
Nazareno Aguirre, Leila Ribeiro (Eds.):
First Latin American Workshop on Formal Methods (LAFM 2013)
EPTCS 139, 2014, pp. 46–51, doi:10.4204/EPTCS.139.4

c© G. Regis, F. Villar, N. Ricci
This work is licensed under the
Creative Commons Attribution License.

Fluent Logic Workflow Analyser:
A Tool for The Verification of Workflow Properties

Germán Regis Fernando Villar Nicolás Ricci
Departamento de Computación

Facultad de Cs. Exactas Fco.-Qcas. y Naturales
Universidad Nacional de Rı́o Cuarto

Argentina
{gregis,fvillar,nricci}@dc.exa.unrc.edu.ar

In this paper we present the design and implementation, as well as a use case, of a tool for workflow
analysis. The tool provides an assistant for the specification of properties of a workflow model. The
specification language for property description is Fluent Linear Time Temporal Logic. Fluents pro-
vide an adequate flexibility for capturing properties of workflows. Both the model and the properties
are encoded, in an automated way, as Labelled Transition Systems, and the analysis is reduced to
model checking.

1 Introduction

The importance of efficiency in companies requires constant improvement to their organisational pro-
cesses. This has led to the need for expressing such processes, typically referred to as workflows, and
to the proposal of various workflow languages. There exist many workflow languages, differing in their
degree of formalisation (e.g., informal, only with a formal syntax, etc.), their corresponding approaches
to workflow description (e.g., declarative or procedural), their expressivity (e.g., some support advanced
conditional routing and some not), their support for automated analysis, etc. An aspect that we consider
particularly important is formal semantics. This aspect is crucial for the analysis of models in the lan-
guage, and is also strongly related to expressivity, since more expressive languages are more difficult to
fully formalise. Furthermore, expressivity and automation in analysis are typically conflicting aspects,
and the design of a good language involves the search of an adequate balance between these aspects.
This applies not only to the language in which a workflow is expressed, but also to the language used for
describing declarative properties of a workflow. The importance of declarative properties of workflows
is acknowledged by several researchers (see for instance [7, 10, 12]). In particular, in [10] a declara-
tive approach to business process modelling and execution is proposed, where declarative behavioural
properties of procedural workflow models are a central characteristic.

In this paper, we present a tool for workflow analysis. This tool allows the user to describe properties
over a workflow model and verify these properties in an automated way. The formal language used for
property specification is a known temporal logic, fluent linear temporal logic (FLTL) [5], which is well
suited for formally expressing declarative properties of workflows [11].

Basically, FLTL provides a convenient way of expressing state properties of a labelled transition
system, associated with the occurrence of events in the system. More precisely, FLTL extends LTL by
incorporating the possibility of describing certain abstract states, called fluents, characterised by events
of the system. As defined in [9], fluents are time-varying properties of the world, which hold at particular
instants of time if they have been initiated by a triggering event (occurring at some earlier instant in time),
and have not been terminated by any terminating event since their initiation.

http://dx.doi.org/10.4204/EPTCS.139.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


G. Regis, F. Villar, N. Ricci 47

For the verification we employ Model Checking [4], a well established automated method for ver-
ifying properties of finite state systems. In order to apply this technique using the Labelled Transition
System Analyser (LTSA), our tool encodes workflow models as Labelled Transition Systems, following
the characterisation presented in [11]. Given a property, the tool guarantees that it is satisfied, or gener-
ates violating workflow executions when the property does not hold, as is typical with model checking.

As the input language for workflow description, the tool adopts YAWL (Yet Another Workflow Lan-
guage) [2]. YAWL is a powerful workflow language based on the use of workflow patterns [3]. It is
considered an expressive formalism, as various works dealing with its expressivity in relation to other
business process languages demonstrate [6]. Indeed, the use of YAWL allows us to ensure the usability
of our tool for other workflow languages, in many cases via the use of available automated tools mapping
other formalisms into YAWL.

In the remainder of the paper we present the main features of the tool and exemplify their use for
describing, specifying and analysing properties of workflow models. Then, we describe the tool as
an aggregation of two modules: the encoding manager and the environment that assists in property
specification and realises the integration between the encoder and the LTSA model checker. Finally we
conclude with a discussion on our conclusions and future work.

