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A paraconsistent type theory (an extension of a fragment of intuitionistic type theory by adding
‘opposite types’) is here extended by adding co-function types. It is shown that, in the extended
paraconsistent type system, the opposite type constructor can be viewed as an involution operation
that transforms each type into its dual type. Moreover, intuitive interpretations of opposite and co-
function types under different interpretations of types are discussed.

Introduction

A paraconsistent type theory, called here PTTg, was introduced by the authors by extending ITT (the
—, %, +,I1, X intensional fragment of intuitionistic type theory, as presented in [9]], with two universes Ug
and U;) with the addition of opposite types in [1]. In PTTy, for each type A, there is an opposite
type A. The introduction and elimination rules for opposite types were defined for each one of the type
constructors (including the opposite type constructor itself), and such rules were based on the rules for
constructible falsity [12, 2| 8]. A propositions-as-types correspondence between PLS (a many-sorted
version of the refutability calculus—introduced by Lopez-Escobar in [8]-presented in natural deduction
style) and PTTg was proven Under such propositions-as-types correspondence, the opposite type
constructor corresponds to negation in PL3, the correspondence for the other type constructors are the
same than for ITT with respect to intuitionistic logic.

Differently from how it is done in intuitionist type theory, where negation is formalised by means
of the function type and the empty type, negation in PT Ty is formalised by the primitive opposite type
constructor, without need of the empty type. Under such formalisation, an inhabitant of a type A can be
understood as a proof term for —A or as a ‘refutation term’ for A, and proofs and refutations are treated
in a symmetric and constructive way.

As PLS is a paraconsistent logic (i.e. for some set of formulae A and some formulae A and B we have
that A '_PLS A, AFp s A and A%PLS B), the propositions-as-types correspondence with PTT( leads
to the existence of logically contradictory but not trivial contexts (i.e. contexts I" for which there exist a
type A and terms ¢ and s such that I'Fpyf:Aand I'Fpyr, 7t A, but I'#pTT, 5 : B, for some type B and
every term s). Because of that, PT T is considered a ‘paraconsistent type theory’ (for details see [1]]).

We wrote the following observation in the section of concluding remarks and future work of [1]]:

The opposite type constructor can be viewed as an operation that transforms types into their
‘duals’. Under a logical (or propositions-as-types) interpretation, the duality is between
truth and falsity of propositions (since the habitation of a type A, interpreted as a propos-
ition, can be understood as A is false). If we interpret types as problems (or tasks), the
duality is between solvability and unsolvability of the respective problems. A more difficult
understanding of the duality is when types are interpreted as sets. However, also under the

IThe logic PLS is denoted in [1]] by PLg.
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set interpretation, opposite types can be viewed as an operation that establishes a duality
between some set operations, although it is difficult to understand in what sense this duality
occurs.

Despite such observation, the notion of duality in PT T was neither rigorously defined nor discussed
in depth in [[1]] and this is just the aim of this article.

In PLS, the logical constants D, A, V,V and 3 have the same introduction and elimination rules than in
intuitionistic logic, but negation is a primitive logical constant, not definable in terms of the other logical
constants, and its behaviour is established by defining introduction and elimination rules for the negation
of each one of the logical constants (including negation itself). Moreover, equivalence < can be defined

def

in the usual way (i.e. A< B= (A D B) A (B D A)), but substitution by equivalents fails. However, a
strong equivalence < can be defined by A <5 B = (A < B) A (—A < —B) and substitution by strong
equivalents is valid. The following strong equivalences are derivable in PLS (where superscripts on
quantified variables denote their sorts):

—(AAB)&s—AV B, —(Vx*)A < (3x°) 1A,
—(AVB)&s—AN-B, —(IxX°)A &6 (VX°) A, A& A.

These strong equivalences show that in PLS the negation is an involutive operation under which there is
duality between A and V, and also between V and 3. It is important to highlight here that, although in PLS
the De Morgan’s laws, the ‘classical’ equivalences for the negation of quantifiers and the double negation
law are valid, this does not make this logic collapse to classical logic. There are many formulae valid
in classic logic which are not valid in PLJ including AV —A, A D (—A D B) and =(A A =A). The non-
validity of this formulae can be proven by using the Kripke style semantics provided for Lopez-Escobar’s
refutability calculus in [8]] (which can be naturally adapted to PLS).

