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A Boolean logic driven Markov process (BDMP) is a dependability analysis model that defines a
continuous-time Markov chain (CTMC). This formalism has high expressive power, yet it remains
readable because its graphical representation stays close to standard fault trees. The size of a BDMP
is roughly speaking proportional to the size of the system it models, whereas the size of the CTMC
specified by this BDMP suffers from exponential growth. Thus quantifying large BDMPs can be a
challenging task. The most general method to quantify them is Monte Carlo simulation, but this may
be intractable for highly reliable systems. On the other hand, some subcategories of BDMPs can be
processed with much more efficient methods. For example, BDMPs without repairs can be trans-
lated into dynamic fault trees, a formalism accepted as an input of the STORM model checker, that
performs numerical calculations on sparse matrices, or they can be processed with the tool FIGSEQ
that explores paths going to a failure state and calculates their probabilities. BDMPs with repairs can
be quantified by FIGSEQ (BDMPs capturing quickly and completely repairable behaviors are solved
by a different algorithm), and by the I&AB (Initiator and All Barriers) method, recently published
and implemented in a prototype version of RISKSPECTRUM PSA. This tool, based exclusively on
Boolean representations looks for and quantifies minimal cut sets of the system, i.e., minimal combi-
nations of component failures that induce the loss of the system. This allows a quick quantification of
large models with repairable components, standby redundancies and some other types of dependen-
cies between components. All these quantification methods have been tried on a benchmark whose
definition was published at the MARS 2017 workshop: the model of emergency power supplies of a
nuclear power plant. In this paper, after a recall of the theoretical principles of the various quantifi-
cation methods, we compare their performances on that benchmark.

1 Introduction

EDF has developed several methods and tools for creating and quantifying discrete stochastic models. In
particular, Boolean logic driven Markov processes (BDMPs) are a powerful modeling formalism for the
dependability analysis of dynamic systems [11]. BDMPs have a graphical representation close to fault
trees, widely used in safety and dependability studies of industrial systems. While standard fault trees
are static models, in which basic events corresponding to failure modes of components are supposed to
be independent, in a BDMP, a single new graphical element, called trigger, can be used to specify various
kinds of dependencies between basic events. In fact, a BDMP specifies a dynamic model: a (potentially
very large) CTMC. A CTMC is a stochastic process Xt where the random variable X belongs to a discrete
state space D and t is a continuous time scale. We will consider only the case of homogeneous Markov
processes, characterized by the fact that Pr(Xt+s = x2 |Xt = x1)=Pr(Xs = x2 |X0 = x1), where X0 denotes
the initial state of the process, at t = 0, and x1, x2 are any states in D.

For example, the system described at the beginning of Section 2 (CTMC provided in Figure 2) can
be represented exactly by the BDMP of Figure 1, containing two triggers: the upper trigger specifies that
the subtree corresponding to the two backup components is not “activated” as long as the first component
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2 Various Ways to Quantify BDMPs

is working, and thus cannot fail. The lower trigger specifies that, within this subtree, the component 3 is
not activated as long as component 2 is working.

It is fairly easy to build BDMPs, but their quantification can require large resources, especially when
they model highly reliable repairable systems. In this paper, we are going to examine various quantifi-
cation methods and compare them on a benchmark case of medium complexity, a BDMP with 81 leaves
representing the emergency power supplies of a nuclear power plant.

First, we will look at classical methods for the quantification of CTMCs. Given the context of the
MARS workshop, the purpose is not to do a review of all existing methods potentially applicable to
BDMPs, but rather to give a shortlist of methods supported by existing tools, so that the inputs and
outputs of these tools can be put on the MARS model repository.

In addition to classical methods applicable to any CTMC, hence to BDMPs, we will present a method
which can handle repairs in event tree/fault tree models and hence starting from a BDMP requires only a
minimal translation effort: the I&AB (Initiator and All Barriers) [12] method.
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Figure 1: BDMP model.

