
Ronchi della Rocca, S., Pimentel, E. (Eds.): 6th Workshop on
Logical and Semantic Frameworks with Applications 2011 (LSFA 2011).
EPTCS 81, 2012, pp. 3–15, doi:10.4204/EPTCS.81.1

c© A. Avron
This work is licensed under the
Creative Commons Attribution License.

A Logical Framework for Set Theories

Arnon Avron
School of Computer Science

Tel Aviv University, Tel Aviv 69978, Israel

aa@math.tau.ac.il

Axiomatic set theory is almost universally accepted as the basic theory which provides the founda-
tions of mathematics, and in which the whole of present day mathematics can be developed. As
such, it is the most natural framework for Mathematical Knowledge Management. However, in or-
der to be used for this task it is necessary to overcome serious gaps that exist between the “official”
formulations of set theory (as given e.g. by formal set theory ZF) and actual mathematical practice.

In this work we present a new unified framework for formalizations of axiomatic set theories of
different strength, from rudimentary set theory to fullZF. It allows the use of set terms, but provides
a staticcheck of their validity. Like the inconsistent “ideal calculus” for set theory, it is essentially
based on just two set-theoretical principles: extensionality and comprehension (to which we add∈-
induction and optionally the axiom of choice). Comprehension is formulated as:x ∈ {x | ϕ} ↔ ϕ ,
where{x | ϕ} is a legal set term of the theory. In order for{x | ϕ} to be legal,ϕ should besafewith
respect to{x}, where safety is a relation between formulas and finite sets of variables. The various
systems we consider differ from each other mainly with respect to the safety relations they employ.
These relations are all defined purely syntactically (usingan induction on the logical structure of
formulas). The basic one is based on the safety relation which implicitly underlies commercial query
languages for relational database systems (like SQL).

1 Introduction

Axiomatic set theory is almost universally accepted as the basic theory which provides the foundations
of mathematics, and in which the whole of present day mathematics can (and many say: should) be
developed. As such, it is the most natural framework for MKM (Mathematical Knowledge Management).
Moreover: as is emphasized and demonstrated in [8], set theory has not only a great pragmatic advantage
as a basic language for mathematical discourse, but it also has a great computational potential as a basis
for specification languages, declarative programming, andproof verifiers. However, in order to be used
for any of these tasks it is necessary to overcome the following serious gaps that exist between the
“official” formulations of set theory (as given e.g. by Zermelo Fränkel Set TheoryZF; see e.g. [7]). and
actual mathematical practice:

• ZF treats all the mathematical objects on a par, and so hid thecomputational significance of many
of them. Thus although certain functions are first-class citizens in many programming languages,
in set theory they are just “infinite sets”, and ZF in its usualpresentation is an extremely poor
framework for computing with such sets (or handling them in aconstructive way).

• Full ZF is far too strong for core mathematics, which practically deals only with a small fraction of
the set-theoretical “universe”. It is obvious that much weaker systems, corresponding to universes
which are smaller,more effective, and better suited for computations , would do (presumably,such
weaker systems will also be easier to mechanize).

http://dx.doi.org/10.4204/EPTCS.81.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

4 A Logical Framework for Set Theories

The goal of this paper is to present a unified, user-friendly framework (originally developed in [5])
for formalizations of axiomatic set theories of different strength, from rudimentary set theory to full ZF.
Our framework makes it possible to employ in a natural way allthe usual set notations and constructs as
found in textbooks on naive or axiomatic set theory (andonlysuch notations). Another important feature
of this framework is that its set of closed terms suffices for denoting every concrete set (including infinite
ones!) that might be needed in applications, as well as forcomputationswith sets.

Perhaps the most important problem which is solved in our framework is that official formalizations
of axiomatic set theories in almost all textbooks are based on somestandardfirst-order languages. In
such languages terms are variables, constants, and sometimes function applications (likex∩y). What is
notavailable in theofficial languages of these formalizations is the use of set terms of the form ({x | ϕ}).
As a result, already the formulation of the axioms is quite cumbersome, and even the formalization of
elementary proofs becomes something practically incomprehensible. In contrast,all modern texts in
all areas of mathematics (including set theory itself) use such terms extensively. For the purpose of
mechanizing real mathematical practice and for automated or interactive theorem proving, it is therefore
important to have formalizations of ZF and related systems which allow the use of such terms. Now, set
termsare used in all textbooks on first-order set theories, as well as in several computerized systems.
However, whenever they are intended to denotesets(rather than classes) they are introduced (at least
partially) in adynamicway, based for example on the “extension by definitions” procedure (see [16],
Sect. 4.6): In order to be able to introduce some set term for aset(as well as a new operation onsets) it is
necessary first to justify this introduction byprovinga corresponding existencetheorem. The very useful
complete separation we have in first-order logic between the(easy) check whether a given expression is a
well-formed term or formula, and the (difficult) check whether it is a theorem, is thus lost. By analogy to
programs: texts in such dynamic languages can only be “interpreted”, but not “compiled”. In contrast, a
crucial feature of our framework is that although it makes extensive use of set terms, the languages used
in it are allstatic: the task of verifying that a given term or formula is well-formed is decidable, easily
mechanizable, and completely separated from any task connected with proving theorems (like finding
proofs or checking validity of given ones). Expanding the language is allowed only throughexplicit
definitions (i.e. new valid expressions of an extended language will just be abbreviations for expressions
in the original language). This feature has the same obviousadvantages that static type-checking has
over dynamic type-checking.

