
D. Miller, I. Scagnetto (Eds.)

Logical Frameworks and Meta-Languages:

Theory and Practice 2019 (LFMTP 2019)

EPTCS 307, 2019, pp. 24–39, doi:10.4204/EPTCS.307.4

© Michael Kohlhase & Jan Frederik Schaefer

This work is licensed under the Creative Commons

Attribution-Share Alike License.

GF + MMT = GLF

From Language to Semantics through LF

Michael Kohlhase Jan Frederik Schaefer

Computer Science, FAU Erlangen-Nürnberg

These days, vast amounts of knowledge are available online, most of it in written form. Search en-

gines help us access this knowledge, but aggregating, relating and reasoning with it is still a predom-

inantly human effort. One of the key challenges for automated reasoning based on natural-language

texts is the need to extract meaning (semantics) from texts. Natural language understanding (NLU)

systems describe the conversion from a set of natural language utterances to terms in a particular

logic. Tools for the co-development of grammar and target logic are currently largely missing.

We will describe the Grammatical Logical Framework (GLF), a combination of two existing

frameworks, in which large parts of a symbolic, rule-based NLU system can be developed and imple-

mented: the Grammatical Framework (GF) and MMT. GF is a tool for syntactic analysis, generation,

and translation with complex natural language grammars and MMT can be used to specify logical

systems and to represent knowledge in them. Combining these tools is possible, because they are

based on compatible logical frameworks: Martin-Löf type theory and LF. The flexibility of logical

frameworks is needed, as NLU research has not settled on a particular target logic for meaning repre-

sentation. Instead, new logics are developed all the time to handle various language phenomena. GLF
allows users to develop the logic and the language parsing components in parallel, and to connect

them for experimentation with the entire pipeline.

1 Introduction

Natural language semantics studies the meaning of natural language utterances. A fundamental con-

ceptual tool for this are truth conditions: the set of conditions under which an NL utterance is true.

For example, “John loves Mary” is true if and only if John indeed loves Mary. Somewhat less tautolo-

gously: two assertions have the same meaning, if they have the same truth conditions. We can therefore

identify the meaning of an assertion with its truth conditions [4]. This notion of “meaning” is very gen-

eral, but also not very constructive. Therefore truth conditions are generally thought of as a minimal

axiomatization of the domains of discourse which entails the assertion.

Comp Ling
NL

FL

M= ⟨D,I⟩

⊧NL ⊆NL×NL

⊢C ⊆ FL×FL

⊧ ⊆FL×FL

Analysis

Iϕ

induces

induces

formulae

⊧ ≡ ⊢C?

⊧NL ≡ ⊢C?

Figure 1: Natural-language inference on different levels.

To understand this setup, assume that

we use a formal language FL to ex-

press truth conditions. The meaning

of “John loves Mary” could then be

love(john,mary) ∈ FL. If FL is the formal

language of a logical system, we also have

an interpretation function Iϕ of FL expres-

sions into a model and a calculus C with a

derivation relation ⊢C . If C is sound and

complete, the upper rectangle in Figure 1

commutes. If the calculus C is an adequate

http://dx.doi.org/10.4204/EPTCS.307.4
http://creativecommons.org
http://creativecommons.org/licenses/by-sa/3.0/

Michael Kohlhase & Jan Frederik Schaefer 25

NL Utterance

Syntax

Tree

parsing

Logic

Expression

Semantics

Construction

(compositional) Logic

Expression

Semantic

Analysis

(inferential)

Figure 2: The pipeline of an NLU system.

model for the natural language entailment relation ⊧NL – also called “textual entailment” in the linguis-

tics literature – both rectangles in Figure 1 commute and we have a good model for truth conditions

and logical entailment for natural language utterances. In this case, it suffices to specify the translation

from natural language NL to the formal language FL along with a calculus C. And in general, the “NL

semantics” literature restricts itself to the box in Figure 1, entrusting the upper square to logicians and

the equivalence of M-entailment and textual entailment ⊧NL to the logic developers. At the same time,

NL semanticists continually need extensions to FL and C to model new NL phenomena.

In particular, it is still unachievable to describe a translation from the entirety of natural language into

some formal language. Instead, researchers rather focus on particular phenomena in natural language by

describing a small subset of natural language utterances (a fragment) along with the meaning of these

utterances. This method of fragments was established by Richard Montague [14]. It typically results in

the description of three components:

1. a grammar that fixes the language fragment and generates syntax trees

2. a formal system in which the semantics of utterances can be expressed

3. a way to transform syntax trees to expressions in the formal system, which is often referred to as

semantics construction

The semantics construction is based on the compositionality principle: the idea that the meaning of

a complex utterance is determined by the meaning of its constituents. Thereby, the semantics construction

boils down to mapping grammar rules to corresponding semantic operations. Consider, for example,

the grammar rule <sentence> ::= <sentence> "and" <sentence>. It corresponds to the semantic

operation JAK∧ JBK, where JAK and JBK are the meanings of the constituent sentences. The semantics

construction may be followed by a semantic analysis1, which comprises various non-compositional

operations such as inference, anaphora resolution, or contextual anchoring.

Symbolic natural-language understanding (NLU) systems describe the entire pipeline from strings

to semantic representations (Figure 2). They have been used to describe the semantics of a variety of

natural-language phenomena. In the process, many different logics have been developed. However, the

experiments were mostly done with pen and paper, and have rarely been implemented in software. This

can lead to researchers focusing either on the linguistic side or on the logical side of the problem, while

the actual semantics construction remains vague.

When someone actually implemented such an NLU system, it was usually done in a programming

language like Prolog or Haskell – see e.g. [1, 5]. In both cases, the authors claim that the programming

language is an NLU framework – in the first case since Prolog is a declarative programming language

and in the second since Haskell is very high-level. In any case, the NLU system requires a considerable –

potentially prohibitive – amount of programming work. As far as we can tell, there is no fully declarative

1 In Anglo-Saxon literature this is sometimes called pragmatics.

26 GF + MMT = GLF – From Language to Semantics through LF

framework that could be used to do both, the grammar development as well as the logic development and

keep them in sync.