For implication, although p, s —(A D B) < (AAN—B), we have that ¥p s = —(ADB) < ~(AN—B),
thus %PLg —(A D B) <5 (AA—B). Consequently, if we require that the dual of a formula be strongly equi-
valent to its negation, so that the negation of the formula and its dual be inter-substitutable (which seems
to be a reasonable requirement), then A A — B cannot be considered a dual of A D B in PL(S). Moreover, un-
der the previous requirements, there is no dual logical constant to D in PL3, but in order to every logical
constant have its dual, the logic PL(S) is extended in Section 2] by including a co-implication logical con-
stant whose rules are taking from [14] (where a kind of bi-intuitionistic logic, named 2Int, is defined by
dualising the natural deduction rules of intuitionistic propositional logic). A rigorous definition of dual
logical constants is given in Definition and under such definition the dualities previously mentioned
are justified.

As the introduction and elimination rules for opposite types in PT T are based on the rules of the
(constructible) negation of PL3, the opposite type constructor works as an involutive operation under
which there is duality between x and +, and between IT and X. Asin PL(S) there is no dual type constructor
to —, this type system is extended in Section [2| by adding a new constructor of ‘co-function types’,
whose rules are based on the rules for co-implication in the extension of PLS. The system obtained is
called PTT; and one of its characteristics is that every type constructor have a dual, which allows a
total symmetric formalisation of proofs and refutations. A rigorous definition of dual type constructors
is given in Definition 3.3 and under such definition the dualities previously mentioned are justified.

This article is structured as follows: The type system PTTq is described in Section[Il In Section 2]
PTTy is extended to PTT;. In Section[3] it is shown that the opposite type constructor in PTT; can be
viewed as an involution operation that transforms each type into its dual type, and it is stated a ‘principle
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of duality’ in PTT;. Finally, some observations about the intuitive interpretation of opposite and co-
function types in PTTy are presented in Section 4l With respect to the interpretation of types as sets, we
only provide a vague description of how opposite types can be generally understood. Although a reviewer
reasonably suggested that duality is not set-theoretic and we should just forget about this interpretation,
we do not want to abandon this possibility for the moment, and we think that the vague idea that we
present may shed some light in further developments of this possible interpretation.

1 The type system PTTj

We shall give a brief description of system PT Ty, for further details see [1l]. As we mentioned in the
introduction, PT Ty is introduced by extending ITT (the —, x,+,I1, X intensional fragment of intuition-
istic type theory with two universes Uy and U;) with the addition of opposite types. The formation rule
for opposite types in PTTy is:

A:Set

A:Set
Taking into consideration that the introduction and elimination rules for the constructors —, x,+,I1,X
in ITT are well-known, only the introduction and elimination rules for opposite types in PTTg are
described in Table [I] (where the term constructors are the same of ITT as presented in [9]).

The choice of terms for opposite types in PTT( is based on Lépez-Escobar’s extension of the so-
called BHK-interpretation of intuitionistic logic [8]], where the definition of what constitutes a con-
struction to refute a formula is made using the same objects that constitute proofs of formulae in the
BHK-interpretation, taking advantage of the duality between logical constants and the assumption that a
construction c refutes a formula A iff ¢ proves —A. For instance, a construction c that refutes a formula
AV Bis a pair ¢ = (a,b), where a and b are constructions that refute A and B, respectively (in an analog-
ous and dual way as a construction c that proves a formula A A B is a pair ¢ = (a,b), where a and b are
constructions that prove A and B, respectively). Consequently, the term constructors for opposite types
in PTTy already exists in ITT and their computation (or equality) rules in PTTg are defined just in the
same way as in ITT.