Two other important features of the framework we propose are:

• It provides a unified treatment of two important subjects of set theory: axiomatization and ab-
soluteness (the latter is a crucial issue in independence proofs and in the study of models of set
theories – see e.g. [13]). In the usual approaches these subjects are completely separated. Abso-
luteness is investigated mainly from a syntactic point of view, axiomatizations – from a semantic
one. Here both are given the same syntactic treatment. In fact, the basis of the framework is its
formulation of rudimentary set theory, in which only terms for absolute sets are allowed. The other
set theories are obtained from it by small changes in the syntactic definitions.

• Most of our systems (including the one which is equivalent toZF) have the remarkable property
that every set or function that is implicitly definable in them already has a term in the corre-
sponding language which denotes it. More precisely: ifϕ(x,y1, . . . ,yn) is a formula such that
∀y1, . . . ,yn∃!xϕ is provable, then there is a termt(y1, . . . ,yn) such thatϕ(y1, . . . ,yn, t(y1, . . . ,yn)) is
provable. Hence, there is no need at all for the procedure of extension by definitions (and intro-
duction of new symbols is completely reduced to usingabbreviations).

A. Avron 5

2 The Major Ideas

Our basic assumption is that the sets which are interesting from a computational point of view are those
which can bedefinedin the form {x | ϕ} using a formulaϕ in some, intuitively meaningful, formal
language. Of course, the paradoxes of naive set theory have shown that not every formula of such a
language can be used for defining sets. Accordingly, the crucial question is: what formulas are “safe” for
this task, and more generally: what formulas can be taken as defining aconstructionof a set from given
objects (including other sets)? Various set theories provide different answers to this question. These
answers are usually guided by semantic intuitions (like thelimitation of size doctrine [7]). Since here
we aim at a computerized system, we shall translate the various semantic principles intosyntactic(and
in our opinion, less ad-hoc) constraints on the logical formof formulas. For this, we combine ideas from
three seemingly very different sources:

Set Theory Gödel’s classical work [11] on the constructible universeL is best known for its use in con-
sistency and independence proofs. However, it is of course of great interest also for the study
of the general notion of constructions with sets. Thus for characterizing the “constructible sets”
Gödel identified a set of operations on sets (which we may call “computable”), that can be used for
“effectively” constructing new sets from given ones. For example, binary union and intersection
are “effective”, while the powerset operation is not. Gödel has provided a finite list of basic oper-
ations, from which all other “effective” (for his purposes)constructions can be obtained through
compositions. Another very important idea which was introduced in [11] isabsoluteness— a
key property (see [13]) of formulas which are used for defining “constructible sets”. Roughly, a
formula is absolute if its truth value in a transitive classM, for some assignmentv of objects from
M to its free variables, depends only onv, but not onM.

Formal arithmetic Absoluteness is not a decidable property. Therefore a certain set∆0 of absolute for-
mulas is extensively used in set theory as a syntactically defined approximation. Now a similar set
∆0 of formulas (also called in [17] “bounded formulas” or “Σ0-formulas”) which hasexactly the
same definition(except that∈ is replaced by<) is used in formal arithmetic in order to character-
ize thedecidableand the semi-decidable (r.e.) relations on the natural numbers. This fact hints at
an intimate connection (investigated in [4]) between absoluteness/constructibility and decidabil-
ity/computability.

Relational database theory: The importance of computations with sets to this area is obvious: to pro-
vide an answer to a query in a relational database, a computation should be made in which the
input is a finite set of finite sets of tuples (the “tables” of the database), and the output should also
be a finite set of tuples. In other words: the computation is done with (finite) sets. Accordingly, for
effectivecomputations with finite relations some finite set of basic operations has been identified
in database theory, and this basic set defines (via composition) what is called there “the relational
algebra” ([1, 18]). Interestingly, there is a lot of similarity between the list of operations used in
the relational algebra and Gödel’s list of basic operations mentioned above. However, much more
important is again the strong connection (observed in ([3, 4]) between the notion of absoluteness
used in set theory, and the notion ofdomain independence([1, 18]) used in database theory, and
practically serving as its counterpart of the notion of computability. A query in a database can be
construe as a formulaϕ in the language of set theory, augmented with constants for the relations
in the database. The answer to such query is the set of alln-tuples that satisfyϕ , given the inter-
pretations provided by the database for the extra constants(heren is the number of free variables
in ϕ . If n= 0 then the answer to the query is either “yes” or “no”). A domain-independent (d.i.)

