduction, whereas in ours this can be done by

structural induction on terms.

The wider context of the paper is the huge amount of research on mechanisms for controlling sharing

and interference. In this paper we focus on the property that the the subgraph reachable from a reference

x is an isolated portion of store, that is, all its (non immutable) nodes can be reached only through this

reference. This property has many variants in literature [11, 2, 21, 13, 20]. Examples of other relevant

properties of referenes studied in literature are the following:

• x is immutable, that is, the subgraph reachable from x is an immutable portion of store. An im-

mutable reference can be safely shared in a multithreaded environment.

• x is lent, that is, the subgraph reachable from x can be manipulated, but not shared, by a client

[27, 15, 18]. This is also called borrowed in literature [7, 25].

• x is read-only if no modification is permitted through x. Note that there is no immutability guaran-

tee.

A specular approach to the use of qualifiers to restrict the usage of references is that on ownership

(see an overview in [10]), where a formal way is provided to express and prove the ownership invariants.

Among the many works in this stream, we mention Rust [28], which uses ownership and qualifiers for

memory management.

In future work we plan to add the modelling of immutable references. We will also investigate (a

form of) Hoare logic on top of our model.
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