Universes Uy and Uy, with Uy : Uy, are introduced in PT Ty in order to prove a propositions-as-types
correspondence between this type system and the logic PLS. Universe Uy is closed under —, x, 4,11, X
and opposite types, while U; is closed only under —. The only aim of U is to allow the creation of
types corresponding to predicates, for which it is enough to have in U; the type constructor —. Thus
the restriction of U; to be closed only under — is to facilitate the proof of the propositions-as-types
correspondence. Consequently, the idea of opposite types is developed in PTTg only in universe U,
although it can be naturally extended to other universes. Using widespread terminology, types in Uy are
called small types.

2 Extending PT T with co-function types

The familiar introduction and elimination rules for intuitionistic propositional logic are dualised by em-
ploying a primitive notion of dual proof by Wansing in [[14]]. Here, we prefer to use refutation instead of

2This choice of terms leads to non-uniqueness of types in PTTo, but this does not seem to be an inconvenience in this type
system [1, § 6]. However, several causes of the non-uniqueness of types in PT Ty are avoided by the inclusion of the equality
rules for opposite types in Table[dl
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a:A a:A
a:A a:A
a:A b:B c:A—B c:A—B
(a,b):A— B p(c): A q(c):B
a:A (x:A) (y:B)
i(a):AXB :
b:B c:AxB dx):C(i(x)) e(y):C(()
i(b):AxB D(c, (0)d (), 1)e(y)) : C(e)
a:A b:B c:A+B c:A+B
(a,b) :A+B p(c) : A q(c): B
(v: A,y BE)
a:A b:m :
(a,0) : (I : A)B(x) ¢::A)BM)  d(xy) :C((x))
E(c, (x,y)d(x,y)) : C(c)
(x:A)
b:(Xx:A)B(x) a:A
b(x) : B(x) Ap(b,a) : B(a)
(Ax)b(x) : (Zx: A)B(x)

Table 1: Introduction and elimination rules for opposite types in PTTy

dual proof. By using single-line rules for proofs and dotted-line rules for refutations, and using O and <
as the logical constants for implication and co-implication, respectively the dual rules for D are:

[A] [A]
: - A ASB ., A B=A
B E b B
ADB B<A

where ~~ means ‘dualises to’, [A] denotes the cancellation of the assumption A in the conclusion and -[A]-
denotes the cancellation of counter-assumption A (or the assumption of the falsity of A) in the conclusion.

Formula B < A may be read as ‘A co-implies B’ or as ‘B excludes A’ (see [13, Footnote 2]).
As the process of dualisation does not induce rules for the falsification of implications nor for the

3In [14], the logical constants for implication and co-implication are — and <, respectively, but we shall reserve these
symbols for function and co-function types. Moreover, we changed the notation for refutations and counter-assumptions, in

order to avoid confusions with our notation for opposite types.
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verification of co-implications, these rules are defined in [14] by taking an orthodox stance as followsﬁ

A..B_, ADB ADB |
ADB A B
A B . B=<A B<A
B=<A A B

As in PLS negation represents falsity, and a proof of —A can be also understood as a refutation of A,
we can extend PL(S) with co-implication and define the introduction and elimination rules without using
dotted-lined rules for refutations and dotted brackets for counter-assumptions as follows.

-A B B<A . B=A
B<A —A B
[-A]

-A —(B<A)

B B

—~(B<A)

The extension of PL(S) with co-implication will be called PL?EH

4We changed the order of formulae in the co-implication rules for a better understanding of these rules as duals of implication
rules.

5In [13], two ways of formalising co-implication are presented. In one way, co-implication is strongly equivalent to negated
implication (i.e. A < B<>s (A — B)). In the other way, co-implication is strongly equivalent to negated contrapose implication
(ie. A<B&s~(—B— —A)). In PLZ, contraposition is not valid and the two ways of formalising co-implication are not
equivalent. Under our formalisation of co-implication in PL%, it is possible to prove that A < B<>s —(—~B — —A), which shows
that the convincing process of dualisation in [[14] leads co-implication to behave as negated contraposed implication, instead of
behaving as negated implication.

