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Logical frameworks are meta-formalisms in which the syntax and semantics of object logics and
related formal systems can be defined. This allows object logics to inherit implementations from the
framework including, e.g., parser, type checker, or module system. But if the desired object logic
falls outside the comfort zone of the logical framework, these definitions may become cumbersome
or infeasible.

Therefore, the MMT system abstracts even further than previous frameworks: it assumes no type
system or logic at all and allows its kernel algorithms to be customized by almost arbitrary sets of
rules. In particular, this allows implementing standard logical frameworks like LF in MMT. But
it does so without chaining users to one particular meta-formalism: users can flexibly adapt MMT
whenever the object logic demands it.

In this paper, we present a series of case studies that do just that, defining increasingly complex
object logics in MMT. We use elegant declarative logic definitions wherever possible, but inject
entirely new rules into the kernel when necessary. Our experience shows that the MMT approach
allows deriving prototype implementations of very diverse formal systems very easily and quickly.

1 Introduction and Related Work

Motivation Despite its potential and successes, the automation of formal systems proceeds very
slowly because designing them, implementing them, and scaling these implementations to practical tools
is extremely difficult and time-consuming. Logical frameworks provide meta-logics in which the syntax
and semantics of object logics can be defined. They are invaluable for experimentation: they allow
rapidly prototyping formal systems, often to the extent of reducing the design-implement-scale process
from person-years to person-days, and thus can speed up the feedback loop by orders of magnitude.

Features realized generically in logical frameworks include reasoning about object logics (Twelf
[17], Abella [9]), interactive theorem proving (Isabelle [16]), concurrency (CLF [24]), reasoning about
contexts (Beluga [18]), rewriting (Dedukti [2]), side conditions (LLFP [12]), or integration with proof
assistants (Hybrid [8]). Moreover, many logic-specific systems are investigating how to allow users to
experiment with system behavior inside the system, e.g., via meta-programming (for Idris in [4], for
Lean in [7]) or unification hints (for Coq in [10], for Matita in [1]).

Within this group, MMT [22] takes an extreme approach: it tries to systematically avoid any commit-
ment to logical foundations while still allowing useful generic results [21, 20, 19]. All kernel algorithms
of MMT are parametrized by a set of rules, which are programmed in the underlying programming lan-
guage (Scala). The set of rules to use is collected from the current context so that entirely different kernel
behaviors can coexist in the same development. This makes MMT so flexible that other logical frame-
works can be conveniently developed inside it. (This gave rise to the name MMT as an abbreviation of
meta-meta-theory/tool.)

This design makes MMT most similar to the ELPI framework [6]. Both use an untyped expression
language, into which object language syntax is embedded, and a programming language for writing rules.
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But while ELPI uses the same language (λ -Prolog) for defining syntax and rules, MMT uses a purely
declarative language for the syntax and a general-purpose programming language for the rules. Thus, it
offers more freedom for rule definitions than ELPI at the price of disconnecting syntax and rules. This
freedom allows users fine-grained control over, e.g., error-reporting or side conditions, and enables the
use of support tools like debuggers and IDEs, but makes it harder to reason about the rules.

Overview and Contribution Our objective is to evaluate the usability of MMT by conducting
several rapid prototyping experiments in it. After sketching the basics of MMT language in Sect. 2,
using the dependent type theory LF [11] as a “hello-world example”, the subsequent sections describe
one case study each that extends LF with increasingly complex features: dependently-typed higher-order
logic (DHOL) in Sect. 3, Dedukti-style rewriting in Sect. 4, LLFP types as described in [12] in Sect. 5,
linear logic as defined by the resource semantics in Sect. 6, and homotopy type theory (HoTT) in Sect. 7.

Our main contribution is to answer positively the question whether it is possible to build a framework
that allows prototyping such a variety of features both elegantly and rapidly.

Regarding elegance: all prototypes involve only little non-declarative parts (i.e., rules programmed in
Scala), and that code is orders of magnitude shorter and arguably easier to understand than a from-scratch
implementation would be.

Regarding rapidness, we have tried to estimate the time effort for each case study. DHOL took a
few person-hours, rewriting about one person-week (distributed over several years), LLFP took two
evenings, linear logic took two days (building on an existing failing case study in pure LF). These were
done by Rabe, who also built MMT. HoTT, combining various typing features, was done by Müller as
a PhD student and in its first development – with little to no prior experience with either MMT or type
theories — took several weeks over the course of roughly a year. A recent complete reimplementation
was done in a few afternoons.

Each case study is published here for the first time (some were summarized without details in [22]),
and some present novel contributions in themselves. For example, to the best of our knowledge no
implementation previously existed for LLFP .

We are not quite able to answer the question about the limitations of the approach: we chose our case
studies in increasing order of difficulty, and they have all succeeded. But we speculate on the limitations
and future challenges in Sect. 8.

Acknowledgments The rewriting case study from Sect. 4 was inspired by a collaboration with
Gilles Dowek and the Dedukti team. The LLFP case study from Sect. 5 was carried out with Ivan
Scagnetto during the Dagstuhl Seminar 16421 on Universality of Proofs. The linear logic case study
from Sect. 6 benefited from discussions with Kaustuv Chaudhuri. The authors were supported by DFG
grant RA-18723-1 OAF and EU grant Horizon 2020 ERI 676541 OpenDreamKit. MMT implementation
and documentation are available at https://uniformal.github.io/. Online references for all case
studies are given in the text.