2 Tool usage

Let us illustrate the use of the tool via a simple hypothetical workflow model. The model, as depicted
in Fig. 1, describes the process of making a trip. This process begins with the registration task, then
the customer can book a flight, hotel or car. When some (may be all) of them are booked with the
corresponding task, the customer must pay for them. A simple property of this process may be that once
some booking was made, then the payment must take place.

The use of the tool starts by opening the YAWL1 specification of the workflow. Our tool allows
the user to import such a specification, showing it in a graphical way. Once a workflow description
is opened, we can add intended properties, in our case the above mentioned one. The properties are
formulas specified in FLTL. For the proposed property, one possible specification putting emphasis on
the fluents usage, may be [](someBook -> <>(pay.start)). The formula establishes that whenever
a booking occurs, the payment must take place.

Using drag and drop, we can shape the structure of the formula by incorporating the desired operands
from the operators bar. The operands can be events of the model, i.e., start and end task events, or fluents.
Fluents are binary variables whose values depend on two sets of events: activating and deactivating
events. In our case, the operands of the formula are: the fluent someBook, that captures the occurrence
of some booking, and the reference to the start of the payment process through the pay.start event.

In order to specify fluents, we use the fluent definition feature of the tool, starting with the new fluent
definition (main menu option add fluent). Then using the fluent activating or deactivating tools, we
set the corresponding model events for each fluent. In case of someBook, we select the events that enable
this fluent, i.e., the start events of the flight, hotel and car booking processes. Note that the start
events are depicted at the left of tasks and the end at the right of them, i.e., work flows from left to right.
In a similar way, using the deactivating tool, we can set up the events that turn off the selected fluent.

To assist us, the tool provides an auto-complete feature. This feature shows, when we write an
operand of a formula, a pop up list containing possible events of the model. The list starts showing the
names of tasks or conditions and then a choice for each event about them. Similar to the operators, the

1YAWL is a free workflow modelling tool that can be downloaded from http://sourceforge.net/projects/yawl/



48 Fluent Logic Workflow Analyser

fluents can be incorporated to the property specification by means of drag an drop from the fluents list to
the desired place in the formula. We can of course avoid these assistants and simply type the formula.

Another feature that the tool supports is a property specification assistant, that provides a set of
templates, as shown in Fig. 2. These templates allow the user to instantiate a generic property about the
system. To use these templates, we can navigate over a list of properties, with each one containing its
own description. When a property is selected, for each parameter (operand of the underlying formula)
a box and button are displayed for assigning the event or fluent of the model desired. Our sample
property corresponds to a response property that asserts that, given two activities A and B, “whenever A
is executed, then B has to be eventually executed afterwards”. If we wish to use this template, instead
of the handmade specification, we simply instantiate the template by assigning the fluent someBooking
and the event pay.start as the A and B parameters, respectively.

Finally by pressing the check Property button, we can verify if the property holds in our workflow
model. In order to store the fluents and properties specifications for future use, we can save our current
job as a file by using the corresponding menu option.

Main Menu

Fluents list

Fluent
definitions tools

Task Ports
descriptions

Operators Bar

Main/Sub Models
Tabs

Current Tab
workflow Model

Properties list

Properties features

Figure 1: FLYAnalyser Full view

Note that the sets for activating or deactivating a fluent can be conformed by events corresponding to
different sub-workflows, i.e., events of the workflow detailing a composite task. This flexibility allows
the user to capture, in a simple way, complex situations in a model, such as for example execution traces
between activities.

3 Tool Design

Fig. 3 depicts the architectural design of the process of verifying properties about a workflow model. The
process begins with a model of workflow described using the YAWL workflow modelling tool. YAWL
is a powerful workflow language based on the use of workflow patterns [3]. In order to verify properties
of workflows, in particular those described with YAWL, we develop a tool called FLYAnalyser. Our
tool takes as input a workflow model and assists the user to easily and in a graphical way, specify and



G. Regis, F. Villar, N. Ricci 49

Properties
Templates list

Template Parameters

Current property
description

Parameter Activity
Assignment

Figure 2: Properties Template wizard

verify properties of the model. The verification process is handled by the LTSA model checker, through
a translation of the workflow and properties to a labelled transition system (LTS). Thus we will be able
to express behavioural properties of these workflows declaratively, using the FLTL.