6 A Logical Framework for Set Theories

query is a query the answer to which depends only on the information included in the database,
and on the objects which are mentioned in the query. Only suchqueries are considered meaning-
ful. Moreover: the answer to such queries is always finite andcomputable. Therefore practical
database query languages (like SQL) are designed so that only d.i. queries can be formulated in
them, and each such query language is based on some syntacticcriteria that ensure this property.
In order to give these criteria a concise logical characterization, and in order to unify the notions
of absoluteness and domain-independence, the formulapropertyof d.i. was turned in [3, 4] into
a safety relation≻ between a formulaϕ and finite subsets ofFv(ϕ). The intuitive meaning of
“ϕ(x1, . . . ,xn,y1, . . . ,yk)≻ {x1, . . . ,xn}” in databases is: “ϕ(x1, . . . ,xn,d1, . . . ,dk) is d.i. for all val-
uesd1, . . . ,dk”. In particular,ϕ ≻ /0 if ϕ is absolutein the sense of axiomatic set theory.

In view of the connections between “absolute” and “decidable” and between “domain-independent”
and “computable”, (or “constructible”), in the realm of sets we shall intuitively take the meaning of
“ϕ(x1, . . . ,xn,y1, . . . ,yk)≻ {x1, . . . ,xn}” to be: “The collection{〈x1, . . . ,xn〉 | ϕ} is an acceptable set for
all acceptable values ofy1, . . . ,yk, and it can beconstructedfrom these values”. The differences between
the strength of systems is intuitively due to different interpretations of the vague notions of “acceptable”
and “can be constructed”. At least in the basic systems, but also in some of the less basic ones, a crucial
part of the meaning of both concepts is the demand that{〈x1, . . . ,xn〉 | ϕ} is “domain independent” in
a sense close to that used in database theory, i.e.: thatϕ determines this collection in an absolute way,
independent of the extension of the “surrounding universe”V. In particular:ϕ ≻ /0 implies in such set
theories thatϕ is absolute (in the set-theoretical sense mentioned above).

3 A Description of the General Framework

3.1 Languages

In our framework a languageL for a set theorySshould be based on some first-order signatureσ which
includes the binary predicate symbols∈ and=. Moreover: it should be introduced using a simultaneous
recursive definition of the following three components: itsset of terms, its set of formulas, and thesafety
relation ≻ that it uses between formulas and finite sets of variables. The recursive definition of these
components includes at least the following conditions:

Terms:

• Every variable and every constant ofσ is a term.

• If f is ann-ary function symbol ofσ , andt1, . . . , tn are terms, thenf (t1, . . . , tn) is a term.

• If x is a variable, andϕ is a formula such thatϕ ≻ {x}, then{x | ϕ} is a term.

Formulas:

• If P is ann-ary predicate symbol ofσ , andt1, . . . , tn are terms, thenP(t1, . . . , tn) is an atomic
formula.

• If ϕ andψ are formulas, andx is a variable, then¬ϕ , (ϕ∧ψ), (ϕ∨ψ), and∃xϕ are formulas.
In an intuitionistic system so are also(ϕ → ψ) and∀xϕ (but in the classical case→ and∀
are better taken as defined in terms of¬, ∧, and∃).

• An optional construct which may be useful in our framework and is not available in first-order
languages is the transitive closure operationTC. If it is included, then(TCx,yϕ)(t,s) is a
formula wheneverϕ is a formula,x,y are distinct variables, andt,sare terms. In this formula

A. Avron 7

all occurrences ofx andy in ϕ are bound. The intended meaning of(TCx,yϕ)(t,s) is the
“disjunction”: ϕ{s/x, t/y}∨∃w1(ϕ{s/x,w1/y})∧ϕ{w1/x, t/y})∨∃w1∃w2(ϕ{s/x,w1/y}∧
ϕ{w1/x,w2/y}∧ϕ{w2/x, t/y})∨ . . . (wherew1,w2, . . . , are all new variables)).

Safety Relation:

• ϕ ≻ /0 if ϕ is atomic.

• ϕ ≻ {x} if ϕ ∈ {x= t, t = x,x∈ x,x∈ t}, andx 6∈ Fv(t).

• ¬ϕ ≻ /0 if ϕ ≻ /0.

• ϕ ∨ψ ≻ X if ϕ ≻ X andψ ≻ X.

• ϕ ∧ψ ≻ X∪Y if ϕ ≻ X, ψ ≻ Y andY∩Fv(ϕ) = /0, orX∩Fv(ψ) = /0.

• ∃yϕ ≻ X−{y} if y∈ X andϕ ≻ X.

• ∀x(ϕ → ψ)≻ /0 if ϕ ≻ {x} andψ ≻ /01

• If TC is included in the language then(TCx,yϕ)(x,y) ≻ X if ϕ ≻ X, and{x,y}∩X 6= /0.

Notes:

1. The clauses concerning≻ form a generalization (and simplification) of the definitionof “syn-
tactically safe” formulas from [18] (see [3, 4, 6]). The passage from the property of domain
independence to the safety relation is mainly needed for an appropriate handling of conjunction.