2 Preliminaries

The syntax, type system, and typing algorithms of MMT have been described in detail in [22]. In the
sequel, we give a quick example-driven introduction to MMT that builds a prototype implementation of
the dependently-typed λ -calculus LF [11].

https://uniformal.github.io/
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Theory T [ : T ] = D∗

Declarations D ::= c[ : E][ = E][#N] | ruleE
Expression E ::= x | c(Γ; E∗)
Context Γ ::= · | Γ,x : E
Notation N ::= (V n | n | string)∗ [prec n]
Number n
Identifier T,c,x

LF=
type # type

kind # kind

Pi # {V 1}1
lambda # [V 1 ]1
apply # 1 2
arrow # 1→ 2

Figure 1: Core MMT Grammar (left) and LF Example (right)

MMT uses no built-in symbols like λ or→. Prototyping a formal system S in MMT means to define
one MMT theory S that declares all the logical primitives of S such as universes, base types, connectives,
binders, inference rules, axioms, etc. Once such a meta-theory is fixed, MMT induces an implementation
of S, including, e.g., parser, type reconstruction, module system, and IDE.

Fig. 1 shows a simple fragment of MMT’s grammar that is sufficient for our purposes as well as
an example theory for the logical primitives of LF. An MMT theory declares constants c[: A][= t][#N],
which introduce the identifier c with optional type A, definiens t, and notation N. In a notation, Vi
indicates the position of a variable binding xi : Ai, i the position of an argument Ei, and arbitrary strings
can be used as delimiters; finally prec I determines its precedence.

LF introduces constants for the syntax of LF and their notations, e.g., the notation for lambda in-
troduces λ -abstractions with the concrete syntax to be [x : A]t. Internally, expressions are represented
as c(x1:A1, . . . ,xm:Am; E1, . . . ,En). Here c is the constant forming the term, the xi : Ai are variable bind-
ings, and the Ei are arguments, e.g., [x : A]t corresponds to lambda(x : A; t), and f a (for LF function
application) to apply(·; f ,a). Each xi is bound and may occur in Ai+1, . . . ,En. α-renaming and capture-
avoiding substitution are defined in the usual way.

We can already use LF to define other languages, e.g., as in Listing 1.1 Here, PL : LF = Σ defines
the theory PL (for propositional logic) with meta-theory LF, and body Σ. Apart from LF being an MMT

theory itself, this definition of propositional logic in LF is standard. Note how the constants andI and
impI (for proof rules) have notations that do not list all their arguments — the other arguments are
implicit and have to be reconstructed. Similarly, omitted types of bound variables are reconstructed.

Listing 1: Fragment of an MMT Theory for propositional logic
theory PL : LF =

prop : type
ded : prop → type # `1 prec −5
and : prop → prop → prop # 1 ∧2 prec 15
impl : prop → prop → prop # 1 ⇒2 prec 10
equiv : prop → prop → prop # 1 ⇔2 prec 10

= [x,y] (x ⇒y) ∧(y ⇒x)
andI : {A,B} `A → `B → `A ∧B # andI 3 4
implI: {A,B} (` A → `B) → `A ⇒B # impI 3

equivI : {A,B} (` A → `B) → (` B → `A) → `A ⇔B
= [A,B,p,q] andI (impI [x] p x) (impI [x] q x)

1from file https://gl.mathhub.info/MMT/examples/blob/devel/source/logic/pl.mmt

https://gl.mathhub.info/MMT/examples/blob/devel/source/logic/pl.mmt


D. Müller and F. Rabe 43

In T : M = Σ, the purpose of the meta-theory M is to induce the syntax and semantics of Σ. All
constants and notations of M are available to form the types and definitions of the constants in Σ. And
the rules of M define how Σ is type-checked. To understand how to supply rules for LF, we need a little
more background about the MMT type system.

Judgment Intuition
All judgments are relative to fixed theory Θ and its meta-theories.
Γ ` T inh T is inhabitable (may occur as the type of a constant)
Γ ` t⇐ T t checks against inhabitable term T .
Γ ` t⇒ T the principal type of term t is inferred to be T
Γ ` t1 ≡ t2 : T t1 and t2 are equal at type T
Γ ` t1 t2 t1 computes to t2 (preserving type)

Figure 2: Judgments

The judgments are given in Figure 2. For simplicity, we assume that a set of theory definitions
has been fixed and that all judgments are relative to one theory Θ, without making this explicit in the
notation. No constant-specific rules are built in: the only rules fixed by MMT are lookup rules (e.g.,
to infer the type of a variable x), equivalence and congruence of equality, and α-renaming of bound
variables. The four judgments for equality and typing are standard for bidirectional type-checking. The
unusual judgment Γ ` T inh is used to check constant declarations: the declaration c : T is allowed if
Γ ` T inh, and the declaration c : T = t additionally requires Γ ` t⇐ T .