This method provides a good compromise between the classical
Probabilistic Safety Assessment (PSA) method used for safety analyses
of nuclear power plants, which is exclusively based on Boolean mod-
els assuming the independence of basic events (except in very limited
cases), and purely dynamic, state-space based methods, particularly
those using analytical calculations on Markov chains. The price to pay
is that only the temporal dependencies between initiators and failures of
all remaining barriers are taken into account. Especially, restrictions on
ordering of barrier failures which might be specified in a BDMP model
are disregarded. The model analyzed by the I&AB algorithm includes
scenarios where all orderings of barrier failures are possible; they are
quantified and counted in to the resulting failure frequency. The princi-
ple of I&AB consists in “summarizing” the sequences leading to failure
states of a Markov chain by cut sets, each of them containing one ini-
tiating event and failures of other components, or “barriers.” Then a
failure rate (usually called frequency in the PSA context) is calculated
for each cut set, and the sum of these rates yields an equivalent failure rate for the whole system. What
makes this method so efficient is the fact that it uses closed-form formulae for cut sets quantification [12].
There is a prototype implementation of this method in the event/fault tree solver of RISKSPECTRUM [25],
a commercial software suite for safety analyses. Therefore, the I&AB analysis can benefit from a state-
of-the-art solver, efficiently decomposing probabilistic Boolean models into minimal cut sets. We show
on the benchmark case that, although less precise than other methods, I&AB can give a fair lower bound
for the system reliability and a good insight into dominating failure scenarios: these two characteristics
are needed in the evaluation of safety critical systems.

The paper is organized as follows: Sections 2 and 3 explain the principles of the different quantifi-
cation methods. Then the tools for implementing these methods are presented in Section 4. The rest
of the paper is dedicated to the case study beginning with a short recall of the benchmark definition in
Section 5. The performance comparison of various quantification methods in the context of repairable
and non-repairable version is presented in Section 5.3.1 and 5.3.2, respectively. Section 6 concludes the
work with some future directions.
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2 Classical Methods for Markov Chains

In order to illustrate differences between the calculation methods quoted in this section and the next
one dedicated to I&AB, we will take a very simple example (BDMP provided in Figure 1) and show
the interpretation of the methods in terms of state graphs. Let us consider a system consisting of three
components S1, S2, and S3, with constant failure and repair rates (λi,µi). In the perfect state, component
S1 is in operation and components S2 and S3 are in standby. As soon as S1 fails, S2 starts functioning.
When both S1 and S2 are failed, S3 replaces them. Note that this little system could also represent a cut
set of a large system.
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Figure 2: CTMC modelling the system.

A truly dynamic model, that takes all these hypotheses
into account, is the CTMC of Figure 2. We use a bold font
for components in operation and a regular font for those in
standby; numbers with bars indicate failed components. No-
tice that there is only one functioning component in each
state. In this Markov chain, the only possible path (without
loop) resulting in the top event UE 1 is successive failures
of S1, S2, and S3. Notice we do not explore further after the
first failure, therefore no transition going out of fail state is
provided.

2.1 From a Matrix Representation

The STORM model checker [20] uses numerical methods to compute metrics of CTMCs either using a
sparse matrix or symbolic representation. The symbolic methods are based on binary decision diagrams
(BDDs). BDD-based analysis of dynamic fault trees (DFTs) using STORM is a topic of further research.
As we use the sparse engine of STORM for DFT analysis, we briefly outline the matrix-based solution
of Figure 2. In a CTMC, we have a rate function r(s) = ∑s′∈S R(s,s′) (where S is the set of CTMC
states and R(s,s′) is the transition rate of moving from state s to s′) associated to each state s (see [21]
for details). This means the probability to wait t time units in state s is 1− e−r(s)·t . Thus the average
state residence time is 1

r(s) . The rates for each state of Figure 2 are r(123) = λ1, r(1̄23) = µ1 + λ2,
r(1̄2̄3) = µ2 + µ1 +λ3, r(12̄3) = µ2 +λ1, and r( f ail) = 0. Given r(s) and transition rate R(s,s′), we
define the transition probability function P(s,s′) as: P(s,s′) = R(s,s′)

r(s) . The R(s,s′) of Figure 2 is:
0 λ1 0 0 0
µ1 0 λ2 0 0
0 µ2 0 µ1 λ3
µ2 0 0 λ1 0
0 0 0 0 0


︸ ︷︷ ︸

R(s,s′)

=


0 1 0 0 0

µ1/µ1+λ2 0 λ2/µ1+λ2 0 0
0 µ2/µ2+µ1+λ3 0 µ1/µ2+µ1+λ3 λ3/µ2+µ1+λ3

µ2/µ2+λ1 0 0 λ1/µ2+λ1 0
0 0 0 0 1


︸ ︷︷ ︸

P(s,s′)

·


λ1

µ1 +λ2
µ2 +µ1 +λ3

µ2 +λ1
0


︸ ︷︷ ︸

r(s)

Intuitively speaking, the CTMC starts in its initial state, i.e., 123. Upon entering any state, the state
residence time is determined by an exponential distribution with rate r(s). Upon leaving the state s, the
probability to move to state s′ is then given by P(s,s′).