%From Negri and von Plato’s generalisation of the inversion principle, which states that ‘whatever follows from the dir-
ect grounds for deriving a proposition must follow from that proposition” [11} p. 6], general elimination rules are uniquely
determined by each introduction rule. For the case of co-implication, the general elimination rule would be:

[ﬁAvB]

B<A C
C

This general elimination rule differs from the two standard elimination rules presented above. However, as in the case of
intuitionistic logic, if we change in PL% the standard elimination rules by the general elimination rules, the system obtained is
equivalent with respect to deductibility. In the case of intuitionistic logic, the difference emerges in the correspondence with
sequent calculus: Normal derivations in the natural deduction system with general elimination rules can be isomorphically
translated into cut-free derivations in the sequent calculus with independent contexts, which is not possible with the standard
elimination rules [11, Ch. 8]. As we are not interested in establishing a correspondence of the natural deduction system for PL%
with a sequent calculus, we choose the standard elimination rules for co-implication (and all the other logical constants).

In comparison with linear logic, which contains a fully involutive negation and can be seen ‘as a bold attempt to reconcile
the beauty and symmetry of the systems for classical logic with the quest for constructive proofs that had led to intuitionistic
logic’ [4]), the same can be said for PL%. However, linear logic is obtained by eliminating the contraction and weakening rules of
a sequent calculus for classical logic, allowing the formalisation of two different versions of each logical constant: An additive
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Now, we shall extend PTTgy by adding co-function types, whose rules will be based on the co-
implication rules. Symbol < will be used to denote the co-function type constructor and B <A may be
read as ‘the type of co-functions from A to B’. The formation rule for co-function types is:

A : Set B :Set
B <A :Set

The introduction and elimination rules for co-function types and their opposites are presented in Table 2l

a:A b:B c:B<A c:B<A
(a,b) : B<A p(c): A q(c): B
(x:A)
c:B<A a:A
b(x): B Ap(c,a): B
(Ax)b(x) : B<A

Table 2: Introduction and elimination rules for co-function types and their opposites.

As the terms used in the rules for co-function types already exits in ITT, their computation rules are
defined in the same way as in ITT. The extension of PT T with co-function types will be called PTT;.
With some laborious but not difficult work, the propositions-as-types correspondence between PLS
and PTTg can be extended to obtain a propositions-as-types correspondence between PL? and PTT;.
Under such extended correspondence, the co-function type constructor will correspond to co-implication.

3 Duality in PTT;

As it is pointed out in [} p. 187]:

Duality is an important general theme that has manifestations in almost every area of math-
ematics. Over and over again, it turns out that one can associate with a given mathematical
object a related, ‘dual’ object that helps one to understand the properties of the object one
started with. Despite the importance of duality in mathematics, there is no single definition
that covers all instances of the phenomenon.

Although there is not a general definition of duality in mathematics, we shall take the description
in [3]], which is clear and general enough for our purposes here.

version (where the contexts of the premises are the same) and a multiplicative version (where the contexts of the premises can
be different); while the symmetry in PL% is obtained by the formalisation of a primitive constructive negation whose rules are
based on the understanding of negation as falsity, and on the notion of refutation which is dual to the notion of proof. The
distinction between additive and multiplicative logical constants in PL% is at least not evident. Although a reviewer pointed
us out that the unique general elimination rule for co-implication leads to a multiplicative version of the connective, while the
two standard elimination rules leads to an additive version of the connective, the connection between multiplicativity/additivity
(which are concepts usually defined when working with sequent calculus) and general-elimination-rules/standard-elimination-
rules (which are concepts usually defined in natural deduction systems presented in standard format, that is, where the rules are
presented without entailment relations nor contexts) is not clear for us. In [[10], where a natural deduction system (in standard
format) for intuitionistic linear logic is proposed, all elimination rules (for additive and multiplicative logical constants) are
general. The additivity of logical constants is formalised by adding labels to the assumptions in context-sharing rules.
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In mathematics, a duality translates concepts, theorems or mathematical structures into other
concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means
of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions
sometimes have fixed points, so that the dual of A is A itself.