Finally, we add rule declarations ruleE to the theory LF. Here the expression E is interpreted as
an object of the underlying programming language (Scala). When checking a judgment, MMT uses only
those rules that are visible to the current context. Each rule is a self-contained Scala object that is loaded
dynamically when needed. When prototyping systems in MMT, users usually use a logical framework
like LF and only define declarative, statically checked rules like we did for PL above. But, critically,
users have the option to add a Scala-based rule whenever necessary.

Each rule implements a specific Scala interface. For example, rules implementing InferenceRule
are used whenever the judgment t ⇒ T is encountered; this interface includes a method inferType that
receives the current context and t and must try to return T . It also receives callbacks to recursively check
the premises of the rule. Listing 2 shows an example rule inferring the type of a lambda term.2

Listing 2: A Rule Inferring the Type of a Lambda Term
object LambdaTerm extends InferenceRule(Lambda.path) {

def apply(solver: Solver)(tm: Term, covered: Boolean)(implicit stack: Stack, history: History)
: Option[Term] = tm match {

case Lambda(x,a,t) =>
if (!covered) isTypeLike(solver,a)
val (xn,sub) = Common.pickFresh(solver, x)
solver.inferType(t ˆ? sub, covered)(stack ++ xn % a, history) map {b => Pi(xn,a,b)}

case => None // should be impossible
}

}

2in file https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/Rules.scala

https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/Rules.scala
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For LF, we use 5 inference rules applicable to different terms: one each for terms formed from type,
kind, Pi (or arrow), lambda, and apply. Additionally, we define 2 rules that check t⇐ T and t ≡ t ′ : T
whenever T is a Pi-expression, and a computation rule for β -reduction. For type-reconstruction, MMT

uses some variables to represent omitted subexpressions that must be reconstructed. For LF, only one
additional rule is needed that is aware of these meta-variables — a special rule for pattern unification.

Together with two rules for inhabitability, our LF prototype requires 11 Scala rules, taking about 200
lines of Scala code. This is a tiny fraction compared to the logic-independent code in MMT that builds
a full-fledged application from these 11 rules. Moreover, these 200 lines that carry the semantics of LF
are all in one place and much easier to read and verify than a from-scratch implementation.

3 Dependently-Typed Higher-Order Logic

By adding a single new typing rule to LF, we enable shallow polymorphism. This allows
developing dependently-typed higher-order logic.

LF users have often lamented the lack of polymorphism to define, e.g., polymorphic equality, lists,
product types, etc. An important observation is that shallow polymorphism, i.e., the binding of kinded
variables but only at toplevel, is much simpler than full polymorphism but already enables many impor-
tant applications.

To enable shallow polymorphism, we extend our LF prototype with a single rule3 for the judgment
{x : A}B inh. This rule infers the type of A, checks that it is a universe (i.e., type or kind) and then
recursively checks that B is inhabitable. Because the judgment T inh is only called at toplevel, this yields
exactly the desired effect. Maybe surprisingly, except for a few minor adaptations, all existing rules of
LF can remain unchanged, e.g., LF’s Scala rule to check t⇐{x : A}B worked immediately if A is a kind.

We call the resulting logical framework PLF. Using the MMT module system, it is defined by includ-
ing LF and adding one rule declaration.4.

The resulting case study is shown in Listing 3. Starting with polymorphic equality, we can define
higher-order logic in the usual way, including the definition of polymorphic quantifiers and their proof
rules. Note how kinded variables are treated in the same way as typed ones because MMT does not care
about the difference anyway. Similarly, type reconstruction of variable kinds and implicit type arguments
works out of the box: the new Scala rule does not even mention reconstruction.

All declarations are straightforward except for the congruence rule cong. We stated it here for
simply-typed functions only due to the inherent difficulties of combining dependent types with equality.
But this is a well-known theoretical problem and not an MMT issue. In fact, MMT can now help with
the problem: It is often unclear how well a potential solution for this deep problem works in practice.
By building variants of DHOL, possibly with additional Scala rules to handle equality specially, we can
quickly prototype and evaluate possible solutions.

Listing 3: An MMT Theory for Dependently-Typed HOL
theory DHOL : PLF =

bool : type
equal : {A:type} A → A → bool # 2

.
=3 prec 5

ded : bool → type # `1 prec −5

3in file https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/

ShallowPolymorphism.scala
4in file https://gl.mathhub.info/MMT/urtheories/blob/devel/source/primitive_types/bool.mmt

https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/ShallowPolymorphism.scala
https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/ShallowPolymorphism.scala
https://gl.mathhub.info/MMT/urtheories/blob/devel/source/primitive_types/bool.mmt
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refl : {A,X:A} `X
.
=X # refl %I1 %I2

cong : {A, B: type} {F: A → B} {X, Y: A} `X
.
=Y → `(F X)

.
=(F Y) # cong 3 6

extensionality : {A:type,B:A → type}{F:{x:A} B x, G:{x:A} B x} ({x: A} `F x
.
=G x) → `F

