BEval: A Plug-in to Extend Atelier B with Current
Verification Technologies

Valério Medeiros Jr. * David Déharbe *
IFRN UFRN
Natal, Brazil Natal, Brazil
Federal Institute of Education, Science and Technology Federal University of Rio Grande do Norte
of Rio Grande do Norte Department of Informatics and Applied Mathematics
Natal, Brazil Natal, Brazil
valerio.medeiros@ifrn.edu.br david@dimap.ufrn.br

This paper presents BEval, an extension of Atelier B to improve automation in the verification ac-
tivities in the B method or Event-B. It combines a tool for managing and verifying software projects
(Atelier B) and a model checker/animator (ProB) so that the verification conditions generated in the
former are evaluated with the latter. In our experiments, the two main verification strategies (manual
and automatic) showed significant improvement as ProB’s evaluator proves complementary to Ate-
lier B built-in provers. We conducted experiments with the B model of a micro-controller instruction
set; several verification conditions, that we were not able to discharge automatically or manually with
Atelier B’s provers, were automatically verified using BEval.

1 Introduction

Classical B and Event-B are formal methods initially developed by J.-R. Abrial [[1} 2] that contain the
notion of abstract machine and refinement. These methods are widely applied in safety critical systems
and supported by Atelier B [S] and others tools. ProB [8] is a tool for animation, model checking as well
as an expression evaluator. A Rodin plug-in [2} 9] to interact with ProB has been developed and is used
as a disprover. The goal of the BEval project was to develop a similar plug-in for Atelier B. This goal was
driven by our attempt to streamline the verification of proof obligations generated in the development of
a formal model of a micro-controller instruction set [10]]. Indeed their verification with the automatic
prover available in Atelier-B was often inconclusive and required time-consuming use of the interactive
prover.

Currently, several components of Atelier B are neither open source nor free, most notably the mathe-
matical rule validator tool and the theorem prover for the B method and Event-B are closed. Moreover the
main Atelier B theorem prover (krt) did not evolve significantly in the past decades. Indeed, to develop
(and sell!) safety-critical systems, tools, such as Atelier B, need to pass a costly certification process. Of
course, this prevents continuous evolution of these components. However, recent development in veri-
fication technologies, such as other satisfiability modulo-theories (SMT) solvers [3l [11] has resulted in
significant progress. Therefore, we consider the time is ripe to evaluate, through an open source project,
the potential contribution of incorporating such technologies in the tool set. BEval is our contribution
towards this goal: an Atelier B plug-in that provides additional verification engines and can be used for
different utilities like: a disprover searching counterexamples [4], a theorem prover verifying the proof
obligations and a mathematical rule validator tool checking new reusable rules.

*This work has been partially supported by CNPq grants 560014/2010-4, 308008/2012-0, 573964/2008-4 (National Institute
of Science and Technology for Software Engineer - INES)

Nazareno Aguirre, Leila Ribeiro (Eds.): © V. Medeiros Jr. & D. Déharbe
First Latin American Workshop on Formal Methods (LAFM 2013) This work is licensed under the
EPTCS 139, 2014, pp. 53 doii10.4204/EPTCS.139.5 Creative Commons|Attribution License.

http://dx.doi.org/10.4204/EPTCS.139.5
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

54 BEval: A Plug-in to Extend Atelier B with Current Verification Technologies

Besides, there are new requirements to the verification process in the B method. We present our
case study that produces proof obligations that cannot be verified automatically with Atelier B built-in
provers, and are very difficult to show interactively, probably because these involve complex expressions
with bit vectors and math operators.

This paper is organized as follows. Section[2]presents BEval and its context. Then section [3|provides
an experimental evaluation of BEval based on a case study. We conclude with remarks in the last section.

2 The BEval Plug-in

BEvaﬂ is an open source tool to systematize the verification of B expressions in Atelier B by integrating
ProB. BEval allows one to select B expressions and submits them for evaluation with ProB. When the
expression is true, BEval creates a matching proof rule compatible with Atelier B built-in provers which
may then discharge them automatically.