Before explaining duality in PT T3, we shall provide a rigorous definition of duality between logical
constants in a logical system, and based on such definition we shall state the dualities between logical
constants in PL%.

Definition 3.1. Let L be a logical system with consequence relation I+ :

(i) Two formulae A and B are inter-substitutable in L, which will be denoted by A £ B, if for every

formula C of L, when C’ is the result of substituting some occurrences of A by B (or vice versa) in
C,then ClF_ C'and C' I C.

(ii) A unary logical constant  is an involution in L if A= %(*A), for every formula A of L.

(iii) Two unary logical constants o and e are dual in L, under an involution *, if *(0A) = e(xA)
and *(eA) = o(*A), for every formula A of L.

(iv) Two binary logical constants 0 and m are dual in L, under an involution *, if x(A0B)= A m B and
*(AmB) = xA0%B, orif *(AOB) = xBm+A and x(BmA) 2 x A0 B, for every pair of formulae A
and B of L.

Quantifiers are considered unary logical constants, and the binding variables will be considered para-
meters that are part of the logical constant. For instance, Vx will be considered a logical constant, para-
metrised by x. When we say that quantifiers V and 3 are dual, we mean that they are dual under every
parameter (or binding variable) x.

Theorem 3.2. In PL3:
(i) If Fpis A<sB, then AZB.
(ii) — is an involution.
(iii) A and V are dual logical constants under —.
(iv) D and < are dual logical constants under —.
(v) Y and 3 are dual logical constants under —.

Now, we shall explain why the opposite type constructor in PTT; can be viewed as an involution
operation that transforms types into their dual types. Firstly, we provide a rigorous definition of duality
between type constructors in a type theory.

Definition 3.3. Let T be a type system with consequence relation IF, and let U be a universe of T:

(i) Two types A and B are inter-substitutable in U, which will be denoted by A =y B, if A and B are in
U and for every type C in U, when C’ is the result of substituting some occurrences of A by B (or
vice versa) in C, then x : C Ikt x: C' and x : C' IF1 x : C, for every variable x that is not in C.

(ii) A unary type constructor * is an involution in U if A 2y x(xA), for every type A in U.

(iii) Two unary type constructors o and e are dual in U, under an involution *, if x(cA) 2y o(xA)
and (e A) £y o(*A), for every type A in U,

(iv) Two binary type constructors O and m are dual in U, under an involution *, if *(AOB) =y +Am*B
and *(AmB) £y *ADx*B, or if *(AOB) 2y *Bm*A and *(BmA) 2y *A0 B, for every pair of
types A and B in U.
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Similarly as quantifiers are considered unary logical constants, we shall consider the type construct-
ors IT and ¥ unary type constructors, and the binding variables and their types will be considered paramet-
ers that are part of the type constructor. For instance, I'Lx : A will be considered a unary type constructor
parametrised by x and A. When we say that IT and ¥ are dual, we mean that they are dual under every
pair of parameters x and A.

In [[1]], equivalence and strong equivalence relations between types of PT T are defined. We adapt
these definitions for PTT.

Definition 3.4. Let A and B be two small types of PTTj.

(1) A and B are equivalent in Ug, which will be denoted by A =y, B, if for every context I' we have
that I" '_PTTl t:AIffI '_PTTl t:B.
(i) A and B are strongly equivalent, which will be denoted by A E%O B,if A =y, B and A =y, B.

Taking into account that for types A — B and A x B apply the same introduction and elimination
rules, we could think that A — B =y, A x B is a direct consequence of such fact. The following derivation
shows that x : A — B prT, (p(x),q(x)) : A X B:

x:A—B  x: B
p(x):A q(x): B
p(x),q(x)) :Ax B

>
S

However, it is necessary to include a conversion rule into PTT; in order to make (p(x),q(x)) = x and
prove that x: A — BFprT, x: A X B. Similarly, for types A x B and A + B apply the same introduction and
elimination rules, and the following derivation shows that z: A x B FprT, D(z, (x)i(x), »)i(y)) : A+ B:

(x:4) (v:B)
7:AXB i(x):A+B  j(x):A+B
D(z, (x)i(x), (n)i(y)) :A+B

However, it is necessary to include a conversion rule into PTT; in order to make D(z, (x)i(x), (y)j(y)) =z
and prove that z : A X B FprT, 2: A+ B. Analogous situations occur when trying to proving some other
apparently evident equivalences between types, which justifies the inclusion of the conversion rules
presented in Table[3linto PTTy, where W € {A — B, (ILx: A)B(x),B<A, (£x : A)B(x) }, X € {AX B,B<
A,(Xx:A)B(x),A+B,A— B,(Ilx: A)B(x)},Y € {A+B,Ax B} and Z € {(Xx: A)B(x),(TLx : A)B(x) }.
The rules in the first row of the table are called eta rules and the ones in the second row are called co-eta
rules

t: W t: X
(A)AP(tx) = 1: W (p(1).q(1) =1: X
t:Y t:7
D(r, (i), 00N =1:Y | E@ o)) =122

Table 3: Eta and co-eta conversion rules.

With the addition of the eta and co-eta conversion rules, the following strong equivalences between
types of PTT; can be proven.

7For an in-depth discussion of eta and co-eta rules in Martin-L&f type theory see [7]).
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Theorem 3.5. In PTTy, for every two small types A and B, we have the following strong equivalences:

A — B =y, B<A, AXB=y, A+B, (TILx: A)B =}, (x: A)B,

B<A=y A—B, A+B=} AXB, (Zx:A)B=}, (Tlx: A)B, A=y A

Under the propositions-as-types interpretation in [1/], equivalence and strong equivalence in PLS do
not correspond, respectively, to equivalence and strong equivalence in PTTg. For instance, we have that
FpLs (AANA) < A (and also Fpys (ANA)<sA), but (AxA)#y, A (and consequently (A x A) £y, A)

in PTTo. Moreover, while < and < are logical constants defined in the object language of PL3, the
relations =y, and =y are defined on the meta-language. The same differences occur if the propositions-
as-types interpretation is extended to PL? and PTT;. In certain way, the equivalence relation defined for
types is more exigent that the equivalence defined for formulae, demanding not only equivalence with
respect to deductibility (or inhabitation) but also demanding that their proof terms (or inhabitants) are
just the same.

In intuitionistic type theory (and other type theories) a conversion relation between types is defined
in order to make equivalent types be equal under such conversion relation, thus ensuring uniqueness in
type assignment. This is not possible in PTT; (and neither in PTTy), because in these systems there are

equivalent types that are not strongly equivalent (for instance, A — B =y, A X B but A — B %y, A X B).
When two types of PTT; are strongly equivalent they work as being the same type and ‘substitution
by strongly equivalent types is possible’, what does not happen if they are only equivalent (for instance,

we have that A — B =y, A x B, but A — B %y, A x B, consequently A — B and A X B are not inter-
substitutable in PTTq).

Theorem 3.6. Let A and B be small types of PTTj.
(i) If A=y, B, then A=y, B.

(ii) If A éU0 B, then for every context I" and small type C, when C' is the result of substituting some
occurrences of A by B in C, we have that U bprr, t : Ciff T bprr, 1:C'.

Theorem 3.7. In the universe Uy of PTT1:
(i)  is an involution.
(ii) x and + are dual type constructors under .
(iii) — and < are dual type constructors under .
(iv) T1 and ¥ are dual type constructors under .

Based on Theorem [3.7] we shall add to PTT; the equality rules in Table

As in PTT; we do not have basic typesﬁ we suppose that types of PTT; are generated by a denu-
merable set of type variables V = {a, o,...,[,Bi,...} which represent arbitrary (possibly dependent)
basic types. In types (ILx: A)B and (Xx : A)B we shall call A the generating type, considering that B(x)
is a family of types generated on A.

Definition 3.8. Let A be a type of PTTy. The dual of A, which will be denoted by A*, is the result of
exchange — and < and swap the type on the left-hand side with the type on the right-hand side of such
constructors, exchange x and +, exchange I1 and X, and exchange each type variable o by @, letting the
generating types unchanged.