.
=G

# ext 5
boolEqIntro : {B1,B2:bool} (` B1 → `B2) → (` B2 → `B1) → `(B1

.
=B2) # beqI 3 4

boolEqElim : {B1,B2:bool} `B1
.
=B2 → `B1 → `B2 # beqE 3 4

symmetry : {A : type}{a,b : A} `a
.
=b → `b

.
=a

= [A][a,b][p] (cong ([x] x
.
=a) p) refl # symm 4

eqFun : {A : type,B : type}{F,G : A → B} `F
.
=G → {a} `F a

.
=G a

= [A,B][F,G][p][a] cong ([H: A → B] H a) p # eqfun 5 6

true : bool = ([x:bool] x)
.
=([x:bool] x)

trueI : `true = refl
forall : {A:type} (A → bool) → bool = [A,P] P

.
=([x] true) # ∀2

forallI : {A:type, P : A → bool}({x} `P x) → `∀[x] P x
= [A,P][p] ext ([x: A] beqI ([pf: `P x] trueI) ([pt: `true] p x))

forallE : {A:type, P : A → bool} (` ∀[x]P x) → {a} `P a
= [A,P][p][a] beqE (eqfun (symm p) a) trueI

4 LF Modulo Rewriting

We build an MMT plugin that interprets certain declarations as rewrite rules and adds them on the
fly. This yields LF modulo rewriting akin to Dedukti.

LF modulo rewriting [5] as implemented in Dedukti [2] was recently identified as a sweet spot in
logical framework design — a simple feature with huge practical benefit. Inspired by this, we want to
extend our LF prototype to LF modulo.

In LF, a rewrite rule can be seen as an LF constant c : {Γ}l .
= r, which rewrites l to r in context Γ. (For

simplicity, we reuse the equality predicate .
= from Section 3.) In plain LF, this is just a normal constant

that has no bearing on computation. In LF modulo, this rule must result in an additional computation
rule Γ ` l r.

This naturally leads to the main idea of our prototype study: we build an MMT plugin that automat-
ically adds a rule declaration when a constant with an appropriate type is encountered. For this we use
some machinery that is available to MMT plugins but that we have not mentioned in Section 2.

Firstly, plugins can listen to MMT events. Whenever a constant c is added, our plugin inspects it and
possibly adds a new computation rule declaration to MMT’s internal data structures. The rule declaration
is added right after the declaration of c so that it is in scope whenever c is.

Secondly, like in Dedukti, we do not check confluence or termination so that the user needs fine-
grained control over which declarations induce rewrite rules. For that, we exploit that every MMT dec-
laration may carry metadata. Most importantly, it provides convenient syntax to attach a role to each
constant. The role has no effect unless plugins choose to act on it. Our plugin picks up on the role
Simplify — any constant with this role becomes a rewrite rule.

The implementation of our plugin – including reusable abstractions for matching – takes about 450
lines of code5. To evaluate it, we formalize Σ-types. In general, there are three different ways to do that:

• As new primitive features akin to how we defined Π-types in LF. But that requires new Scala rules.

5in file https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/

SimplificationRuleGenerator.scala

https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/SimplificationRuleGenerator.scala
https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/SimplificationRuleGenerator.scala
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• By declaring an object logic inside LF. But that does not allow building pairs of arbitrary LF types.

• By defining polymorphic Σ-types in PLF.

All three ways have their merit, and the latter two can make use of rewriting in essentially the same
way: they turn the two β -style rules into rewrite rules pii(pairx1 x2) xi. Here we choose the third
way, both for the sake of example and because it is a neat trade-off between the other two options. The
resulting formalization is given in Listing 46.

Listing 4: Σ-types defined in dependently-typed HOL
theory Sigma : DHOL =

Sigma : {A:type} (A → type) → type # ∑2
pair : {A : type, B: A → type, a : A } B a → ∑B # pair 3 4
pi1 : {A : type, B: A → type} ∑B → A # pi1 3
pi2 : {A : type, B: A → type} {p : ∑B} B (pi1 p) # pi2 3

conv pair : {A: type, B: A → type, u: ∑B} `u
.
=(pair (pi1 u) (pi2 u))

conv pi1 : {A : type, B: A → type}{a : A, b: B a} `(pi1 (pair A B a b))
.
=a role Simplify

conv pi2 : {A : type, B: A → type}{a : A, b: B a} `(pi2 (pair A B a b))
.
=b role Simplify

All declarations are straightforward except for conv pi2. In plain LF, this declaration does not type-
check: the two sides of the equality have different types, namely B (pi1 (pair A B a b)) on the left
and B b on the right. But in LF modulo, it type-checks because conv pi1 is registered as a rewrite rule.

The combination of shallow polymorphism and rewriting is an amazingly powerful extension while
retaining the look-and-feel of LF. For example, it allows defining polymorphic lists with their induc-
tion principles and rewrite rules to compute recursive functions. The separation of concerns that MMT

introduces allowed us to build this extension of LF within days without changing any line in MMT itself.

5 External Side Conditions

The previous case studies considered well-understood extensions of LF, which makes prototyping sim-
pler. Therefore, the next case study considers an experimental formal system that was introduced only
recently, as a theoretical result without mature implementation. Such new systems abound, and it is here
where rapid prototyping is most urgently needed.

Lock types were introduced in [12] to allow for arbitrary external side conditions in LF. Using
MMT, we obtain a prototype implementation within a few hours.