The unreliability metric on a CTMC C can be viewed as time-constrained reachability ♦≤t fail. That
is we are interested in the probability of reaching a state labelled fail (see Figure 2) within a deadline
t. In order to compute this probability we make goal states absorbing and obtain CTMC C[G] (in this
notation, G represents the set of goal states). The probability of reaching a goal state (fail in our case)



4 Various Ways to Quantify BDMPs

from state s is computed as:

P(s |= ♦≤tG)︸ ︷︷ ︸
timed reachability in C

= P(s |= ♦=tG)︸ ︷︷ ︸
timed reachability in C[G]

= ∑s′∈G ps′(t) where ps(t) is probability of being in state s at time t

This equation implies that the problem of timed-reachability is equivalent to computing the transient
probability distribution in the adapted CTMC C[G], i.e., the CTMC in which we lump the goal states into
an absorbing state. In order to compute (in a numerically stable manner [21]) the transient probability
on a CTMC we normalize it by making rates of each state equal to r, where r = maxs r(s). All the
states s′ having r(s′) < r are augmented with a self loop of transition rate (r− r(s′)). If a self loop
already exists, then its probability becomes r(s′)

r ·P(s
′,s′)+ (1− r(s′)

r ). For no self-looping transitions
P̄(s′,s′′) = r(s′)

r ·P(s
′,s′′). Once we get the normalized CTMC, we solve a system of linear differential

equation to obtain the transient probabilities p(t) = p(0) · e−rt ·∑∞
i=0

(r·t)i

i! · P̄
i. Since P̄ is a stochastic

matrix, computing its ith exponent is numerically stable, see [21] for details. STORM solves the system
of differential equations using off-the-shelf solvers (EIGEN, GMM++, Gaussian elimination and a native
solver) and Fox-Glynn computation of Poisson probabilities [17]. To summarize, STORM internally
populates matrices as sparse matrix data structure and uses matrix-vector multiplications to yield the
numeric value of interest. Notice that the transient probability vector p(t) contains probability associated
to each state and we are interested in only one element of this vector corresponding to the fail-labelled
state. The result that STORM computes is exact up to given user-defined tolerance.

2.2 Sequence Based Calculation

The tool FIGSEQ (cf. 4.2 and 5.3) implements a search and quantification of sequences leading to a
target state. Two quite different algorithms are needed: one for repairable, and one for non-repairable
models [4]. In FIGSEQ these algorithms are respectively called NRI (for no return to the initial state)
and NS (for normal sequences). In both cases, the memory consumption is modest, and can be controlled
without hindering numerical results: memory is only needed to store the dominant failure sequences that
will be sorted by decreasing probability and displayed in the output.

NRI can only give an upper bound of the unreliability [5], but this upper bound is very close to
the true value for quickly and completely repairable systems [23]. The graph of Figure 2 represents
a completely repairable system (from any state other than the system failure state, it is possible to go
back to the perfect state). It is also quickly repairable if all repair rates are larger than failure rates by
at least one order of magnitude. The upper bound given by NRI can be written as 1− e−Λ·ε·t , where
Λ is the sum of all rates of transitions leaving the initial state, and ε is the probability to go from the
initial state to a failure state of the system without returning to the initial state (hence the name NRI). ε

is calculated from transition probabilities in the discrete embedded Markov chain of the Markov process.
This amounts to neglecting completely the time spent in all degraded states. Note that the output file
of FIGSEQ associated to this paper also gives an approximation of the asymptotic unavailability of the
system, thanks to an extension of the NRI algorithm described in [13]. FIGSEQ is based on an algorithm
that explores loops in the Markov graph only once, while taking into account in the calculation of ε the
fact that these loops can be traversed any number of times. In the example of Figure 1, FIGSEQ would
only explore the three sequences: λ1,λ2,λ3;λ1,λ2,µ2;λ1,λ2,µ1,λ1. Only the first one will appear in
FIGSEQ’s results.