In this paper we describe our efforts to create the Grammatical Logical Framework (GLF). It com-

bines an existing framework for natural language grammars with an existing framework for logic devel-

opment. Concretely, we combine the Grammatical Framework (GF) [22], with the logic development

tool MMT [19]. This is possible, because the logical frameworks underlying these tools are compati-

ble. GF handles the natural language parsing and generates terms (parse trees) in a logical framework

(Martin-Löf type theory [21]). MMT, which supports LF and various extensions, maps these terms to

expressions in the desired target logic – see Figure 5.

In GLF, an NLU researcher can specify a fragment of a language in GF and, in parallel, develop a

logic in MMT, along with a domain theory and the semantics construction. Our framework supports this

in various ways, such as:

• it allows the researcher to try out the entire pipeline from an utterance to its logical representation

• it checks the totality of the semantics construction

• the grammar and the logic are type-checked as usual in GF and MMT

We admit that symbolic natural language understanding has dropped from the limelight of computational

linguistic research in the last two decades in favor of machine-learning-based approaches. But the success

of these has only shadowed the question of semantic analysis and natural language inference. We see

a cautious revival of symbolic/logic-based methods in computational linguistics, and we hope that GLF
can serve as a tool to facilitate this.

The symbolic approach to NLU needs extensive resources (e.g. grammars and ontologies). Aarne

Ranta, the creator of GF, distinguish two areas of NL applications: consumer tasks and producer

tasks [20]. Consumer tasks require large coverage – often achieved through machine learning – and

are therefore typically limited in their precision. An example of this would be machine learning-based

text translation a la Google Translate. Producer tasks, on the other hand, require high precision, but

are restricted in their coverage to a few thousand concepts. An example are technical manuals for com-

plex machinery in dozens of languages, where the consequences of mistranslation may be catastrophic.

Beyond translation, producer tasks – the natural hunting grounds of GLF– include understanding of

mathematical papers, laws or contracts.

Overview First, we will describe GF and MMT (Sections 2 and 3). After an overview of the GLF
system (Section 4), we will describe the semantics construction and semantic analysis (Sections 5 and 6)

using a running example. Section 7 contains more examples of how this framework can be used. Sec-

tion 8 concludes the paper and discusses future work.

Acknowledgements We are grateful for the discussions with and insights from Aarne Ranta, Florian

Rabe, and finally Dennis Müller, who has also prototyped an early version of GLF. The work reported

here was supported by the German Research Foundation (DFG) under grant KO 2428/18.

2 GF: The Grammatical Framework

The Grammatical Framework (GF) [22, 7] can be used to create multilingual grammar applications.

GF grammars are divided into two parts: abstract syntax and concrete syntaxes. The abstract syntax

describes the ASTs (abstract syntax trees or abstract syntax terms) covered by the grammar. The

concrete syntaxes are AST linearization rules in a specific natural language.

Michael Kohlhase & Jan Frederik Schaefer 27

Let us consider a small example: Listing 1 shows an abstract syntax for representing some statements

about everyday life such as “Joan runs and Mary loves Joan”. First, three basic types are introduced

(Stmt, Person, Action) with the keyword cat (in GF they are called categories). Afterwards, several

function constants are introduced with the keyword fun. The example utterance “Mary loves Joan”

would correspond to the AST act mary (love joan). Formally, GF is based on a version of construc-

tive type theory [21]. It supports dependent types, but, in our experience, these are not very useful for

most natural-language grammar applications.

abstract Life = {

cat

Stmt ; Person ; Action ;

fun

act : Person -> Action -> Stmt ;

and : Stmt -> Stmt -> Stmt ;

joan : Person ;

mary : Person ;

run : Action ;

loveOneself : Action ;

love : Person -> Action ;

}

concrete LifeEng of Life = {

lincat

Stmt, Person, Action = Str ;

lin

act pers action = pers ++ action ;

and a b = a ++ "and" ++ b ;

joan = "Joan" ;

mary = "Mary" ;

run = "runs" ;

loveOneself = "loves" ++ "herself" ;

love person = "loves" ++ person ;

}

Listing 1: Abstract syntax to talk about ever-day life along with English linearization rules.

GF’s concrete syntaxes describe how the ASTs are linearized in a particular natural language. List-

ing 1 shows a concrete syntax for the English language. First, the linearization types of the categories

are defined (lincat). GF provides a powerful type system for the concrete syntax with record types and

more. For this example the basic type Str suffices; this would change if a male person is added, since

we would have to distinguish between “loves herself ” and “loves himself ”. The keyword lin is used to

describe the linearizations of function constants.

With the concrete syntax, ASTs can be linearized into English strings. GF also generates a parser

from the linearization rules, which allows us to parse English strings into ASTs. By creating another

concrete syntax, e.g. for German, we can parse strings in one language and linearize the ASTs into a

different language. This allows us to translate between languages. For instance the invocation

parse -lang=Eng -cat=Stmt "Mary loves herself" | linearize -lang=Ger

in the GF shell yields the result

Maria liebt sich

The example above is of course a very simple one and does not contain any of the challenges one

would typically face in a natural-language grammar. Any more complex natural-language application

will have to implement a large number of rules for handling the word order and word forms. In English,

for example, verb endings depend on the plurality of the subject. These rules can be implemented in

GF’s concrete syntaxes using records, tables, etc. Since these language-specific rules are needed in

most projects, the GF community provides the Resource Grammar Library [9]. It contains rules for

currently 36 languages and is an invaluable resource for creating natural-language applications.

28 GF + MMT = GLF – From Language to Semantics through LF

3 MMT: Meta-Meta Theories/Tool

OMDoc/MMT (Meta-Meta Theories) is a modular, foundation-independent framework for representing

knowledge [19, 16]. The MMT system (Meta-Meta Tool [18, 13]) acts as an OMDoc/MMT API and

implements various knowledge management services including type/proof checking.

OMDoc/MMT knowledge is represented in theories, which contain (among other things) declara-

tions of constants. A constant declaration c[:τ][=δ][#ν] can have various components such as a type

τ , a definiens δ or a notation ν .