The central idea of LLFP is to extend LF with a monadic type operator L K that is parametrized
by an arbitrary extra-linguistic side condition K, which is of the form p(t,A) for a term t ⇐ A and an
identifier p. Within the monad, K can be assumed at no cost. But to access a monadic value from the
outside, the side condition has to be evaluated.

Our case study represents LLFP and applies it to one of the examples described in [12] — a call-
by-value reduction of the λv calculus. Here the side condition is of the form K = Val(t,term), and Val

checks that t is a λv-value (i.e., a variable or a λ -abstraction). Such syntactic side conditions are quite
common but cannot be formalized in LF because they are not preserved by substitution.

We formalize the syntax of LLFP in theory LLFP in Listing 5: we include LF and extend it with one
constant each for the formation, introduction, and elimination form of the new type constructor. We only

6in file https://gl.mathhub.info/MMT/examples/blob/devel/source/sigma.mmt

https://gl.mathhub.info/MMT/examples/blob/devel/source/sigma.mmt
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need to write 6 rules in Scala that require roughly 100 lines of code. Additionally, we introduce a new
abstract rule interface ExternalConditionRule for rules that check our side conditions. ExternalConditionRule

is a new abstract interface, and such rules can evaluate K in any way they want. Their behavior is as
follows: (i) The formation rule infers L K 〈A〉 ⇒ type from A⇒ type. (ii) The introduction rule infers
LK 〈t〉⇒L K 〈A〉 from t⇒A. Both rules use the flexibility of MMT expressions to put the assumption K
into the context — something that plain LF would not allow because K is not a well-typed LF expression.
(iii) The elimination rule infers U〈t〉 : A if t : L K 〈A〉 and if K holds. This rule is called in InferUnlock

in Scala, and a fragment of its code is given in Figure 6. It establishes K of the form p(t,A) in one of
two ways: if K is in the context (i.e., we are in the monad), it is assumed; otherwise, we look up an
ExternalConditionRule for p and call it on K. (iv-vi) The remaining 3 rules (check against monadic type,
compare equality at monadic type, reduce unlock of lock) are straightforward.

The λv case study is shown in the bottom part of Listing 57. We declare the side condition Val as an
untyped constant and a rule ValRule of type ExternalConditionRule. The Scala code of ValRule is given
in Listing 68. It checks the condition Val(t,a), i.e., that t is of the form freen or λ F ; if that fails, it
registers an error message that the IDE will show to the user.

The remainder then follows [12] in a straightforward way. We added the declaration check2 and
fail, where InferUnlock calls ValRule. This succeeds in the first case because the argument ’n, which
appears as LF.Apply(CallByValue.free, n) in the Scala code, is a λv-value; it (correctly) fails in the second
case where the argument is not a λv-value.

Listing 5: An MMT Theory for the Syntax of Lock Types
theory LLFP =

include LF
locktype # L 1 〈 2 〉 // type formation: L K is the monadic operator
lockterm # L 1 〈 2 〉 // introduction form
unlock # U 〈 1 〉 // elimination form
// 6 rules omitted

theory CallByValueExample : ?LLFP =
term : type
app : term → term → term # 1 @ 2 prec 50
lam : (term → term) → term # λ1
... // (natural numbers omitted)
free : nat → term # ’ 1 prec 100

eq : term → term → type # 1
.
=2

eq app: {M,N,X,Y} M
.
=N → X

.
=Y → M@X

.
=N@Y # eq app 5 6

... // (additional equality judgment and its rules omitted)

Val
rule rules?ValRule

// reduction rules using Val condition
betav : {M,N} L (Val N term) 〈(λ M)@N

.
=(M N)〉 # betav 1 2

csiv : {M,N}({x} L (Val x term) 〈(M x)
.
=(N x)〉) → (λ M)

.
=(λ N) # csiv 3

// example from the end of the section
goal = λ [x]’0 @ ((λ [y] y) @ x)

.
=λ [x] ’0 @ x

7in file https://gl.mathhub.info/MMT/urtheories/blob/devel/source/llfp.mmt
8in file https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/externals/

ExternalCheck.scala

https://gl.mathhub.info/MMT/urtheories/blob/devel/source/llfp.mmt
https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/externals/ExternalCheck.scala
https://github.com/UniFormal/MMT/blob/devel/src/mmt-lf/src/info/kwarc/mmt/lf/externals/ExternalCheck.scala
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// The following check succeeds without ever calling the ValRule because the unlock is under a lock.
check: goal

= csiv [x] L (Val x term) 〈
eq app (refl ’0) U〈betav ([y] y) x〉
〉

// The following example does not guard the unlock but still succeeds because ’n is indeed a value.
check2 = [n] eq app (refl ’0) U〈betav ([y] y) ’n〉
// The following negative example fails because x is any term and thus not necessarily a value.
fail = [x] eq app (refl ’0) U〈betav ([y] y) x〉

Listing 6: A Rule Inferring the Type of a Lock Term
object InferUnlock extends InferenceRule(Unlock.path) {

def apply(solver: Solver)(tm: Term)(context: Context) : Option[Term] = {
... // side condition is p(t,a)
solver.rules.getByHead(classOf[ExternalConditionRule], p).headOption match {

case Some(rule) =>
if (! rule(solver)(context, t, a))

return None // side condition failed
case None =>

solver.error(”no rule for condition ” + p + ” found”)
}
...