2.1 BEval’s Architecture

A B development generates a set of proof obligations. First, these proof obligations are analyzed with
Atelier B built-in automatic provers. Then the remaining proof obligations can be evaluated individu-
ally either by Atelier B interactive prover or by BEval. The architecture of the verification framework
augmented with BEval is presented in Figure[I] BEval provides two graphical user interfaces: a rule eval-
uator that analyzes only one proof obligation and a component evaluator that analyzes a set of selected
proof obligations.

Component Y
Prover Kodkod
Individual/Interactive ComponentGUI| | Control M
u ProB -
-
IndividualGUI POs Y
B Specification
BEval
AtelierB Rules
Other(s) solver(s)

Figure 1: An overview of component architecture.

Internally, BEval is composed of different components. They are:

e IndividualGUI provides the graphical user interface for evaluation of an expression from within
the interactive prover of Atelier B. This expression can be a full proof obligation, just a hypothesis
of proof obligation, or a rule that embodies an important logic rule. Once verified, the tool offers
to add the rule to the set of rules of the current specification in the interactive prover.

e ComponentGUI provides the graphical user interface for evaluation of a set of proof obligations.
This graphical interface contains different text areas: ProB evaluation parameters; results of eval-
uations; a list of proof obligations with its current state (proved/unproved).

e Control is responsible for controlling the communication between the tools. The communica-
tion between Atelier B, BEval and ProB is simple and uses command-line arguments from Java.

IThe BEval and its video demonstration are available at: https://github.com/ValerioMedeiros/BEval

V. Medeiros Jr. & D. Déharbe 55

Basically, Atelier B invokes a shell script passing as arguments information such as the path of
module and the expression to evaluate. The shell script invokes BEval that redirects the output to
a graphical user interface and calls a ProB client in the background.

e POs is responsible for managing the proof obligations stored in Atelier B format. This component
is able to import one proof obligation or a set of proof obligations; and to export a set of true rules
compatible with Atelier B.

2.2 Graphical User Interface for Evaluating Proof Obligations

ano (POWER?) BEval - Project B2ASM 8006 (POWER2) BEval - Project B2ASM
Parameters Parameters.
h -init -pBO |] Kodkod | btrue & I{nn,pp).(nn: INTEGER & D<=nn & not(nn l-p BOOL_AS_PREDICATE TRUE] Kodkod
OL_AS_PREDI _ = 0) & (pp: INTEGER & 0<=pp & -p CLPFD TRUE -
CATE TRUE L) Smt pp<=2147483647) => (pp =0 => nn=pp = 1 & -p MAXINT 65536 Ll smt
-p CLPFD TRU oo nn**pp = 1) & (pp = 1 => nn**pp = nn & nn**pp -p MININT -65536 Initialise
E ™ initialise = nn) & (2<=pp => nn**pp = nn*nn**(-14pp) & -p TIME_OUT 50000 |
_p MAXINT 6 nn**pp = nn*nn**(pp- 1)) & btrue &
5536 POWER2.AssertionLemmas.5 M Only first hypothesis

-p MININT -&
5536

-p TIME_OUT Proof Obligations Results
50000 ==

U S CveIeaT U TES ST [TROL 5]

11 - Assertionl | QUTPUT>

12 - Assertionl | It was concluded successfully! |
13 - Assertionl | Prob checked and added the rule in: |
14 - Assertionle | Time spent: 1113 |
15 - Assertionl | | Process exit value: 0 |
16 - Assertionl]
Goal to evaluate 17 - Assertionl 4 || The result is TRUE and progress 1/1
0 = rrepm e 3o s 354 = 18 - Assertionipg 4
brrue & 20 = 1& 271 = 2& 22 = 4 & 273 = B & btrue => 2774 = 16 E — .
— a—— — F————
Jw.p.p.0. ™ Add rule (when predicate is true) (_Eval [W.D.P.O. Eval
4 4

Figure 2: The graphical user interfaces of BEval: on the left, the graphical interface to submit one
expression to evaluation; on the right, the graphical interface to submit a set of proof obligations.