8By basic types we mean types without type constructors.
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A:Uy, B:U, A:Uy B:U,
A—B=B~«A:U B<A=A—>B:U,
A: U B: Uy A: U B: Uy
AxB=A+B:U A+B=AxB:U
A:Uy, B:U, A:Uy, B:U,

(Tx:A)B=(Xx:A)B:Uy | (Zx:A)B= (Ilx:A)B: U

AUy
A=A:U

Table 4: Equality rules for the opposite type constructor.

Theorem 3.9 (Principle of duality in PTTy). Let A be a small type of PTTy, then Fp11, A = A*: Uy.

def

As it was pointed out in [1], in PTTg the type constructor — can be defined by A — B =1Ilx: A.B,
when x is not free in B, as in ITT (because A — B =, IIx : A.B, when x is not free in B). However, while
in ITT the type constructor x can be defined by A x B e (Xx:A)B, when x is not free in B, in PT Ty this
definition is not possible (because A x B Zy, (Xx : A)B). The same happens in PTT;. However, in PTT;

we have that B<A = (Lx: A)B, when x is not free in B; which allows us to define the type constructor <
def

by B<A = (Ix:A)B, when x is not free in B. This shows that co-function types in PTT; can be viewed
as a kind of product, different of the Cartesian product x B while the opposite of a co-function type is a
function type, the opposite of a Cartesian product is a disjoint union.

Moreover, as it was also pointed out in [[1], while in ITT the type constructors + and X cannot
be defined by means of the other type constructors, in PTT( the type constructor + can be defined

def

by A+ B = A x B (because A+ B =} A x B) and X can be defined by (Zx:A)B € (Ix : A)B (because
(Zx:A)B =y, (Tx : A)B). These definitions are also valid in PTT.

Taking into account the possible definitions of type constructors described in the previous paragraphs,
the sets of constructors {H, x,_}, {H,+,_}, {Z, x,_} and {Z,—l—,_} are complete for PTT;.

Duality in PTTy, and the equality rules in Table 4 also allows us to carry the opposite type con-
structors to basic types as stated below.

Definition 3.10. A type A of PTT] is in opposite normal form if the opposite constructor is only applied
to type variables in A.

Theorem 3.11. Every small type of PTT1 is equal to a type in opposite normal form.

4 Intuitive interpretations of opposite and co-function types

Martin-Lof [9, p. 5] provides four different intuitive interpretations of judgements in intuitionistic type
theory. In one of such interpretations, types are understood as ‘intentions’. However, as the notion of
intention is too vague, we shall not consider this interpretation here. The other three interpretations are
shown in Table[3

The first interpretation corresponds to the so-called propositions-as-types interpretation. With re-
spect to the second interpretation, Martin-Lo6f explains that:

9The Cartesian product in ITT is defined as A x B =; (Xx: A)B, when x is not free in B. This definition corresponds to B~<A
— def

in PTTq, because B<A = (Ex: Z)B = (Xx:A)B.
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A : Set

a:A

Inhabitation of A

A is a proposition

A is
(task)

a problem

Als a set

a is a proof (construction) of
proposition A

a is a method of solving the
problem (doing the task) A

a 1s an element of the set A

A is true

A is solvable

A is non-empty

Table 5: Interpretations of Martin-Lof’s judgements forms.

>

can be read as ‘a is

a program ... . Since programming languages have a formal notation for the program a,
but not for A, we complete the sentence with ‘...which meets the specification A’. In
Kolmogorov’s interpretation, the word problem refers to something to be done and the word
program to how to do it.

In the third interpretation types are interpreted as sets.