2. Recalling the intended intuitive meaning(s) of our safety relations, is not difficult to see that any
safety relation≻ should satisfy the conditions listed above. As an example, we explain the most
complicated of them: the one connected with∧. Assume for simplicity thatθ = ϕ ∧ψ , where
Fv(ϕ) = {x,z},Fv(ψ) = {x,y,z},ϕ ≻ {x}, and ψ ≻ {y}. Given some “acceptable” setc, we
should show that the collectionE(c) of all 〈x,y〉 such thatθ(x,y,c) should also be taken as “ac-
ceptable”. Now the assumption thatϕ ≻ {x} implies that the collectionZ(c) of all x such that
ϕ(x,c) is “acceptable”. In turn, the the assumption thatψ ≻ {y} implies that for everyd in this
set, the collectionW(c,d) of all y such thatψ(d,y,c) is “acceptable” . SinceE(c) is the union for
d ∈ Z(c) of the sets{d}×W(c,d), it is constructible from “acceptable” sets using Gödel’sbasic
operations mentioned above, and so it too should intuitively be “acceptable” in any reasonable set
theory. What is more, ifZ(c) is “constructible” fromc (in an absolute way), andW(c,d) is “con-
structible” fromc andd (in an absolute way), then this argument shows thatE(c) is “constructible”
from c (in an absolute way) as well.

3. The recursive definition of≻ should ensure that≻ has the following properties:

• If ϕ ≻ X thenX ⊆ Fv(ϕ).

• If ϕ ≻ X andZ ⊆ X, thenϕ ≻ Z.

• If ϕ ≻ {x1, . . . ,xn}, v1, . . .vn aren distinct variables not occurring inϕ , andϕ ′ is obtained
from ϕ by replacing all occurrences ofxi by vi (i = 1, . . . ,n), thenϕ ′ ≻ {v1, . . . ,vn}

It is easy to verify that all the safety relations used in the examples below have these properties,
and so there is no need to add corresponding clauses to their definitions (but this might not be the
case in general).

1In the classical case this condition is derivable from the others.

8 A Logical Framework for Set Theories

3.2 Logics

Our framework allows the use of any logic that is based one of the two languages it employs (with
classical and intuitionistic logics as the natural choices). One should note however the following points:

1. Our languages provide much richer classes of terms than those allowed in orthodox first-order
systems. In particular: a variable can be bound in them within a term. The notion of a term being
free for substitution is generalized accordingly (also forsubstitutions within terms!). As usual this
amounts to avoiding the capture of free variables within thescope of an operator which binds them.
Otherwise the rules/axioms concerning the quantifiers and terms remain unchanged (for example:
ϕ [x 7→ t]→∃xϕ is valid for everytermt which is free forx in ϕ).

2. The rule ofα-conversion (change of bound variables) should be available in the logic.

3. The substitution of equals for equals should be allowed within any context (under the usual con-
ditions concerning bound variables). The same should applyfor the substitution of a formula for
an equivalent formula in any context in which the substitution makes sense. In particular, the
following schema should be valid whenever{x | ϕ} and{x | ψ} are legal terms:

∀x(ϕ ↔ ψ)→{x | ϕ}= {x | ψ}

4. The set of valid formulas of first-order languages enriched with the TC operator is not even arith-
metical. Hence no sound and complete formal system for it is possible. It follows that only
appropriate formal approximations of the intended underlying logic may be used in practice. The
best known approximation is the one given in [14], using a Hilbert-type system. An equivalent
Gentzen-type formulation (with cuts) has been given in [2]. In that system mathematical induction
is presented as the following logical rule:

Γ,ψ ,ϕ ⇒ ∆,ψ [x 7→ y]
Γ,ψ [x 7→ s],(TCx,yϕ)(s, t)⇒ ∆,ψ [x 7→ t]

wherex andy are not free inΓ,∆, andy is not free inψ .

3.3 Axioms

The main part of all systems in our framework consists of the following axioms and axiom schemes
(our version of the “ideal calculus” [7], augmented with theassumption that we are dealing with the
cumulative universe):

Extensionality:

• ∀y(y= {x | x∈ y})

Comprehension Schema:

• ∀x(x∈ {x | ϕ}↔ ϕ)

The Regularity Schema (∈-induction):

• (∀x(∀y(y∈ x→ ϕ [x 7→ y])→ ϕ))→∀xϕ

A. Avron 9

Notes:

1. Thus the main parts of the various set theories we considerdiffer only with respect to the power of
their comprehension scheme. This, in turn, depends only on the safety relation used by each.

2. It is easy to see (see [3]) that our assumptions concerningthe underlying logic and the comprehen-
sion schema together imply that the above formulation of theextensionality axiom is equivalent to
the more usual one:∀z(z∈ x↔ z∈ y)→ x= y.

3. The first two axioms immediately entail the following two principles (wheret is an arbitrary term):

• {x | x∈ t}= t (providedx 6∈ Fv(t))

• t ∈ {x | ϕ}↔ ϕ [x 7→ t] (providedt is free forx in ϕ)

These principles are counterparts of the reduction rules(η) and (β) (respectively) from theλ -
calculus. Like their counterparts, they are designed to be used as simplification rules (at least in
the solution of elementary problems).