OMDoc/MMT is a modular framework: domain ontologies and logics are represented as graphs

of theory presentations inter-linked by theory morphisms that model inheritance and interpretation. In

practice OMDoc/MMT development follows a “little theories” paradigm, where each theory presenta-

tion only contributes a small number of declarations to maximize re-use of content.

Due to the foundation-independence, various logical frameworks can be implemented in MMT, but

in practice LF and extensions are usually sufficient to represent a wide range of formal systems in MMT.

See [3, 12] for the LATIN Logic Atlas and Integrator, a large modular theory graph of LF-encoded logics.

As an example, let us create an MMT theory PropLogicSyntax for propositional logic, which we

can base on LF. Note that LF is just another theory in MMT, the meta theory of PropLogicSyntax.

The theory LF provides λ for functions, Π for dependent types, the kind type , and the function type

constructor →. Apart from a meta theory, PropLogicSyntax has four constant declarations (Listing 2).

First, the constant prop is declared as a type with the notation o (the symbol # introduces the notation).

The components of a constant declaration are separated by the delimiter |, declarations with ∥, and

theories/views with 8. We can declare conjunction (and) and negation (neg) as binary/unary operations

on propositions using the notation o introduced for prop. Applying De Morgan’s law, disjunction (or)

can be defined in terms of conjunction and negation. Note that in MMT lambda expressions like λx,y.M

are written as [x,y] M.

theory PropLogicSyntax : ur:?LF =

prop : type | # o ∥
and : o → o → o | # 1 ∧ 2 ∥
neg : o → o | # ¬ 1 ∥
or : o → o → o | # 1 ∨ 2 |

= [x,y] ¬ ((¬ x) ∧ (¬ y)) ∥
8

theory PropLogicND : ur:?LF =

include ?PropLogicSyntax ∥
ded : o → type | # ⊢ 1 ∥

andI : {A,B} ⊢ A → ⊢ B → ⊢ (A ∧ B) ∥
andEr : {A,B} ⊢ (A ∧ B) → ⊢ B ∥
...

Listing 2: Propositional logic in MMT: syntax (left) and proof theory (right).

The right side of Listing 2 shows the usual representation of the natural deduction calculus for propo-

sitional logic via the Curry-Howard isomorphism. We will use it for the verification of truth conditions

in domain theories below.

To model the semantics of propositional logic in set theory, we create a new theory PropLogicModel

(Listing 3) that is based on set theory (sets:?AllSets). In OMDoc/MMT terms, set theory is the meta

theory of PropLogicModel. The meta theory relation is a theory morphism, very similar to inclusion/in-

heritance.

We want to interpret propositions as sets of satisfying variable assignments and interpret falsity as

the empty set, therefore PropLogicModel has a single constant declaration, which introduces a new type

constant with the notation A for variable assignments.

The meaning of PropLogicSyntax can now be established with another kind of theory morphism: a

Michael Kohlhase & Jan Frederik Schaefer 29

theory PropLogicModel :

sets:?AllSets =

assignment : type | # A ∥
8

view PropLogicSemantics :

?PropLogicSyntax -> ?PropLogicModel =

prop = set A ∥
and = [ϕ, ψ] ϕ ∩ ψ ∥
neg = [ϕ] (fullset A) \ ϕ ∥

8

Listing 3: Semantics description as view (right) into PropLogicModel (left).

view maps undefined constants from the source theory to objects in the target theory. In this case, we

will describe the meaning of PropLogicSyntax with a view from PropLogicSyntax to PropLogicModel

(Listing 3). A proposition can be represented as the set of variable assignments that make it true. Then,

the conjunction of two propositions corresponds to the intersection of two sets and negation corresponds

to taking the complement set. As disjunction (or) is defined in terms of conjunction and negation, we

do not need to map it to anything here. Figure 3 provides an overview of the different theories and

morphisms we have used.

ur:?LF sets:?AllSets

PropLogicSyntax PropLogicModel
PropLogicSemantics

Figure 3: Propositional Logic as an OMDoc/MMT Theory Graph.

4 GLF: The Grammatical Logical Framework

GLF combines GF and MMT by exploiting the compatibility of the underlying logical frameworks. In

the next sections we will explain how this leads to a framework for natural-language semantics. We start

with the information and software architecture of the system.

4.1 GF vs MMT – Two Sister Formats

GLF’s combination of GF and MMT is based on the fact that GF’s abstract syntaxes can be trivially

represented as MMT/LF theories. We will refer to an MMT theory that corresponds to a GF abstract

syntax module as a language theory.

We can illustrate this using the Life grammar from Listing 1. For instructive reasons, we will

split it into two parts: a LifeGrammar that deals with the “grammatical” structures of a language and

a LifeLex that contains the lexical entries. Listing 4 shows the LifeGrammar in GF, along with its

language theory in MMT. GF categories correspond to type constants and GF functions to function

constants in MMT. Listing 4 also shows the LifeLex abstract syntax in GF with the corresponding

language theory. Note that LifeLex extends LifeGrammar in GF, and correspondingly in MMT LifeLex

includes LifeGrammar. Generally, the MMT module system subsumes the one of GF, thus we can build

the information architecture in parallel.

The similarity between GF abstract syntaxes and their language theories in MMT enables us to leave

GF after parsing and continue with the semantics construction in MMT (Section 5). Specifically, an AST

30 GF + MMT = GLF – From Language to Semantics through LF

abstract LifeGrammar = {

cat

Stmt ;

Person ;

Action ;

fun

act : Person -> Action -> Stmt ;

and : Stmt -> Stmt -> Stmt ;

}

theory LifeGrammar : ur:?LF =

Stmt : type ∥
Person : type ∥
Action : type ∥

act : Person → Action → Stmt ∥
and : Stmt → Stmt → Stmt ∥

8

abstract LifeLex = LifeGrammar ** {

fun

joan : Person ;

mary : Person ;

run : Action ;

loveOneself : Action ;

love : Person -> Action ;

}

theory LifeLex : ur:?LF =

include ?LifeGrammar ∥
joan : Person ∥
mary : Person ∥
run : Action ∥
loveOneself : Action ∥
love : Person → Action ∥

8

Listing 4: The LifeGrammar and its extension LifeLex in GF (left) and MMT (right).

in GF like act joan (love mary) can trivially be mapped to the MMT term act joan (love mary).