}

object ValRule extends ExternalConditionRule(CallByValue.Val) {
def apply(solver: Solver)(context: Context, t: Term, a: Term) : Boolean = {

t match {
case LF.Apply(CallByValue.free, ) => true
case LF.Apply(CallByValue.lam, ) => true
case => solver.error(solver.presentObj(t) + ” must be lambda−abstraction or variable”)
}
}
}

During this case study, we found a few possible simplifications to the LLFP calculus — minor
tweaks that make the language and implementation easier but do not appear to change its essence. That
shows rapid prototyping at its best: with MMT’s parser, type reconstruction, and IDE working out of the
box, we could tweak the LLFP grammar and update the rules and the λv example with just a few minutes
of turnaround time. That was critical to conduct the experimentation needed to find these simplifications.

6 Linear Logic

The previous case studies focused on systems relatively near to LF, for which MMT was originally
designed. The next case study takes us out of this comfort zone by considering a substructural logic,
which tends to be incompatible with LF.

Linear logic is tricky to represent in standard (i.e., not substructural) frameworks. The resource
semantics provides an appealing solution, but it is only elegant if a free monoid is available. In

MMT, we can simply add one by writing appropriate equality rules.

Substructural frameworks omit one or several of the basic principles exchange, weakening or con-
traction. Since LF uses all of them, this makes elegant representations of substructural logics difficult.
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The resource semantics of linear logic interprets formulas in a Kripke frame, modeling the linear contexts
as worlds. Consequently, this requires a free commutative monoid structure for the type of worlds. Our
formalization follows Frank Pfenning’s lecture notes.

Listing 7: Resource Semantics of Linear Logic
theory ResourceSemantics : LF =

o : type
⊗: o → o → o # 1 ⊗2
(: o → o → o # 1 (2 prec 80
... // other connectives omitted

// worlds contain resources
world : type
// composition of worlds, corresponds to multiset union of resources
union : world → world → world # 1 ∗ 2 prec 100
// empty world with no resources
empty : world # ε

// truth at a world
At : o → world → type # 1 @ 2 prec 50
// validity is truth in the empty world
valid : o → type = [A] A @ ε

... // axioms for commutative monoid omitted

// proofs of the linear sequent A1, ..., An |− A are represented as terms of type
// (A1 ⊗... ⊗An) (A @ ε, where @ is the binary holds−at relation between
// propositions and worlds
⊗ R : {A,B,a,b} A @ a → B @ b → A ⊗B @ a∗b
⊗ L : {A,B,C,u,v} A ⊗B @ u → ({a}{b} A @ a → B @ b → C @ a∗b∗v) → C @ u∗v
# ⊗ L 6 7
( R : {A,B,w} ({a} A @ a → B @ a∗w) → A (B @ w
... // other rules omitted

We give a fragment of our formalization in Listing 79. It uses plain LF as the meta-theory and
declares the linear propositions, the free commutative monoid of worlds, the holds-at relation between
propositions and worlds, and the proof rules.

This formalization has the problem that proofs in linear logic now require equational reasoning about
the worlds. The resulting proofs become inelegant and cumbersome. Therefore, we add two rules10

that automate some of the equational reasoning. This is undecidable. But in linear logic proofs, the
worlds are usually formed from bound variables only so that we can find reasonably good heuristics: (i)
The rule NormalizeWorlds for v w at type world removes brackets (associativity) and units (neutrality)
and normalizes the order of bound variables (commutativity). (ii) The rule EquateWorlds for judgment
v≡ w : world normalizes both v and w and then tries to equate them. Here we make use of the freeness
property: in the free monoid, if v,v′,w are bound variables, v ∗w ≡ v′ ∗w : world is equivalent to
v≡ v′ : world. This is important to make type reconstruction recurse into equality checks that eventually
solve meta-variables of type world. This is necessary to make the world parameters of the proof rules
implicit arguments, which in turn is necessary to write proofs in practice. Both rules are straightforward
to implement and take just a few dozen lines of Scala code.

If we add these rules, we can write linear logic proofs elegantly. An example is given in Listing 8.
9see file https://gl.mathhub.info/MMT/examples/blob/devel/source/logic/linear.mmt

10in file https://gl.mathhub.info/MMT/examples/blob/devel/scala/info/kwarc/mmt/examples/

ResourceSemantics.scala

https://gl.mathhub.info/MMT/examples/blob/devel/source/logic/linear.mmt
https://gl.mathhub.info/MMT/examples/blob/devel/scala/info/kwarc/mmt/examples/ResourceSemantics.scala
https://gl.mathhub.info/MMT/examples/blob/devel/scala/info/kwarc/mmt/examples/ResourceSemantics.scala
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Listing 8: A Proof for Associativity of ⊗
// reconstruction must solve abc ∗ X = abc and ab ∗ Y ∗ X = ab ∗ c with X = epsilon, Y = c
⊗ assoc1 : {A,B,C} valid (A⊗B)⊗C (A⊗(B⊗C)

= [A,B,C] ( R [abc,h] ⊗ L h
[ab,c,pq,r] ⊗ L pq

([a,b,p,q] ⊗ R p (⊗ R q r))

Prototypes of other substructural logics can be obtained accordingly, e.g., by using idempotence to
model the contraction rule.