4 The Most Basic System

Our most basic system is the one which corresponds to the minimal safety relation (in a language without
TC). For the reader convenience, we explicitly present the definition of this relation:

Definition 1 The relation≻RST is inductively defined as follows:

1. ϕ ≻RST /0 if ϕ is atomic.

2. ϕ ≻RST{x} if ϕ ∈ {x= t, t = x,x∈ t,x∈ x}, and x6∈ Fv(t).

3. ¬ϕ ≻RST /0 if ϕ ≻RST /0.

4. ϕ ∨ψ ≻RSTX if ϕ ≻RSTX andψ ≻RSTX.

5. ϕ ∧ψ ≻RSTX∪Y if ϕ ≻RSTX, ψ ≻RSTY, and Y∩Fv(ϕ) = /0.

6. ∃yϕ ≻RSTX−{y} if y ∈ X andϕ ≻RSTX.

We denote byRST (Rudimentary Set Theory) the set theory induced by≻RST (within the framework
described above). Note thatRSTwithout the∈ −induction schema can be shown to be equivalent to
Gandy’s basic set theory [10], and to the system calledBST0 in [15]).

The following theorem aboutRSTcan easily be proved:

Theorem 1 Given an expression E and a finite set X of variables, it is decidable in polynomial time
whether E is a valid term of RST, whether it is a valid formula of RST, and if the latter holds, whether
E ≻RSTX.

Note. The last theorem is of a crucial importance from implementability point of view, and it obtains
also for all the extensions ofRSTdiscussed (explicitly or implicitly) below. In order to ensure it, we did
not include in the definition of safety relations the naturalcondition that ifϕ ≻ X andψ is (logically)
equivalent toϕ (whereFv(ϕ) = Fv(ψ)) then alsoψ ≻ X. However, we obviously do have that if
ϕ ≻RST{x}, and⊢RSTϕ ↔ ψ , then⊢RSTx∈ {x | ϕ} ↔ ψ , and so⊢RST∃Z∀x.x∈ Z ↔ ψ . Again this is
true for any system in our framework.

10 A Logical Framework for Set Theories

4.1 The Power ofRST

In the language ofRSTwe can introduce asabbreviationsmost of the standard notations for sets used
in mathematics. Again, all these abbreviations should be used in a purely static way: no justifying
propositions and proofs are needed. Here are some examples:

• /0=D f {x | x∈ x}.

• {t1, . . . , tn}=D f {x | x= t1∨ . . .∨x= tn} (wherex is new).

• 〈t,s〉=D f {{t},{t,s}}.

• 〈t1, . . . , tn〉 is /0 if n= 0, t1 if n= 1, 〈〈t1, . . . , tn−1〉, tn〉 if n≥ 2.

• {x∈ t | ϕ}=D f {x | x∈ t ∧ϕ}, providedϕ ≻RST /0. (wherex 6∈ Fv(t)).

• {t | x∈ s}=D f {y | ∃x.x∈ s∧y= t} (wherey is new, andx 6∈ Fv(s)).

• s× t =D f {x | ∃a∃b.a∈ s∧b∈ t ∧x= 〈a,b〉} (wherex,a andb are new).

• {〈x1, . . . ,xn〉 | ϕ}=D f {z | ∃x1 . . .∃xn.ϕ ∧z= 〈x1, . . . ,xn〉}, if ϕ ≻RST{x1, . . . ,xn} andz 6∈ Fv(ϕ).

• s∩ t =D f {x | x∈ s∧x∈ t} (wherex is new).

• s∪ t =D f {x | x∈ s∨x∈ t} (wherex is new).

• s− t =D f {x | x∈ s∧x 6∈ t} (wherex is new).

• S(x) =D f x∪{x}

•
⋃

t =D f {x | ∃y.y∈ t ∧x∈ y} (wherex andy are new).

•
⋂

t =D f {x | ∃y(y∈ t ∧x∈ y)∧∀y(y∈ t → x∈ y)} (wherex,y are new).

• ιxϕ =D f
⋂
{x | ϕ} (providedϕ ≻ {x}).

• P1(z) = ιx.∃v∃y(v∈ z∧x∈ v∧y∈ v∧z= 〈x,y〉)

• P2(z) = ιy.∃v∃x(v∈ z∧x∈ v∧y∈ v∧z= 〈x,y〉)

• λx∈ s.t =D f {〈x, t〉 | x∈ s} (wherex 6∈ Fv(s))

• f (x) =D f ιy.∃z∃v(z∈ f ∧v∈ z∧y∈ v∧z= 〈x,y〉)

• Dom(f) =D f {x | ∃z∃v∃y(z∈ f ∧v∈ z∧y∈ v∧x∈ v∧y= f (x)}

• Rng(f) =D f {y | ∃z∃v∃x(z∈ f ∧v∈ z∧y∈ v∧x∈ v∧y= f (x)}

• f/s=D f {〈x, f (x)〉 | x∈ s} (wherex is new).