4.2 The GLF System

GLF is a relatively thin wrapper around the unchanged GF and MMT systems: GF is started in server

mode and GLF communicates with it via HTTP requests – this turned out to be easier to set up than using

the GF Java bindings. The bridge between GF and MMT consists of

1. a small script that given an abstract GF grammar G generates the language theory Ĝ and a stub for

the semantics construction view G̃ (cf. Section 5) and

2. a translator that translates G-ASTs in GF into Ĝ-terms in MMT (cf. Section 5).

Figure 4 shows the pipeline: first, an utterance is parsed by GF into an AST, which GLF translates into

an equivalent OMDoc/MMT term, which MMT can use for the semantics construction and analysis and

pass on to an application. We can see this as a refinement/implementation of Figure 2.

NL GF translation MMT application
string AST term

(lang. theory)

term

Figure 4: The general GLF pipeline.

4.3 GLF Fragments

Together, the GF grammars and MMT theories constitute a full formal basis for parsing and inference,

therefore we call it a GLF Fragment. Even though this example is very basic and didactically motivated,

the general structure of a GLF fragment is the same. It consists of:

1. an abstract GF/MMT syntax, such as the one in Listing 4,

2. a set of concrete GF syntaxes for them, as in Listing 1 on the right,

3. an MMT logic, such as the one in Listings 2 (syntax) and 3 (semantics), and

Michael Kohlhase & Jan Frederik Schaefer 31

Lang. 1 ⋯ Lang. n

Concrete

Syntax 1
⋯ Concrete

Syntax n

Abstract

Syntax

Language

Theory

Target

Logic

Domain

Theory

S
em

.

C
onstr.

Sem.

Anal.

Application

Theory

generates

Application

Interpretation

GF MMT

Figure 5: The GLF(F) Pipeline.

4. an MMT view for the semantics construction, such as the one in Listing 6.

We write GLF(F) for GLF with fragment F loaded. As we can directly experiment with a GLF
package F , GLF(F) can be used as a fragment development system.

Figure 5 refines the pipeline from Figure 4 taking the components of the GLF fragment F into

account: an utterance is parsed by GF with one of the concrete syntaxes to obtain an AST (specified by

the abstract syntax). Different concrete syntaxes correspond to different languages. Afterwards, GLF
translates the AST into an equivalent MMT term in the language theory. Semantics construction, via

MMT (cf. Section 5), and semantic analysis in MMT (Section 6) follow.

4.4 GLF Applications

We provide a small GLF distribution at [10] that comes with MMT and the grammars and semantics

constructions described in this paper. Concretely, this allows the reader to try out the examples in the

command-line by entering sentences and receiving the result of the semantics construction. Here is

an abbreviated example interaction based on an example extension of the Life fragment described in

Section 7.1:

Please enter a sentence: John and Mary run

I got the following interpretations:

(run’ john’)∧(run’ mary’)

Please enter a sentence: John loves everyone

I got the following interpretations:

∀[x:ι]love’ john’ x

Note that the example above doesn’t require any implementation work at all – only a GLF fragment,

which gets passed to GLF via command-line arguments.

In Section 6 we will motivate the use of tableaux for semantic analysis. There is also a small demo for

that, which allows the user to enter sentences and outputs the updated belief state. Here is an abbreviated

example interaction:

Please enter a sentence: if John doesn’t love Mary then Mary doesn’t love John

Here is my belief state:

Option 1: love’ john’ mary’

Option 2: NOT love’ mary’ john’

Please enter a sentence: John doesn’t love Mary

Here is my belief state:

32 GF + MMT = GLF – From Language to Semantics through LF

Option 1: NOT love’ mary’ john’ ; NOT love’ john’ mary’

5 Semantics Construction

The key observation of this paper is that semantics construction in Montagovian settings can be formal-

ized in OMDoc/MMT as a view from the language theory of a fragment F to the corresponding domain

theory. GLF generates the language theory in F from the abstract grammar in F and translates ASTs to

MMT, so that we can execute the semantics construction step by MMT functionality: view application

and simplification.

Let us turn back to our example to fortify our intuition. We need to define a suitable target logic

and a domain theory. For this small example we don’t need a powerful logic: it suffices to extend the

propositional logic defined in Listing 2 by a type constant for individuals (Listing 5). In this logic,

we can define the domain theory (also Listing 5), which simply consists of constants such as joan_DT

or love_DT. As notation, we introduce joan’ etc., following the convention in NL semantics that the

meaning of “Joan” is joan’.

theory LogicSyntax : ur:?LF =

include ?PropLogicSyntax ∥
individual : type | # ι ∥

8

theory LifeDT : ?LogicSyntax =

joan_DT : ι | # joan’ ∥
mary_DT : ι | # mary’ ∥
run_DT : ι → o | # run’ ∥
love_DT : ι → ι → o | # love’ ∥

8

Listing 5: Logic and domain theory for the Life grammar.