NS is a “brute force” exploration of sequences [16], where the tree of all sequences starting from
the initial state and going to a failure state is exhaustively explored, whether they include loops or not.
Moreover, the time spent in all states of a sequence is taken into account in the calculation of the prob-
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ability of this sequence. For a large state graph, or even for a small one if it includes loops (like in
Figure 2), this exploration must be limited by cutoff criteria (maximum length, minimum probability,
maximum number of failures and/or repairs). The NS algorithm gives an upper and a lower bound for
the unreliability. The upper bound is obtained by considering that incomplete sequences lead to a failure
state. For the model of Figure 2, NS could for example yield the following framing for unreliability
Q(t): Pr(λ1,λ2,λ3)(t) < Q(t) < Pr(λ1,λ2,λ3)(t)+Pr(λ1,λ2,µ2)(t)+Pr(λ1,λ2,µ1)(t). A tight upper
bound can be obtained only for a non-repairable system, or, if repairable for a small enough mission
time, otherwise the number of sequences that must be explored and quantified explodes.

2.3 Monte Carlo simulation

The tool YAMS (cf. 4.2 and 5.3) uses a classical “event driven” Monte Carlo simulation [8]. It simulates
a (usually large) number of sample stories (also called in other contexts traces or trials) drawn at random
and then makes statistics on these stories. For example, the unreliability at time t is the proportion of
simulated stories in which a system failure happened before t. Monte Carlo methods may suffer from
excessive simulation times due to the high reliability of the systems under study: a very large number of
simulations is required to produce a meaningful statistical picture of the failure modes. In such cases,
the most-likely failure modes dominate, and it is difficult to see the contribution of the less-likely modes.
This is illustrated in the benchmark results of Section 5.3.1: among 20 million simulations, YAMS could
find only 70 sequences repeated at least twice. This is easily explained by the results of FIGSEQ: the
sequence of rank 11 (in the list sorted by decreasing probabilities) is already more than 10 times less
probable than the first one. Sometimes the failure probability to quantify is so small, that the simple
observation of this probability is already very costly.

YAMS is a general purpose tool applicable to very complex, often non Markovian models. This is why
it does not include any variance reduction method that could speed up the calculations. Since BDMPs are
Markovian and well structured models, it would certainly be possible to find good acceleration techniques
for them.

3 The I&AB Method

Classical methods are limited, at least for repairable systems: the largest BDMPs ever processed with
FIGSEQ had about 300 basic events, and Monte Carlo simulation often leads to unacceptable CPU times
for highly reliable systems.
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Figure 3: CTMC corresponding to I&AB method.

But, by using the ability of KB3 [7] to convert
various models into static fault trees, it is possible to
transform automatically a BDMP into a RISKSPEC-
TRUM PSA model suitable for quantification by
I&AB, which offers a novel way to quantify very
large BDMPs.

The method was inspired by an insight of [15]
noting that the majority of the behavior of a fully
dynamic model is captured by the first-order rela-
tionships between the failure of functioning compo-
nents (i.e. the frequency events) and the standby components which act as barriers to the initial failure
(i.e. the remaining basic events in a cut set).
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The initiating event is modelled as a repairable event which fails with rate λi. While it is failed and under
repair (with repair rate µi), the barriers B1,B2, · · · ,Bn are assumed to immediately begin to function.
Barrier events may be either failure on-demand or failure in-function type events. Failure on-demand
events may fail with probability γ j at the occurrence of the initiating event. If they fail, they are under
repair (with repair rate µ j), and once repaired they cannot fail again (the system moves to a safe state).
Failure in function events fail with rate λk and are repaired with repair rate µk. Failure in function events
continue to operate after repair and may undergo successive cycles of failure and repair. If at any stage the
initiating event is repaired, the system moves to a safe state and cannot fail until the next initiating event.
These assumptions correspond to the state graph of Figure 3 for the three-component system of Figure 1.
In this figure, there is a gap after the initial state’s outgoing edge to show that the quantification by I&AB
is just the multiplication of the frequency of the initiating event by an (approximate) quantification of the
probability that, starting from state 1̄23 the failure state fail is reached, rather than the safe state abs.

For a large system, the I&AB method requires the determination of cut sets in which the initiating
event is distinguished from other events; each cut set is then quantified using the I&AB method like
for the little system described above. This method yields an analytic conservative approximation of the
CTMC of Figure 2 for the cut set.

The reader is referred to [12, 10] for a detailed description of the calculation. The paper [12] gives
the generic equations for the quantification of a cut set, and the procedure to obtain automatically the
relevant cut sets from a BDMP, using the fault tree generation function of KB3. The paper [10] gives
the detailed analytical formulae for the quantification of a single cut set, and their extension in the case
where there are deterministic delays.