Notes

1. It is straightforward to check that in all these abbreviations the right hand side is a valid term ofRST
(provided that the terms/formulas occurring in it are validterms/well-formed formulas ofRST).
We explains× t by way of example: sincea andb are new,a∈ s≻RST{a}, andb∈ t ≻RST{b}.
Sinceb 6∈ Fv(a ∈ s), this implies thata ∈ s∧ b ∈ t ≻RST {a,b}. Similarly, a ∈ s∧ b ∈ t ∧ x =
〈a,b〉 ≻RST{a,b,x}. It follows that∃a∃b.a∈ s∧b∈ t ∧x= 〈a,b〉 ≻RST{x}. Hence our term for
s× t (which is the most natural one) is a valid term ofRST.

A. Avron 11

2. It can easily be seen that according to these definitions,
⋂

/0= /0, and soιxϕ denotes /0 if there is no
set which satisfiesϕ , while it denotes the intersection of all the sets which satisfy ϕ otherwise. In
particular: if there is exactly one set which satisfiesϕ , andϕ ≻ {x}, thenιxϕ denotes this unique
set (this fact has already been used above). It follows that if ϕ(y1, . . . ,yn,x) implicitly defines (in
some theory extending the basic theory of our framework) a function fϕ such that for ally1, . . . ,yn,
fϕ(y1, . . . ,yn) is the uniquex such thatϕ(y1, . . . ,yn,x), and ifϕ ≻ {x}, then there is a term in the
language which explicitly denotesfϕ ; no extension of the language is needed for that.

3. It is easy to see that the usual reduction rules of the typedλ -calculus follow from the corresponding
reduction rules described in Section 3.3. In particular:⊢RSTa∈ s→ (λx∈ s.t)(a) = t{a/x}.

Exact characterizations of the operations that are explicitly definable inRST, and of the strength of
RST, are given in the following theorems and corollary

Theorem 2

1. If F is an n-ary rudimentary function2 then there exists a formulaϕ s. t.:

(a) Fv(ϕ) = {y,x1, . . . ,xn}

(b) ϕ ≻RST{y}

(c) F(x1, . . . ,xn) = {y | ϕ}.

2. If ϕ is a formula such that:

(a) Fv(ϕ) = {y1, . . . ,yk,x1, . . . ,xn}

(b) ϕ ≻RST{y1, . . . ,yk}

then there exists a rudimentary function F such that:

F(x1, . . . ,xn) = {〈y1, . . . ,yk〉 | ϕ}

Corollary 1 If Fv(ϕ) = {x1, . . . ,xn}, and ϕ ≻RST /0 then ϕ defines a rudimentary predicate P. Con-
versely, if P is rudimentary then there is a formulaϕ such thatϕ ≻RST /0 andϕ defines P.

4.2 Generalized Absoluteness

For simplicity of presentation, we assume the cumulative universeV of ZF, and formulate our definitions
accordingly. It is easy to see thatV is a model ofRST(with the obvious interpretations ofRST’s terms).

Definition 2 Let M be a transitive model of RST. Define the relativization toM of the terms and
formulas of RST recursively as follows:

• tM = t if t is a variable or a constant.

• {x | ϕ}M = {x | x∈ M ∧ϕM}.

• (t = s)M = (tM = sM) (t ∈ s)M = (tM ∈ sM).

• (¬ϕ)M = ¬ϕM (ϕ ∨ψ)M = ϕM ∨ψM . (ϕ ∧ψ)M = ϕM ∧ψM .

• (∃xϕ)M = ∃x(x∈ M ∧ϕM).

Definition 3 Let T be an extension of RST such that V|= T.

2The class of rudimentary set functions was introduced independently by Gandy ([10]) and Jensen ([12]). See also [9], Sect.
IV.1.

12 A Logical Framework for Set Theories

1. Let t be a term, and let Fv(t) = {y1, . . . ,yn}. We say that t is T -absoluteif the following is true (in
V) for every transitive modelM of T :

∀y1 . . .∀yn.y1 ∈ M ∧ . . .∧yn ∈ M → tM = t

2. Let ϕ be a formula, and let Fv(ϕ) = {y1, . . . ,yn,x1, . . . ,xk}. We say thatϕ is T -absolute for
{x1, . . . ,xk} if {〈x1, . . . ,xk〉 | ϕ} is a set for all values of the parameters y1, . . . ,yn, and the following
is true (in V) for every transitive modelM of T :

∀y1 . . .∀yn.y1 ∈ M ∧ . . .∧yn ∈ M → [ϕ ↔ (x1 ∈ M ∧ . . .∧xk ∈ M ∧ϕM)]

Thus a term isT-absolute if it has the same interpretation in all transitive models ofT which contains
the values of its parameters, while a formula isT-absolute for{x1, . . . ,xk} if it has the same extension
(which should be a set) in all transitive models ofT which contains the values of its other parameters. In
particular: ϕ is T-absolute for /0 iff it is absolute relative toT in the usual sense of set theory (see e.g.
[13]), while ϕ is T-absolute forFv(ϕ) iff it is domain-independent in the sense of database theoryfor
transitive models ofT.