Now that we have a target logic and a domain theory, we can define the semantics construction as a

modular view in MMT. Listing 6 represents it in two stages according to the grammar/lexicon partition of

the source theory: The LifeGrammarSemantics view maps all constants from LifeGrammar to objects in

LogicSyntax. The type constants Stmt, Person and Action are mapped to propositions, individuals and

unary predicates respectively. act is mapped to a simple function application (with the argument order

reversed) and and to the conjunction of LogicSyntax (recall that [a,b]a∧b stands for λa.λb.a∧b). Since

LifeLex includes LifeGrammar, all included constants must be mapped somewhere as well. We can do

this by simply including the LifeGrammarSemantics view described above. In this small example, most

new constants introduced in LifeLex have a corresponding element in the domain theory. The only

exception is loveOneself, which can be described in terms of love’. Figure 6 provides an overview of

the theories and views we just defined. MMT verifies the completeness of the semantics construction

(i.e. that every element of the grammar gets mapped to something) by checking the totality of the views.

view LifeGrammarSemantics :

?LifeGrammar -> ?LogicSyntax =

Stmt = o ∥
Person = ι ∥
Action = ι → o ∥

act = [pers, action] action pers ∥
and = [a,b] a ∧ b ∥

8

view LifeLexSemantics :

?LifeLex -> ?LifeDT =

include ?LifeGrammarSemantics ∥
joan = joan’ ∥
mary = mary’ ∥
run = run’ ∥
loveOneself = [x] love’ x x ∥
love = love’ ∥

8

Michael Kohlhase & Jan Frederik Schaefer 33

ur:?LF

LifeGrammar LogicSyntax PropLogicSyntax

LifeLex LifeDT

LifeGrammarSemantics

LifeLexSemantics

Figure 6: Semantics construction for the Life example using MMT’s views.

Listing 6: Semantics construction for the Life example using views into the domain theory.

Now we have everything we need to do the semantics construction for natural language utterances of

our small Life fragment of the English language. For example, we can parse the sentence “Joan loves

herself ” with GF, which results in the AST act joan loveOneself. Semantics construction just applies

the view LifeLexSemantics from Listing 6 to the OMDoc/MMT term act joan loveOneself. MMT
computes ([pers,action]action pers)joan’ [x]love’ x x and simplifies it to love’ joan’ joan’.

We end this section with a remark on truth conditions: In MMT the truth conditions of a statement

can be represented as an MMT theory. For example, the truth conditions of “Mary runs and Joan runs”

(or run’ mary’ ∧ run’ joan’) could be represented as a OMDoc/MMT theory with the axioms a1 :

⊢ run’ mary’ and a2 : ⊢ run’ joan’. Note that these axioms directly induce a Herbrand model,

which is useful for many NLU systems. It then remains to show that the statement indeed follows from

the truth conditions, which we can verify by giving a natural deduction proof – i.e. a term in the theory

PropLogicND on the right of Listing 2 – which can be verified by the MMT type-checker.

6 Semantic Analysis

At the end of the previous section we have described how truth conditions can be represented as theories

containing some axioms that form a Herbrand model. For an NLU system, these Herbrand models should

of course be generated automatically. This is possible with tableau calculi which provide automated

theorem proving and (Herbrand) model generation.

Following [11] let us consider the following mini-discourse: “Mary is married to John. Her hus-

band is not in town.” After the semantic analysis it should be clear that John is not in town (indeed

this is one of the truth conditions). The result of the semantics construction could be the following ex-

pression in sorted first-order logic: married′(mary′, john′)∧∃XM,YF.(husband′(X ,Y)∧¬inTown′(X))
where M is a sort for male people and F a sort for female people. These sorts are useful, because

they correspond to English pronouns making it clear that e.g. “her” cannot refer to “John”. To infer

that “her husband” is “John”, we need world knowledge that describes married men as husbands and im-

poses monogamy: ∀XF,YM.married′(X ,Y)⇒ husband′(Y,X)∧(∀ZM.husband′(Z,X)⇒Z =Y). Model

generation with a tableau calculus would then result in the following facts: married′(mary′, john′),
husband′(john′,mary′), ¬inTown′(john′) along with various negative facts in different branches (e.g.

¬married′(mary′,mary′)).

34 GF + MMT = GLF – From Language to Semantics through LF

S

VP

NP

CN

Adv

with the binoculars

man

the

saw

NP

Mary

S

VP

Adv

with the binoculars

VP

NP

CN

man

the

saw

NP

Mary

Figure 7: Two different (simplified) parse trees for the same sentence.

6.1 Handling Natural Language Ambiguity

Natural language is very prone to ambiguity. One cause of ambiguity is lexical ambiguity: one word can

have several meanings (or, the other way around: different words can be spelt the same). For example,

in the sentence “Mary works at a bank”, the word “bank” could either refer to a financial institution or to

a geographical feature (river bank). In GF, this can be handled by providing two different entries in the

abstract syntax – bank_institute and bank_river, which are both linearized to the string “bank” in the

concrete grammar for English. Parsing “Mary works at a bank” then results two different ASTs – one

with each meaning of the word “bank”. Semantic analysis with world knowledge about legal working

conditions might then indicate a preference for the “financial institution reading”.

Another type of ambiguity is structural ambiguity, which means that the sentence structure is am-

biguous. For example, in the sentence “Mary saw the man with the binoculars”, the phrase “with the

binoculars” could either refer to the verb “saw” or to the object “the person”. GF handles this ambiguity

also by creating one AST for each reading (Figure 7).

GLF propagates ambiguity by applying semantics construction to each AST and passing the results

on to semantic analysis. The tableau machine from [11], for example, would be given a disjunction

of all terms, which creates one branch for each reading. It then saturates the tableau inferentially with

the available world knowledge until a resource criterion is met, and continues with all remaining open

branches. [11] considers the open branches of a tableau, after the machine has been fed with a discourse

sentence-wise, as the semantic ambiguity of the discourse – after all, they induce Herbrand models

of the discourse. Tableaux machines can be implemented easily on top of the MMT data structures.

We have experimented with a simplified tableau machine that can handle the LogicSyntax described in

Listing 5. An example output is shown at the end of Section 4.4.

Finally, note that the syntactic ambiguity described above does not necessarily lead to semantic

ambiguity. For example, the sentence “A and B and C” may be structurally ambiguous and result in the

terms (JAK∧ JBK)∧ JCK and JAK∧(JBK∧ JCK). However, the terms are equal given the associativity of ∧,

i.e. there is no semantic ambiguity.