Figure [2| shows the two graphical user interfaces contributed by BEval. The left graphical interface
can be invoked from the interactive prover of Atelier B. It has the following elements:

e Parameters - located on the top-left of the window, it is an editable text where the user has access
to the options used to call ProB;

e Main options - located on the top-middle of the window, three basic options are checkable; Kodkod
indicates that ProB may use the tool of the same name; Smt indicates that ProB uses a more
aggressive constraint solver; Initialise indicates that definitions from the B component shall be
loaded;

e Hypothesis - located on the top-right of the window, it presents the hypothesis that the user may
want to add to the goal, addition of such hypothesis shall be performed with copy-and-paste oper-
ations;

e Goal to evaluate - it is an editable text that contains the expression that will be sent to ProB;

e Add rule - if this option is checked, whenever the goal evaluates to “true”, a rule is generated and
added into the corresponding pmm file EI;

e W.D.P.O. - if that option is checked, then, whenever the goal evaluates to “true”, the generated rule
will be added to the corresponding wd,pmmﬂ otherwise it will be added to the common pmm file.

2 Atelier-B associates to each project a pmn file, where additional proof rules may be stored for use by the automatic provers
to discharge proof obligations.
3The wd_pmm file has a role similar to the pmm file but is used to discharge well-definedness proof obligations.

56 BEval: A Plug-in to Extend Atelier B with Current Verification Technologies

e Eval - this button provokes the call to ProB on the current goal with the given list of parameters.

The right graphical interface is used within the components window. It is similar, but has additional ele-
ments. First, Proof obligations contains a list of proof obligations and only those selected are evaluated.
By default, the selected items are unproved proof obligations. Second, Result is a text area that contains
the output results of ProB’s evaluations. The remaining buttons are related to ProB parameters and are
explained in the next section.

2.3 Evaluation Parameters

The options and parameters to the verification process are crucial and the following are used by default
in BEval:

e -p MAXINT 65536 -p MININT -65536 sets the range for integers.

e -p init loads definitions from B module. This parameter is useful when the proof obligation was
not fully expanded in only logic and math definitions. This parameter must be used when the proof
obligation has a dependency of definitions. For example, the proof obligation “[0,0,0,0,0,0,0,0] €
BYTE” depends on the definition BYTE = (1..8 — {0,1}), so that this proof obligation is ex-
panded to “[0,0,0,0,0,0,0,0] € (1..8 — {0,1})” and becomes independent.

e -p KODKOD TRUE indicates that ProB may use a constraint solver for relational logic, called
Kodkod. This parameter allows a mixture of SAT-solving and ProB’s own constraint-solving ca-
pabilities according to [12].

e -p TIME_OUT sets the run time budget for the constraint solver.
e -p SMT TRUE forces ProB to do more aggressive constraint solving.

e -p CLPFD TRUE enables constraint logic programming over finite domains. It restricts range to
(—228..228=1) on 32 bit computers.

Additional parameters are available, the full list being available in ProB’s web site [7]].

2.4 Adding Rules

A rule is a formula added as an axiom in the prover’s theories by being stored in a pmm file associated to
a B component. The created rules can be reused to solve several proof obligations. These rules can be
added individually by IndividualGUT or several rules can be added by ComponentGUI. The following
rule is very simple and it was generated by BEval containing the information: name, date, spent time and
the rule composed by hypothesis and goal.