7 Homotopy Type Theory

The previous case studies considered relatively simple formal systems that use very few language features
and thus require only a few rules. Therefore, the next case study considers a more complex system
combining several typing features.

Homotopy Type Theory (HoTT,[23]) is a foundation of mathematics based on a dependently typed
Martin-Löf type theory and the univalence axiom. We implement it in MMT using ≈ 45 rules.

HoTT is a relatively young formal system that has received significant attention and multiple variants
are actively investigated. That makes it a prime candidate for rapid prototyping.

HoTT uses Π-types, Σ-types, coproduct types, finite types, W-types (which represent inductive
types), a countable cumulative hierarchy of type universes, and intentionally proof-relevant equality
types. We formalize each feature as a theory in the same way in which we formalized Π-types in LF and
eventually obtain our HoTT prototype as the union of all theories.

We only present our definition of W-types here because it is the most unusual from the MMT per-
spective. The type Wx:A B(x) represents the inductive type whose constructors are the terms x : A whose
arity is represented by B(x). Typically, types A and B(x) are finite. For example, the natural numbers
correspond to Wx:Bool x match{true⇒∅, false⇒ Unit}.

The elimination rule, for example, is: For C′ :=C
[

c/supc{ x=⇒Wx:A Bg(x)}

]
:

Γ ` w⇒W
x:A

B Γ,c : W
x:A

B `C⇒U Γ,c : A,g : B [ x/c ] → W
x:A

B,h : ∏
y:B[ x/c ]

C
[

c/g(y)
]
` e⇐C′

Γ ` rec( w ){( c,g,h ) =⇒C e }⇒C [ c/w ]

W-types are a relatively simple representation of induction in a type-theoretical setting and are well-
understood from an implementation point of view. Indeed, implementing the Scala rules is tedious but
straightforward. But from a user perspective, even formalizing seemingly simple inductive types like
natural numbers or lists using W-types is inconvenient and unintuitive. For example, Listing 911 shows
an implementation of natural numbers and addition.

Listing 9: Natural Numbers as W-types
theory Wtest :?LFW =

beta : ENUM 2 → type = [x] x match y. /0|UNIT to type
N: type = W x:ENUM 2 . (beta x)

zeroN : N= sup (CASE 0) , x =⇒ (x /0f N) to N
S : N→ N= [x : N] sup (CASE 1) , y =⇒ x to N

11in file https://gl.mathhub.info/MMT/LFX/blob/devel/source/test.mmt

https://gl.mathhub.info/MMT/LFX/blob/devel/source/test.mmt
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plusN : {n:N,m:N} N= [n][m] (rec m,c,g,h =⇒ (c match (ENUM 2), x. n | S (h x) to N) to N)
# 1 + 2 prec 5

In order to provide more convenient syntax, we write a plugin that extends the MMT language. This
uses a powerful extension mechanism of MMT— called structural features — that we omitted in Figure 1
for simplicity. It is described in [13]. Our structural features are intended to enable the definitions shown
in Listing 1012, which is immediately recognizable as an inductive type and a recursive function.

Listing 10: Natural Numbers using Structural Features
theory FeatureTest : LFX/WTypes?Inductive =

induct Nats () =
Nat : type # N
Zero : N# O
Succ : N→ N# S 1

def addition (n : N) =
add : N→ N# 1 + 2
Zero = n
Succ = [m] S (add m)

Structural features can be seen as an elegant logic-independent version of Isabelle’s definitional pack-
ages. Syntactically, they allow using arbitrary nested theories as declarations. Semantically, these nested
theories are elaborated into a list of declarations generated from its contents. Each such nested theory is
introduced by a special keyword that indicates which structural feature provides the elaboration function.

For W-types, we provide two structural features for the keywords induct and def. Both are conser-
vative in the sense that the elaboration contains only defined constants. The former generates a constant
with a W-type as definiens and analogously defined constants for all constructors of the type. The latter
generates an inductively defined function on a W-type using the cases given in the body. For example,
Listing 1113 shows the relevant part of code that generates the W-type.

Listing 11: Code that elaborates the Body of a Theory into a W-type
implicit val tpname : (GlobalName,Term) = (tpc.path,if (params.isEmpty)

OMS(parent.path.module ? tpc.name) else
ApplySpine(OMS(parent.path.module ? tpc.name),params.variables.map( .toTerm): ∗))

val cases = consts.tail.zipWithIndex.map(p => makeCase(p. 1,p. 2))

val tpA = Coprod(cases.map( .getcptype): ∗)
val (xn, ) = Context.pickFresh(dd.getInnerContext,LocalName(”x”))
val (yn, ) = Context.pickFresh(dd.getInnerContext,LocalName(”y”))
val tpB = cmatch(OMV(xn),tpA,yn,cases.map( .getArity),OMS(Typed.ktype))
val tp = if (params.isEmpty) Some(OMS(Typed.ktype)) else Some(Pi(params,OMS(Typed.ktype)))
val df = if (params.isEmpty) Some(WType(xn,tpA,tpB)) else Some(Lambda(params,WType(xn,tpA,tpB)))
Some(Constant(parent.toTerm,tpname. 1.name,tpc.alias,tp,df,tpc.rl,tpc.notC))

Assuming we have collected all parts of HoTT in a theory Types, we can finish the HoTT prototype
by stating the univalence axiom. This is shown in Listing 1214. Here NAT is the type of natural numbers,
and U forms the universes.