7 Examples

The running example based on the Life fragment was very trivial and does not really justify the efforts of

combining MMT and GF. Therefore, we will showcase two more fragments that have a more interesting

target logic and semantics construction. In Section 7.1 we will show a Montague-style variation of the

Michael Kohlhase & Jan Frederik Schaefer 35

abstract Quantified = {

cat

NP; VP; V2; S;

fun

applyObject : V2 -> NP -> VP ;

makeSentence : NP -> VP -> S ;

and_NP : NP -> NP -> NP ;

everyone : NP ;

someone : NP ;

}

concrete QuantifiedEng of Quantified =

open SyntaxEng,ParadigmsEng,DictEng in {

lincat -- map to RGL categories

NP = NP; VP = VP; V2 = V2; S = S;

lin

applyObject v2 np = mkVP v2 np ;

makeSentence n v = mkS (mkCl n v) ;

and_NP a b = mkNP and_Conj a b ;

everyone = everyone_NP ;

someone = someone_NP ;

}

Listing 7: Variation of the Life grammar that supports quantifiers (“everyone”, “someone”).

Life fragment which contains quantifiers. In Section 7.2, we will use modal logic to model propositional

attitudes.

7.1 Montague-Style Quantifiers

Noun phrases are natural-language phrases that can serve as the subject or object of a verb. In the

Life grammar, we represented them with the category Person. In this example, we will modify the

grammar to support more complex noun phrases. In particular, we will be able to talk about several

people (“John and Mary”) and to quantify over the set of all people (“someone” or “everyone”). This

makes the semantics construction more challenging. The new abstract syntax is shown in Listing 7 on

the left. Note that we switched to the more syntactic (linguistic) category names NP (noun phrase), VP

(verb phrase), V2 (transitive verb) and S (sentence). We can use GF’s resource grammar library [9] –

using an open clause – to create the English concrete syntax as demonstrated in Listing 7 on the right. It

provides all the language-specific rules we need, which means that we do not need to deal with the word

order and endings ourselves. While it may not be very useful for our small example fragments, it can

simplify the implementation of larger fragments significantly.

We will use first-order logic for the target representation. The sentence “John loves everyone” could

then be represented as ∀x.love′(john′,x). FOL_Syntax (Listing 8) is an extension of the LogicSyntax

(defined in Listing 5) with quantifiers using higher-order abstract syntax. An extension for first-order

natural deduction calculus is straightforward and well-understood.

theory FOL_Syntax : ur:?LF =

include ?LogicSyntax ∥
forall : (ι → o) → o | # ∀ 1 ∥
exists : (ι → o) → o | # ∃ 1 | = [p] ¬ (∀ [x] (¬ p x)) ∥

8

Listing 8: First-order logic as an extension of LogicSyntax.

The tricky part is now the semantics construction. Consider the sentence “John and Mary run”,

which should result in the expression run′(john′)∧ run′(mary′). Since the semantics construction has

to be compositional, we need to construct this expression from the meaning of “John and Mary” and

36 GF + MMT = GLF – From Language to Semantics through LF

the meaning of “run”. The standard solution in a Montagovian framework [15] is type raising2: by

defining the meaning of “John and Mary” as λ p.p(john′)∧ p(mary′), we can compositionally define

the meaning of “John and Mary run” as (λ p.p(john′) ∧ p(mary′))run′, which can be β -reduced to

the desired expression run′(john′) ∧ run′(mary′). This means that the type of noun phrases is now

(ι → o)→ o. Another way to look at this is that the meaning of a noun phrase is the set of its properties.

This approach results in mappings for the semantics construction like these:

mary = [p : ι → o] p mary’ ∥
everyone = [p : ι → o] ∀ ([x : ι] p x) ∥
and_NP = [np1, np2] [p : ι → o] (np1 p) ∧ (np2 p) ∥

In order to handle transitive verbs like “love”, it is necessary to apply type raising to the verbs as well:

by providing verb phrases with noun phrases as arguments rather than individuals, their type becomes

((ι → o)→ o)→ o where (ι → o)→ o is the type of a noun phrase. Similarly, transitive verbs get two

noun phrases as arguments, resulting in the type ((ι → o)→ o)→ ((ι → o)→ o)→ o. This allows us to

define the semantics of verbs in the following way:

run = [np] np run’ ∥
loveOneself = [np] np ([x : ι] (love’ x) x) ∥
love = [np1, np2] np1 ([x : ι] np2 ([y : ι] love’ y x)) ∥

Note that run’ ∶ ι → o and love’ ∶ ι → ι → o are constants from the domain theory (we can reuse the

domain theory of the Life example in Listing 5).

It is now straightforward to define the semantics construction for applyObject and makeSentence:

applyObject = [v2, np] v2 np ∥
makeSentence = [np, vp] vp np ∥

With all this, we can parse the example sentence “John and Mary love everyone” to obtain the

AST makeSentence (and_NP john mary)(applyObject love everyone). Applying the semantics

construction, we obtain the expression

([np,vp]vp np) (([np1,np2][p:ι→o](np1 p)∧(np2 p)) ([p:ι→o]p john’) [p:ι→o]p mary’)

(([v2,np]v2 np) ([np1,np2]np1 [x:ι]np2 [y:ι]love’ y x) [p:ι→o]∀[x:ι]p x)

which β -reduces to ∀[x:ι](love’ john’ x)∧(love’ mary’ x) as desired.

7.2 (Multi) Modal Logic

In this example, we will use multi modal logic with the following modalities:

• deontic modality, expressing that something is obligatory or permitted

• epistemic modality, expressing that someone believes something to be true or possibly true

For an introductory discussion of propositional attitudes and modal logics in natural language semantics

we refer the reader to [6]. This text also discusses a plethora of other phenomena and logics, which we

could have used as examples. Indeed, all these logics – and their combinations – are a good validation of

the necessity of a tool like GLF.

We can describe this logic in MMT by extending the LogicSyntax from Listing 5. Listing 9 shows

the syntax for multi modal logic in general and for our specific case with deontic and epistemic modal-

ities. As a notation we introduce JmK for the box operator with modality m and ⟪m⟫ for the diamond

operator with modality m.