THEORY RulesProBAssertionLemmas_1 IS
/* Expression from (Assertionlemmas_1), it was added in Thu Jun 27 18:02:32 BRT 2013
evaluated with ProB in 5913 milliseconds. Module Path:/B_Resources/BYTE_DEFINITION.mch */
"‘Check assertion (card(BYTE) = 256) deduction - ref 3.2, 4.2, 5.3°"
BYTE = (1..8 --> {0,1}) => (card(BYTE) = 256)

END

Each created true rule has a relation with one proof obligation. When the interactive prover of Atelier
B is evaluating a proof obligation and BEval-IndividualGUI created a rule then the interactive prover
can apply the created rule in the evaluation of the current proof obligation.

V. Medeiros Jr. & D. Déharbe 57

BEval-ComponentGUI creates a set of rules and a set of “User Pass”, that is a sequence of proof
commands. A User Pass can be used in automatic prover and can indicate a rule to apply in the selected
proof obligation. Each created User Pass selects the proof obligations by name and defines the rule to
invoke. The following User Pass example selects the proof obligation named of initialisation and invokes
the prover using the rule named of “Rulel”.

THEORY User_Pass IS

Operation(Initialisation) & mp(Tac(RulesProBAssertionLemmas_1))
END

3 Experiments

We used Atelier-B to develop a reusable set of basic definitions to model hardware concepts, data types
concepts and a micro-controller instruction set [10]. These definitions are grouped into separated devel-
opment projects and are available as libraries.

The following table presents only the results of the most basic components using the default parame-
ters of BEval. The components Power and Power2 contain the standard definition of exponentiation and
it is essential to establish the relationship between bit vectors and integer arithmetics. The components
BIT, BYTE and BV 16 define bit, bit vectors with size 8 and 16, basic functions to manipulate bit vectors
and important lemmas.

The proof obligations are classified in two groups: common and W.D. (well-definedness proof obli-
gations). The columns represent respectively: T. POs, total number of proof obligations; F1, number of
verified proof obligations with force 1 of Atelier B’s prover; F1;F2;F3, number of verified proof obliga-
tions with force 3*|after applying force 1 and 2; F1;F2;F3;BEVAL, number of verified proof obligations
with BEval after applying forces 1, 2 and 3; Gain, percentage of proof obligations verified automati-
cally and exclusively by BEval. The symbol “-” represents no changes in the number of verified proof
obligations compared to the last applied strategy.

Common POs W. D. P. Os.
Name T. POs F1 | F1;F2;F3 | F1;F2;F3;BEval Gain | T.POs F1 F1;F2;F3 | F1;F2;F3;BEval | Gain
Power 3 2 - - 0% 4 4 - - 0%
Power2 | 18 2 - 18 88% 0 - - - 0%
BIT 49 | 23 - 49 53% | 69 30 - - 0%
BYTE 18 12 - 18 33% | 136 | 129 - 132 2%
BV16 6 2 - 6 66% | 69 67 - 69 2%

Almost all components have significant gains using BEval. This is significative since it relieves the
developer from the burden of manually verifying a significant percentage of proof obligations and helps
him focus on the more interesting proof obligations and ultimately benefits his productivity.

However, there are still some issues and limitations. Differences in the B syntax supported by Atelier
B and ProB need to be fixed to support the evaluation of all components of micro-controller [[10].

4 Conclusion and Perspectives

Finally, BEval is a tool able to import proof obligations from Atelier B, and convert and submit them
for evaluation to ProB, interprets the results of that evaluation and create proof rules in Atelier-B ac-

“4Higher forces use mechanisms consuming more time, CPU and memory resources.

58 BEval: A Plug-in to Extend Atelier B with Current Verification Technologies

cordingly. BEval’s integration allows to exploit different strategies from the theorem prover of Atelier
B and constraint logic solver of ProB. The results obtained with the verification of hardware library
demonstrates a better ability of the constraint logic solver of ProB than the theorem prover of Atelier B
for manipulating a class of expressions. The results presented in this paper show again that providing a
port-folio of complementary provers is an effective approach to improve IDEs for formal development.