The tool has two main modules developed separately: a compiler called YAWL2FSP that encodes
a YAWL workflow model into an LTS and the environment FLYAnalyser, which is responsible of the
analysis and specification of properties, and handles the integration between the YAWL2FSP and LTSA.

Workflow Y

AWL
YAWL

P= a- b- P.

‖S= q[1..3]:P.

FSP

FL

YAnalyser

Properties

Property

Checked

L

TSA
Violation

Found

1- a; 3- b;

2- a; 4-ER;

CounterEx

Figure 3: Verification Workflow

3.1 YAWL2FSP

As a module of the FLYAnalyser, we first present an encoding from YAWL models into Finite State
Processes (FSP)[8]. FSP is a process algebra that provides us a compact and flexible way to specify
LTS, i.e., FSP expressions can be automatically mapped into LTS. Basically, this encoding allows us
to interpret YAWL procedural workflows as FSP processes. The encoding will enable us to employ the
LTSA model checker for verifying behavioural properties of task activities of the workflow specifications.
The basic intuition behind the encoding of a YAWL models into FSP is the following. A system’s
behaviour is characterised by the occurrence of its tasks. In an abstract way, we can capture a task as an
entity having some activity in the system between its start and end events. So, a trace of these events



50 Fluent Logic Workflow Analyser

describes a possible execution of the system. In this way, a system’s behaviour is captured by the set
of all its execution traces. These traces are obviously constrained according to the control flow of the
system.

According to our previous observation, it is straightforward to see that a task activity can be captured
by means of a fluent, becoming true when its start event takes place, and turning back to false when its
end event task occurs. In order to capture the behaviour of the workflow’s control flow, we will need to
introduce appropriate event synchronisations and process compositions, relating the events related to the
tasks that conform the workflow. Once we achieve a characterisation of workflows as FSP processes, we
can express properties of the workflows by expressing temporal formulas, employing task-related fluents
as the basic ingredient.

To formally describe our translation from YAWL into FSP, we consider a formal semantics of YAWL
models [6], given in terms of Reset Petri Nets. Taking into account this semantics, we propose an en-
coding for tasks and conditions. In order to represent a workflow behaviour, we specify how to compose
tasks and conditions. In this composition we consider the control flow operators associated with the tasks
of the workflow, and provide an encoding for them. Finally, we address especially sophisticated elements
of YAWL constructions, such as cancel regions, multiple instance tasks and composite tasks. For a full
description of the encoding process, see [11].

3.2 The Environment

The environment is a graphical application written in Java. It can open a workflow model specified with
the YAWL tool. These models are saved in files with XML format. The application has the following
features:
• It shows the model in a graphical way to help the user understand and analyse the model. In pres-

ence of composite task sub-workflows specifications, for each of them, the application generates a
tab with the corresponding graphical workflow specification.

• It provides a flexible and agile way to specify fluents by simply clicking on the desired events of
the workflow that activate or deactivate them.

• It assists the user in the property specification by means of drag and drop operators on fluents, and
auto-completing with events of the models.

• It aids the workflow analysis by means of a property template wizard.

• It holds the integration with other modules and tools, in particular, it invokes the compiler to
obtain the FSP model of the workflow and composes it with the selected properties. Then, it calls
the model checker in order to perform the verification.

Note that the property templates listed by the wizard are those analysed in [10] and they are stored
in the file templates.properties in XML format. The user can incorporate new templates by adding
them into the file, filling certain required fields.

4 Conclusion and Future Work

We have described the Fluent Logic Workflow Analyser, a tool for the specification and verification
of workflows and properties of these. The tool focuses on the analysis of declarative properties of
procedural descriptions of workflows. This tool is publicly available2.

2http://sourceforge.net/projects/yawl2fsp/



G. Regis, F. Villar, N. Ricci 51

We have chosen to base our work on YAWL because it has a formal foundation, and it supports
a wide range of workflow patterns, providing an expressive environment for workflows specification.
The YAWL toolset provides the verification of some properties of workflows such as soundness and
deadlock-freedom [1], but it does not provide a suitable flexible language for declaratively expressing
other behavioural properties of its models. Our tool complements YAWL toolset in this direction.