2 The reader may be familiar with continuation-passing style, which is a similar concept in programming languages.

Michael Kohlhase & Jan Frederik Schaefer 37

theory MultiModalLogic : ur:?LF =

include ?LogicSyntax ∥
modality : type | # µ ∥
box : µ → o → o | # J 1 K 2 ∥
diamond : µ → o → o | # ⟪ 1 ⟫ 2

| = [mod] [ϕ] ¬ J mod K ¬ ϕ ∥
8

theory DEModalLogic : ur:?LF =

include ?MultiModalLogic ∥
deontic : µ | # d ∥
epistemic : ι → µ | # e 1 ∥

8

Listing 9: Multi modal logic syntax and an extension for deontic-epistemic modal logic.

This way, we can express the meaning of e.g. “John is not allowed to run” as ¬⟪d⟫(run’ john’)

where d is the deontic modality. Similarly, we can express the meaning of “Mary believes that John is

happy” with epistemic modality: Je mary’K(happy’ john’).

In GF, we can describe “be allowed to” and “have to” as verb phrase modifiers (VpModifier), while

“Mary believes that” can be described as a sentence modifier (SModifier). To handle negations, we can

introduce the category Pol (for polarity), indicating whether a sentence is negated. Listing 10 shows the

abstract syntax in GF. For example, “John doesn’t run” would be parsed into the AST makeS neg john

run and “John has to run” would result in makeS pos john (modifyVP pos have_to run).

abstract Modal = {

cat

S ; VP ; Person;

VpModifier ; SModifier;

Pol; -- negative/positive polarity

fun

pos, neg : Pol;

makeS : Pol->Person->VP->S;

modifyVP : Pol->VpModifier->VP->VP;

modifyS : Pol->SModifier->S->S;

be_allowed_to : VpModifier;

have_to : VpModifier;

believe : Person->SModifier;

}

view ModalSemantics : ?Modal -> ?ModalDT =

S = o ∥ VP = ι → o ∥ Person = ι ∥
VpModifier = o → o ∥ SModifier = o → o ∥
Pol = o → o ∥

pos = [ϕ] ϕ ∥
neg = [ϕ] ¬ ϕ ∥
makeS = [pol,pers,vp] pol (vp pers) ∥
modifyVP = [pol,m,vp] [x] m(pol(vp x)) ∥
modifyS = [pol,m,s] pol (m s) ∥
be_allowed_to = [ϕ] ⟪ d ⟫ ϕ ∥
have_to = [ϕ] J d K ϕ ∥
believe = [pers] [s] J e pers K s ∥

8

Listing 10: The GF abstract syntax along with the semantics construction.

The semantics construction is now rather straightforward (Listing 10): sentences are propositions,

verb phrases are unary predicates and persons are individuals. The modifiers VpModifier and SModifier

have the type o → o, which allows us to define, e.g., be_allowed_to as λϕ.⟪d⟫ϕ, where ⟪d⟫ is the dia-

mond operator with deontic modality. The polarities can also be expressed as functions on propositions:

positive polarity is the identity function while negative polarity is negation. These different components

are combined with the functions makeS, modifyVP and modifyS, which simply apply the different com-

ponents to each other. For example, makeS is mapped to [pol,pers,vp] pol (vp pers). With this,

the semantics construction of the example sentence “John doesn’t run” would result in the term ¬(run’

john’). An example sentence using modalities would be “John doesn’t believe that Mary has to run”,

which results in the term ¬J(e john’)KJdK(run’ mary’).

38 GF + MMT = GLF – From Language to Semantics through LF

8 Conclusion and Future Work

We have presented GLF, a simple framework for experimenting with natural-language semantics and de-

veloping Montagovian fragments. It is – to our knowledge – the first framework that allows to implement

the entire pipeline from language parsing to the semantic analysis in a declarative way. The GLF system

reduces the creation of a symbolic NLU application to the following three steps:

1. Write a GF grammar (abstract syntax + possibly multiple concrete syntaxes), possibly re-using

large pieces of the GF resource grammer.

2. Define the target logic and domain theory, and define the semantics construction view in MMT
using the GLF-generated language theory and a view stub.

3. Implement some form of semantic analysis and application logic.

We have tested this workflow with several examples, including the ones described in this paper. The

most complex example was the record λ -calculus for complex noun meanings from [17]. We have also

used GLF as an educational tool in a course on logic-based natural language semantics at FAU Erlangen-

Nürnberg.

To increase GLF’s usefulness, we are planning to work on the following points:

1. Providing a unified interface for the grammar and semantics development. Concretely, we started

work on a Jupyter kernel for GLF, extending our GF Kernel (see [8]). Our goal is that the GF
grammar, the target logic, and the semantics construction view can all be implemented, tested, and

documented in a single and coherent notebook.

2. Enabling GLF to check that all λ expressions introduced by type raising for the sake of composi-

tionality get β -reduced away in semantics construction to ensure that the resulting expression is in

the target logic.

3. Extending MMT to calling an off-the-shelf theorem prover in the semantic analysis phase. This is

particularly useful for pruning out readings in the style of [2] and thus reducing overall ambiguity.

4. Looking into the reverse pipeline (logic-to-language translation), which could be a nice feature for

displaying e.g. inferred results.

5. Adding support for regression testing and automated evaluation against a gold standard to facilitate

realistic, corpus-driven development of fragments and ontologies.

A small GLF distribution along with the examples in this paper can be found at [10].

All in all, we hope that the GLF system constitutes a tool that facilitates NLU development and

experiments, and can thus kick-start a “logic revival” in computational linguistics. Like the systems it

combines, it may also act as a bridge between the respective communities.

References

[1] Patrick Blackburn & Johan Bos (2005): Representation and Inference for Natural Language. A First Course

in Computational Semantics. CSLI.

[2] Patrick Blackburn, Johan Bos, Michael Kohlhase & Hans de Nivelle (2001): Inference and Computational

Semantics. In Harry Bunt, Leen Kievit, Reinhard Muskens & Margriet Verlinden, editors: Computing Mean-

ing (Volume 2), Kluwer Academic Publishers, pp. 11–28, doi:10.1007/978-94-010-0572-2_2.