Another related tool is the Rodin SMT Plug-in [6], this plug-in supports proof obligations generated
from event-B specifications and converts them to SMT format. In the future, BEval can also be integrated
to Rodin SMT Plug-in and exploit its abilities. Alternatively, the current SMT translator of ProB [[12]]
can be improved and integrated with news SMT solvers.

There are several possible new features and improvements for BEval. The small differences in B
parsers of Atelier B and ProB can be solved by creating a pre-parser. Besides, ProB also has some
limitations related to B constructs supported by Atelier B, but these limitations are being solved; also
other tools may be investigated.

Acknowledgment. The evaluation of the model would not have been possible without the help of
Michael Leuschel who kindly provided feedback and developed improvements to ProB to meet our
needs.

References

[1] Jean-Raymond Abrial (2005): The B-book - assigning programs to meanings. Cambridge University Press.

[2] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta & Laurent Voisin
(2010): Rodin: an open toolset for modelling and reasoning in Event-B. STTT 12(6), pp. 447-466. Available
athttp://dx.doi.org/10.1007/s10009-010-0145-y.

[3] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew
Reynolds & Cesare Tinelli (2011): CVC4. In: CAV, pp. 171-177. Available at http://dx.doi.org/10.
1007/978-3-642-22110-1_14.

[4] Jens Bendisposto, Michael Leuschel, O. Ligot & Mireille Samia (2008): La validation de modéles Event-B
avec le plug-in ProB pour RODIN. Technique et Science Informatiques 27(8), pp. 1065-1084. Available at
http://dx.doi.org/10.3166/tsi.27.1065-1084,

[5] ClearSy System Engineering, Aix-en-Provence: Atelier B - User Manual. Available at http://www.
atelierb.eu/manuels/manuel-utilisateur-atelier-b-4.0-en.pdf,
[6] David Déharbe, Pascal Fontaine, Yoann Guyot & Laurent Voisin (2012): SMT Solvers for Rodin. In: ABZ,
pp- 194-207. Available at http://dx.doi.org/10.1007/978-3-642-30885-7_14.
[7]1 Michael Leuschel (2011): User Manual. Available at http://www.stups.uni-duesseldorf.de/ProB/
index.phpb5/User_Manual,
[8] Michael Leuschel & Michael J. Butler (2003): ProB: A Model Checker for B. In: FME, pp. 855-874.
Available at http://dx.doi.org/10.1007/978-3-540-45236-2_46.
[9] Olivier Ligot, Jens Bendisposto & Michael Leuschel (2007): Debugging Event-B Models using the ProB
Disprover Plug-in. Proceedings AFADL’07.
[10] Valério G. Medeiros Jr. & David Déharbe (2012): Experience in Modeling a Microcontroller Instruction Set
Using B. In: Brazilian Symposium on Formal Methods, SBMF, Natal - RN.
[11] Leonardo Mendonga de Moura & Nikolaj Bjgrner (2008): Z3: An Efficient SMT Solver. In: TACAS, pp.
337-340. Available athttp://dx.doi.org/10.1007/978-3-540-78800-3_24|

[12] Daniel Plagge & Michael Leuschel (2012): Validating B, Z and TLA + Using ProB and Kodkod. In: FM, pp.
372-386. Available athttp://dx.doi.org/10.1007/978-3-642-32759-9_31.

http://dx.doi.org/10.1007/s10009-010-0145-y
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.3166/tsi.27.1065-1084
http://www.atelierb.eu/manuels/manuel-utilisateur-atelier-b-4.0-en.pdf
http://www.atelierb.eu/manuels/manuel-utilisateur-atelier-b-4.0-en.pdf
http://dx.doi.org/10.1007/978-3-642-30885-7_14
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-32759-9_31

	1 Introduction
	2 The BEval Plug-in
	2.1 BEval's Architecture
	2.2 Graphical User Interface for Evaluating Proof Obligations
	2.3 Evaluation Parameters
	2.4 Adding Rules

	3 Experiments
	4 Conclusion and Perspectives