12same file
13 in file https://gl.mathhub.info/MMT/LFX/tree/devel/scala/info/kwarc/mmt/LFX/WTypes/Features.

scala
14in file https://gl.mathhub.info/MMT/LFX/tree/devel/source/HOTT.mmt

https://gl.mathhub.info/MMT/LFX/tree/devel/scala/info/kwarc/mmt/LFX/WTypes/Features.scala
https://gl.mathhub.info/MMT/LFX/tree/devel/scala/info/kwarc/mmt/LFX/WTypes/Features.scala
https://gl.mathhub.info/MMT/LFX/tree/devel/source/HOTT.mmt
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Listing 12: A Theory for HoTT
theory HOTT : Types =

identity fun : {i: NAT, A : U i} A → A = [i,A]([x : A] x) # id 2

homotopy : {i : NAT}{A : U i, B : A → U i} ({x:A} B x) → ({x:A} B x) → U i
= [i][A, B][f][g] {x:A} (f x

.
=g x) # 4 ∼5

is equiv : {i : NAT}{A:U i,B:U i} (A → B) → U i
= [i][A,B][f] (∑ g : B → A . ([x:B] f (g x)) ∼(id B)) ×

(∑ h : B → A . ([x:A] h (f x)) ∼(id A)) # isequiv 4

equivalence : {i : NAT}U i → U i → U i
= [i][A,B] ∑f : A → B . isequiv f # 2 '3

univalence : {i : NAT}{A:U i,B:U i} (A 'B) '(A
.
=B)

Our definition of HoTT followed the original one from [23]. Since then, a flurry of activity has led
to many different variants, in particular regarding the treatment of equality and the formation of higher
inductive types. Our prototype provides an ideal starting point to experiment with these variants.

8 Conclusion and Future Work

Successes We have evaluated the MMT framework from a rapid prototyping perspective by defining
5 formal systems in it. Our experiences highlight two essential strengths: MMT is very flexible thus
allowing for elegant representation of diverse systems — critical because prototypes are often needed
exactly for novel ideas to which existing framework are not applicable. And it makes the process of
implementing and testing these representations fast and convenient — critical because it enables a rapid
feedback cycle between theory and practice.

These findings are supported by other case studies that we did not mention here. Major previ-
ously published case studies defined record types (including defined fields and the reflection of theories
into records) [15] and the module system of PVS [14]. Unpublished results include LISP-style quasi-
quotation, sequence arguments, and intersection types, more general inductive types (Colin Rothgang),
and the diagram presentation language of [3] (Yasmine Sharoda).

We are also working on several exports of proof assistant libraries relative to representations of
Isabelle/Pure (with Makarius Wenzel) and Coq (with Claudio Sacerdoti Coen) in MMT. In fact, such
exports were part of the original motivation of MMT: Representations of proof assistant libraries in
standardized frameworks had previously suffered because existing frameworks were too inflexible to
represent the respective logics in ways that naturally match the implementations in the proof assistants.

To further evaluate the approach, increasingly challenging benchmarks should be attempted. We
expect this will be successful for, e.g., Coq-style type classes and unification hints, Idris-style meta-
programming, Beluga-style reasoning about contexts, or Abella-style two-level logic and ∇ operator.

Limitations There are also challenges that, while possible, are currently somewhat inconvenient.
While we are confident that these do not constitute limitations of the overall approach, they show limita-
tions in the current system. Most importantly, MMT needs support for proof search in order to prototype
formal systems with undecidable typing relations, where type reconstruction must synthesize a proof
term. Examples are predicate subtypes and quotient types, undefinedness, and Mizar-style soft type sys-
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tems. While proof search is already possible in MMT, it currently suffers from the lack of an efficient
prover.

We prioritized writing declarative rules in logical frameworks in order to minimize the amount of
user-written Scala code that has to be trusted. In particular, we used a plugin to operationalize declarative
specifications by generating rewrite rules in Section 4. But we could still do better by dynamically
generating more complex rules from appropriately tagged declarations. For example, we could generate
typing rules to handle unification hints or soft typing. It is unclear if this is already possible or requires
adaptations of the MMT kernel.

Finally, MMT has prioritized making the prototyping fast rather than the prototype: it focuses on mak-
ing prototypes usable (flexible notations, error messages, IDE, etc.) and just fast enough for interactive
case studies. While MMT rules are fast because they are written in a mainstream programming language,
MMT loses speed by explicitly dispatching to these rules (rather than using the dispatch mechanism of
the underlying programming language). Other systems like ELPI [6] or Dedukti [2] have instead opti-
mized for the speed of the prototype. While the speed of the prototypes was not a bottleneck in our case
studies, it could become problematic if MMT-based prototypes are evaluated on large inputs, e.g., for
interactive theorem proving (as in ELPI) or batch proof checking (as in Dedukti). It will be interesting
to investigate if and how the advantages of these systems can be combined, e.g., if MMT can delegate to
ELPI for proof search.
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