[3] Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski & Florian Rabe (2011): Project Ab-

stract: Logic Atlas and Integrator (LATIN). In James Davenport, William Farmer, Florian Rabe & Josef Ur-

ban, editors: Intelligent Computer Mathematics, LNAI 6824, Springer Verlag, pp. 289–291, doi:10.1007/

978-3-642-22673-1_24. Available at https://kwarc.info/people/frabe/Research/

CHKMR_latinabs_11.pdf.

http://dx.doi.org/10.1007/978-94-010-0572-2_2
http://dx.doi.org/10.1007/978-3-642-22673-1_24
http://dx.doi.org/10.1007/978-3-642-22673-1_24
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf
https://kwarc.info/people/frabe/Research/CHKMR_latinabs_11.pdf

Michael Kohlhase & Jan Frederik Schaefer 39

[4] Donald Davidson (1967): Truth and Meaning. Synthese 17, doi:10.1007/bf00485035.

[5] Jan van Eijck & Christina Unger (2010): Computational Semantics with Functional Programming. Cam-

bridge University Press, doi:10.1017/cbo9780511778377.

[6] L. T. F. Gamut (1991): Logic, Language and Meaning, Volume II, Intensional Logic and Logical Grammar.

2, University of Chicago Press, Chicago.

[7] GF - Grammatical Framework. http://www.grammaticalframework.org.

[8] GF Kernel. https://github.com/kwarc/gf_kernel.

[9] GF Resource Grammar Library: Synopsis. https://www.grammaticalframework.org/lib/

doc/synopsis/index.html.

[10] GLF Demo Repository. https://gl.kwarc.info/COMMA/glf-demo-lfmtp2019.

[11] Michael Kohlhase & Alexander Koller (2000): Towards A Tableaux Machine for Language Understanding.

In Johan Bos & Michael Kohlhase, editors: Proceedings of Inference in Computational Semantics ICoS-2,

Computational Linguistics, Saarland University, pp. 57–88.

[12] The LATIN Logic Atlas. https://gl.mathhub.info/MMT/LATIN.

[13] MMT – Language and System for the Uniform Representation of Knowledge. project web site at https://

uniformal.github.io/. Available at https://uniformal.github.io/.

[14] R. Montague (1970): English as a Formal Language, chapter Linguaggi nella Societa e nella Tecnica, B.

Visentini et al eds, pp. 189–224. Edizioni di Communita, Milan. Reprinted in [23], 188–221.

[15] Richard Montague (1974): The Proper Treatment of Quantification in Ordinary English. In R. Thomason,

editor: Formal Philosophy. Selected Papers, Yale University Press, New Haven.

[16] Dennis Müller & Florian Rabe (2019): Rapid Prototyping Formal Systems in MMT: Case Studies. Available

at https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf.

[17] Manfred Pinkal & Michael Kohlhase (2000): Feature Logic for Dotted Types: A Formalism for Complex

Word Meanings. In: Proceedings of the 38th Annual Meeting of the Association for Computational Lin-

guistics, Hongkong, pp. 521–528, doi:10.3115/1075218.1075284. Available at http://kwarc.

info/kohlhase/papers/acl00.pdf.

[18] Florian Rabe (2013): The MMT API: A Generic MKM System. In Jacques Carette, David Aspinall, Christoph

Lange, Petr Sojka & Wolfgang Windsteiger, editors: Intelligent Computer Mathematics, Lecture Notes in

Computer Science 7961, Springer, pp. 339–343, doi:10.1007/978-3-642-39320-4_25.

[19] Florian Rabe & Michael Kohlhase (2013): A Scalable Module System. Information & Computation

0(230), pp. 1–54, doi:10.1016/j.ic.2013.06.001. Available at http://kwarc.info/frabe/

Research/mmt.pdf.

[20] Aarne Ranta: Grammatical Framework - Formalizing the Grammars of the World. http://www.

grammaticalframework.org/˜aarne/gf-google-2016.pdf.

[21] Aarne Ranta (2004): Grammatical Framework — A Type-Theoretical Grammar Formalism. Journal of Func-

tional Programming 14(2), pp. 145–189, doi:10.1017/S0956796803004738.

[22] Aarne Ranta (2011): Grammatical Framework: Programming with Multilingual Grammars. CSLI Publica-

tions, Stanford. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

[23] R. Thomason, editor (1974): Formal Philosophy: selected Papers of Richard Montague. Yale University

Press, New Haven, CT.

http://dx.doi.org/10.1007/bf00485035
http://dx.doi.org/10.1017/cbo9780511778377
http://www.grammaticalframework.org
https://github.com/kwarc/gf_kernel
https://www.grammaticalframework.org/lib/doc/synopsis/index.html
https://www.grammaticalframework.org/lib/doc/synopsis/index.html
https://gl.kwarc.info/COMMA/glf-demo-lfmtp2019
https://gl.mathhub.info/MMT/LATIN
https://uniformal.github.io/
https://uniformal.github.io/
https://uniformal.github.io/
https://kwarc.info/people/frabe/Research/MR_prototyping_19.pdf
http://dx.doi.org/10.3115/1075218.1075284
http://kwarc.info/kohlhase/papers/acl00.pdf
http://kwarc.info/kohlhase/papers/acl00.pdf
http://dx.doi.org/10.1007/978-3-642-39320-4_25
http://dx.doi.org/10.1016/j.ic.2013.06.001
http://kwarc.info/frabe/Research/mmt.pdf
http://kwarc.info/frabe/Research/mmt.pdf
http://www.grammaticalframework.org/~aarne/gf-google-2016.pdf
http://www.grammaticalframework.org/~aarne/gf-google-2016.pdf
http://dx.doi.org/10.1017/S0956796803004738

	1 Introduction
	2 GF: The Grammatical Framework
	3 MMT: Meta-Meta Theories/Tool
	4 GLF: The Grammatical Logical Framework
	4.1 GF vs MMT – Two Sister Formats
	4.2 The GLF System
	4.3 GLF Fragments
	4.4 GLF Applications

	5 Semantics Construction
	6 Semantic Analysis
	6.1 Handling Natural Language Ambiguity

	7 Examples
	7.1 Montague-Style Quantifiers
	7.2 (Multi) Modal Logic

	8 Conclusion and Future Work