Under each one of the interpretations of types, constructors —, x,+,II, % have their respective in-
terpretations in ITT, which are shown in Table [6l In such table, symbols D, A,V,V, 3 are the intuition-
istic logical constants for implication, conjunction, disjunction, universal quantification and existential
quantification, respectively. Moreover, a many-sorted version of first-order intuitionistic logic must be
considered [1], and the sort of variables are indicated by superscripts. In the third column, by {B;}ca
we denote a family of problems (or problem specifications) that is parametrised by elements in A; that
is, for each x € A, we have that B, is a specification of a problem. By a general method for solving a
family of problems {B, },c4 we mean a single method that for each x € A gives a solution for B,, and by
a particular method for solving a problem in a family {B;},c4 we mean a method that for some x € A
gives a solution for B,.

Types interpreted
as propositions

Types interpreted as problems

Types interpreted as sets

A—B

AXB
A+B
(Ilx: A)B

(Xx:A)B

ADB

AAB
AVB
(Vx*)B

(I)B

Methods that transforms any
solution of A into a solution of B
Methods that solve A and B

Methods that solve A or B

General methods for solving the
family of problems {B,}ca

Particular methods for solving a
problem in the family {B,}ca

Set of functions from A to B

Cartesian product of A and B
Disjoint union of A and B

Generalised Cartesian product
of the family of sets {By}xeca

Generalised disjoint union of
the family of sets {By}reca

Table 6: Interpretation of constructors in ITT.

In PTTjy, the type constructors —, X, +,I1,X can be interpreted in the same way that in ITT, under
every interpretation of types. In the logical interpretation, logical constants correspond to those of PL]C_’.
Now, we shall explain how opposite types and co-function types can be interpreted in every interpretation

of types.
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(i) For the interpretation of types as propositions, as we mentioned in Section [2 the propositions-as-
types correspondence between PLS and PTTgy can be extended to obtain a propositions-as-types
correspondence between PL? and PTT;. Under such extended correspondence:

* The opposite type constructor corresponds to the negation of PL?. Thus, following the same inter-
pretation of negation in PLZ, the negation in PL? represents falsity and consequently the inhabita-
tion of A can be understood as ‘—A is true’ or as ‘A is false’, and a : A can be understood as ‘a is a
proof of the negation of A’ or as ‘a is a refutation of A’. Under this interpretations, the dualities in
Section 3 make sense.

* The co-function type constructor corresponds to co-implication in PL?.

(i) Under the interpretation of types as problems:

A type A can be understood as a specification of a problem whose solution excludes a solution
of A. Consequently, inhabitation of A can be understood as ‘A is solvable’ or as ‘A is unsolvable’,
and a : A can be understood as ‘a is a method that solves A’ or as ‘a is a method that shows the
unsolvability of A’. Under this interpretations, the dualities in Section [3l make sense.

* As B<A =y, A x B, thus ¢ : B<A can be understood as ‘c is a method that solves A (or shows the
unsolvability of A) and that solves B’.

(iii) Under the interpretation of types as sets:

It is harder to glimpse an intuitive interpretation for opposite types. Taking into consideration
that, if we interpret types as sets, the inhabitation of type A means that A is non-empty, we might
initially think that the duality in this case is between non-emptiness and emptiness. Accordingly,
the inhabitation of A should be interpreted as ‘A is non-empty’ or as ‘A is empty’. But it does not
make sense that the non-emptiness of a set (i.e. A) leads to the emptiness of another set (i.e. A).
However, considering an intentional conception of sets, under which it can be roughly said that a
set consists in a collection of individuals that fall under an associated concept, which we shall
denote by C4, we can understood A as the collection of individuals that fall under the ‘dual concept’
to C4. Consequently, the inhabitation of A must be understood as ‘there are individuals that fall
under the concept C4’ or as ‘there are individuals that fall under the dual concept to C4’. Under
this (somewhat blurred) intentional interpretation of sets, the dualities in Section [3] make sense.
However, taking into account Theorem for a full interpretation of types as sets we just need
to have the interpretation of opposite basic types, but in this endeavour it is necessary to define
what exactly means ‘dual concept’ (at least for concepts associated with basic types), which is not
a simple task and is left for future work.

* As B<A =y, A x B, thus ¢ : B <A can be understood as ‘c is a pair of individuals, the first one
falling under the concept C5 (or under the concept dual to C4) and the second one falling under the
concept Cp’.
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