Theorem 3
1. Any valid term t of RST is RST-absolute.

2. If ϕ ≻RSTX thenϕ is RST-absolute for X.

5 Handling the Axioms ofZF and ZFC

5.1 Subsets, replacement, and Powerset

The definability of{t,s} and of
⋃

t in the language ofRSTmeans that the axioms of pairing and union are
provable inRST. We turn now to the question how to deal with the other comprehension axioms ofZF
within the proposed framework. We start with the comprehension axioms that remain valid if we limit
ourselves to hereditarily finite sets. It can be shown ([4]) that each of them can be captured (in a modular
way) by adding to the definition of≻RST a certain syntactic condition. Here are those conditions:

Separation: ϕ ≻ /0 for every formulaϕ .

Replacement: ∃yϕ ∧∀y(ϕ → ψ)≻ X if ψ ≻ X, andX∩Fv(ϕ) = /0.

Powerset: ∀y(y∈ x→ ϕ)≻ (X−{y})∪{x} if ϕ ≻ X, y∈ X, andx 6∈ Fv(ϕ).

Another (and perhaps simpler) method to handle the powersetaxiom is to enrich first the language
with a new binary relation⊆. Then add to the definition of the safety relation the condition:
x⊆ t ≻ {x} if x 6∈ Fv(t). Finally, add the usual definition of⊆ in terms of∈ as an extraaxiom:
∀x∀y(x ⊆ y ↔ ∀z(z∈ x → z∈ y)). Alternatively, since⊆ is now taken as primitive, it might be
more natural to use it as such in our axioms. This means that instead of adding the above axiom,
it might be preferable to replace the single extensionalityaxiom ofBZF with the following three:
(Ex1)x⊆ y∧y⊆ x→ x= y, (Ex2)z∈ x∧x⊆ y→ z∈ y, and (Ex3)x⊆ y∨∃z(z∈ x∧z 6∈ y).

Note. If any of the conditions introduced in this subsection is used then the counterpart of Theorem 3
is not valid for the resulting system. Hence these conditions are not coherent with our initial intuitions
(Thus from the perspective of our framework, the condition that corresponds to the separation schema
means that from the point of view ofZF, every formula defines a “decidable” relation on the universeV
of sets). As a compensation, we have the following remarkable property of the condition that corresponds
to replacement (see [5]):

A. Avron 13

Theorem 4 Let T be a set theory in our framework such that the corresponding safety relation≻T

satisfies the condition that corresponds to replacement. Then for any formulaϕ of T such that Fv(ϕ) =
{y1, . . . ,yn,x}), there exists a term tϕ of T such that Fv(tϕ) = {y1, . . . ,yn}, and

⊢T ∀y1, . . . ,yn∃!xϕ →∀y1, . . . ,yn(ϕ [x 7→ tϕ])

5.2 The Axiom of Infinity

Next we turn to the axiom of Infinity — the only comprehension axiom that necessarily takes us out of
the realm of finite sets. As long as we stick to first-order languages, it seems impossible to incorporate
it into our systems by just imposing new simple syntactic conditions on the safety relation. Instead, the
best way to capture it is to add to the basic signature a new constantHF (interpreted as the collection
H F of hereditarily finite sets) together with the following counterparts ofPeano’s axioms:

1. /0∈ HF

2. ∀x∀y.x∈ HF ∧y∈ HF → x∪{y} ∈ HF

3. ϕ(0)∧ (∀x∀y.ϕ(x)∧ϕ(y)→ ϕ(x∪{y})→∀x∈ HF.ϕ(x)

Definition 4 RSTω is the theory which is obtained fromRSTby the addition of the constantHF and
the above counterparts of Peano’s axioms.

On the other hand, if a language withTC is used, then we get the infinity axiom for free, since both
H F and the setω of the finite ordinals are definable in this extended languageby valid terms (see [6]).
Thus the one that definesω is ω = {y | ∃x.x= /0∧ (TCx,yy= {z | z= x∨z∈ x})(x,y)}.

Definition 5 Let≻PZF be the minimal safety relation in a language withTC (note that the only difference
between≻PZF and≻RST is the extra clause forTC). We denote byPZF (predicative set theory) the set
theory induced by≻PZF within our framework.

Note. An important property ofRSTω andPZF is that Theorem 3 does remain valid if instead ofRST
we consider either of them. Hence these systemsarecoherent with our initial motivations and intuitions.

5.3 The Axiom of Choice

The full set theory ZFC has one more axiom, which does not fit into the formal framework described
above:AC (the axiom of choice). It seems that the most natural way to incorporate it into our framework
is by further extending the set of terms, using Hilbert’sε symbol, together with its usual characterizing
axiom (which is equivalent to the axiom of global choice):∃xϕ → ϕ [x 7→ εxϕ]. It should be noted that
this move is not in line with our stated goal of employing onlystandard notations used in textbooks, but
some price should be paid for including the axiom of choice ina system.