In order to analyse the scalability of our tool, obviously bounded by the state explosion problem of
the underlying model checking technique, we took as a case study a relatively complex example from
[6]. The case study describes the process of order fulfilment which is divided into several phases. The
complete model, flatting the composed tasks, has 58 tasks, 30 gates, 36 conditions, 2 cancel regions. The
LTS was generated in 0.298 seconds, using 28,96 Mbytes of memory, containing 13164 states and 59722
transitions. Several properties were verified and the time consumption associated with this process did
not exceed one second for each one. Due to space restrictions, we do not describe this model here.

As a future extension of the tool, we are working on the feedback of the information provided by
the model checker in case of property violations, showing a graphical representation of the sequence of
events that produces a property violation. We think that this feature can help the user to understand why
the model is wrong with respect to some analysed property.

References
[1] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Natalia Sidorova, H. M. W. Verbeek,

Marc Voorhoeve & Moe Thandar Wynn (2011): Soundness of workflow nets: classification, decidability, and
analysis. Formal Asp. Comput. 23(3), pp. 333–363, doi:10.1007/s00165-010-0161-4.

[2] Wil M. P. van der Aalst & Arthur H. M. ter Hofstede (2005): YAWL: yet another workflow language. Inf.
Syst. 30(4), pp. 245–275, doi:10.1016/j.is.2004.02.002.

[3] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski & A.P. Barros (2003): Workflow Patterns.
Distributed and Parallel Databases 14(1), pp. 5–51, doi:10.1023/A:1022883727209.

[4] Edmund M. Clarke, Orna Grumberg & Doron Peled (2001): Model checking. MIT Press.
[5] Dimitra Giannakopoulou & Jeff Magee (2003): Fluent model checking for event-based systems. In: ESEC

SIGSOFT FSE, pp. 257–266, doi:10.1145/940071.940106.
[6] Arthur H. M. ter Hofstede, Wil M. P. van der Aalst, Michael Adams & Nick Russell, editors (2010): Modern

Business Process Automation - YAWL and its Support Environment. Springer.
[7] Christos T. Karamanolis, Dimitra Giannakopoulou, Jeff Magee & Stuart M. Wheater (2000): Model Checking

of Workflow Schemas. In: EDOC, pp. 170–181, doi:10.1109/EDOC.2000.882357.
[8] Jeff Magee & Jeff Kramer (2006): Concurrency - state models and Java programs (2. ed.). Wiley.
[9] Rob Miller & Murray Shanahan (1999): The Event Calculus in Classical Logic - Alternative Axiomatisations.

Electron. Trans. Artif. Intell. 3(A), pp. 77–105.
[10] Marco Montali, Maja Pesic, Wil M. P. van der Aalst, Federico Chesani, Paola Mello & Sergio

Storari (2010): Declarative specification and verification of service choreographiess. TWEB 4(1),
doi:10.1145/1658373.1658376.

[11] Germán Regis, Nicolás Ricci, Nazareno Aguirre & T. S. E. Maibaum (2012): Specifying and Verifying
Declarative Fluent Temporal Logic Properties of Workflows. In: Brazilian Symposium on Formal Meth-
ods, SBMF 2012, pp. 147–162, doi:10.1007/978-3-642-33296-8 12.

[12] Peter Y. H. Wong & Jeremy Gibbons (2011): Formalisations and applications of BPMN. Sci. Comput.
Program. 76(8), pp. 633–650, doi:10.1016/j.scico.2009.09.010.

http://dx.doi.org/10.1007/s00165-010-0161-4
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1145/940071.940106
http://dx.doi.org/10.1109/EDOC.2000.882357
http://dx.doi.org/10.1145/1658373.1658376
http://dx.doi.org/10.1007/978-3-642-33296-8_12
http://dx.doi.org/10.1016/j.scico.2009.09.010

	1 Introduction
	2 Tool usage
	3 Tool Design
	3.1 YAWL2FSP
	3.2 The Environment

	4 Conclusion and Future Work