6 Structures and Computations

Let T be a theory formulated within the classical part of our framework. From the Platonist point of
view its set of closed terms induces some subsetS (T) of the universeV of sets. The identity ofS (T)
depends only on thelanguageof T and on the interpretations of the symbols its signature has in addition
to ∈,=, and⊆ (if such symbols exist). It does not depend on its axioms. In addition, for any transitive
modelM of T , S (T) determines some subsetM (T) of M (which might not be an element ofM).

14 A Logical Framework for Set Theories

Now a theoryT is computationally interesting if the setS (T) it induces is a “universe” in the sense
that it is a transitive model ofT . According to our guiding ideas, such a theoryT and its modelS (T)
have a special significance from a computational point of view if the identity of the latter isabsolutein
the sense thatM (T) = S (T) for any transitive modelM of T (implying thatS (T) is actually a
minimal transitive model ofT). From results in [6] it follows that at least the following theories have
both properties:

RST: Its minimal modelS (RST) is identical toH F , which isJ1 in Jensen’s hierarchy ([12, 9]), and
Lω in Gödel hierarchy ([11, 9]) of constructible sets.

RSTω : Its minimal modelS (RSTω) is J2 in Jensen’s hierarchy.

PZFT C L : Its minimal model isJωω = Lωω .

References

[1] S. Abiteboul, R. Hull & V. Vianu (1995):Foundations of Databases. Addison-Wesley.

[2] A. Avron (2003):Transitive closure and the mechanization of mathematics, pp. 149–171.Applied Logics28,
Kluwer Academic Publishers.

[3] A. Avron (2004): Safety signatures for first-order languages and their applications. In Hendricks et al.,
editor: In First-Order Logic Revisited, Logos Verlag, pp. 37–58.

[4] A. Avron (2008):Constructibility and decidability versus domain independence and absoluteness. Theoret-
ical Computer Science394, pp. 144–158, doi:10.1016/j.tcs.2007.12.008.

[5] A. Avron (2008): A Framework for Formalizing Set Theories Based on the Use of Static Set Terms. In:
Pillars of Computer Science, Lecture Notes in Computer Science4800, Springer, pp. 87–106, doi:10.1007/

978-3-540-78127-1_6.

[6] A. Avron (2010):A new approach to predicative set theory. Ways of Proof Theory, pp. 31–63.

[7] A. Fraenkel Y. Bar-Hillel & A. Levy (1973):Foundations of Set Theory, second edition.Studies in Logic
and the Foundations of Mathematics67, Elsevier, Amsterdam.

[8] D. Cantone, E. Omodeo & A. Policriti (2001):Set Theory for Computing: From Decisions Procedures to
Declarative Programming with Sets. Monographs in Computer Science, Springer.

[9] K. J. Devlin (1984):Constructibility. 6, Springer-Verlag.

[10] R. O. Gandy (1974):Set-theoretic functions for elementary syntax: in Proceedings of Symposia in Pure
Mathematics. In: Axiomatic set theory, Part 2, AMS, Providence, Rhode Island, pp. 103–126.

[11] K. Gödel (1940):The Consistency of the Axion of Choice and of the GeneralizedContinuum Hypothesis with
the Axioms of Set Theory. 3, Princeton University Press, Princeton, N.J.

[12] R. B. Jensen (1972):The fine structure of the constructible hierarchy. Annals of Mathematical Logic4, pp.
229–308.

[13] K. Kunen (1980):Set Theory: an Introduction to Independence Proofs. Studies in Logic and the Foundations
of Mathematics102, Elsevier, Amsterdam.

[14] J. Myhill (1952): A derivation of number theory from ancestral theory. Journal of Symbolic Logic17, pp.
292–297.

[15] V. Y. Sazonov (1997):On bounded set theory. In: Proceedings of the 10th International Congress on Logic,
Methodology and Philosophy of Sciences, I: Logic and Scientific Method, Kluwer Academic Publishers,
Florence, pp. 85–103.

[16] J. R. Shoenfield (1967):Mathematical Logic. Addison-Wesley.

[17] R. M. Smullyan (1992):The Incompleteness Theorems. Oxford University Press.

http://dx.doi.org/10.1016/j.tcs.2007.12.008
http://dx.doi.org/10.1007/978-3-540-78127-1_6
http://dx.doi.org/10.1007/978-3-540-78127-1_6

A. Avron 15

[18] J. D. Ullman (1998):Principles of database and knowledge-base systems. Computer Science Press.

	1 Introduction
	2 The Major Ideas
	3 A Description of the General Framework
	3.1 Languages
	3.2 Logics
	3.3 Axioms

	4 The Most Basic System
	4.1 The Power of RST
	4.2 Generalized Absoluteness

	5 Handling the Axioms of ZF and ZFC
	5.1 Subsets, replacement, and Powerset
	5.2 The Axiom of Infinity
	5.3 The Axiom of Choice

	6 Structures and Computations