4 Tools Used for Our Experiments

4.1 Storm Model Checker

The process of probabilistic model checking (PMC) [22] amounts to verifying a logic-based property
against a state-space based description of the system. Therefore, the steps to enable PMC involve trans-
forming the model of the system under study to an equivalent (up to an acceptable level of abstraction)
state-space based description and writing properties (defined in an appropriate logic) for this system.
The selection of the state-space model depends on the type of system (whether discrete, continuous or
having non-determinism). Prevalent in the domain of PMC are discrete time Markov chains (DTMCs),
continuous time Markov chains (CTMCs), Markov decision processes (MDPs), continuous time Markov
decision processes (CTMDPs) and Markov automata (MA) [22], where Markov automaton (MA) is a
very expressive probabilistic model subsuming DTMCs, CTMCs, MDPs, and CTMDPs.

STORM 1 [20] is a state-of-the-art probabilistic model checker capable of model checking MA and
its constituents. STORM is an open-source and freely available tool. It is quite competent and outper-
forms contemporary model checkers (on most of the benchmarks) as reported in QComp 2019 2 [19]. It
uses numeric and symbolic methods for state-space generation. The architecture of STORM is modular
and STORMPY 3 (Python bindings of STORM) can be used for reconfiguration of STORM underlying
engines/solvers and thus a quick prototyping of solution according to user requirements is possible.
STORM can parse models specified in various modeling languages, e.g. dynamic fault trees (DFTs),
GSPNs, PRISM, pGCL, JANI and DOT (explicit) format.

STORM supports DFT analysis and accepts DFT models in Galileo [26] or JSON format. Internally,

1 https://www.stormchecker.org/ 2 http://qcomp.org/competition/2019/ 3 https://moves-rwth.github.io/stormpy/

https://www.stormchecker.org/
http://qcomp.org/competition/2019/
https://moves-rwth.github.io/stormpy/
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STORM converts the DFT into an MA. The non-determinism is used to consider SPARE races. Once
the underlying state-space of the DFT is available, all kinds of measures expressible in probabilistic
temporal logic can be computed. This includes reliability, MTTF, conditional failure probabilities, etc.
Availability is not covered as this metric involves repairs and the current implementation of STORM does
not support repairable DFTs.

The first attempt to enable BDMPs analysis with STORM is through DFTs [24]. In this approach,
nine transformation rules were identified to convert a given BDMP into a DFT and then STORM DFT
support was used to compute reliability metrics of the DFT. The main limitation of this work is that it
focuses on non-repairable BDMPs. A recent work considers the conversion of repairable BDMP into
STORM inputs, with two compositional approaches. The first one is based on Markov Automata, and the
second one on generalized stochastic Petri nets (GSPN). STORM supports the JANI format [14] which is
a JSON based model interchange language to enable portability among different formal analysis tools.
A BDMP with repairs can be transformed into Markov Automata that are written in JANI format. It can
also be translated into a GSPN, another formalism natively supported by STORM. The transformation
tools are of prototypical nature. Future work will focus on efficient state-space generation for repairable
BDMPs.

4.2 The KB3 Workbench

The theoretical concepts of BDMP could be implemented easily in powerful software tools thanks to
the KB3 workbench 4 [7] based on the Figaro modeling language [6]. Figaro is object-oriented: a
system model is made of a set of hierarchically organized classes constituting a “knowledge base” or
library, and objects inheriting their characteristics (state variables, stochastic transitions and deterministic
propagation of interactions) from the classes. Figure 4 shows the architecture of the workbench:

1. Knowledge bases in Figaro, containing generic models for a category of systems like thermohy-
draulic systems or abstract objects like the leaves, gates etc. of a BDMP are developed by knowl-
edge management experts using a specialized editor: FigaroIDE 5;

2. The user loads a knowledge base in the tool KB3 which becomes a dedicated GUI and then builds
a system model with this GUI;

3. The system model is then translated into a purely textual representation, in the Figaro 0 language,
a sub-language of Figaro that enables formal verifications and transformations;

4. The Figaro 0 model can either be transformed into a fault tree and sent to RISKSPECTRUM PSA
or another fault tree processing tool or be directly processed by one of the two dynamic model
solvers FIGSEQ or YAMS. Depending on the characteristics of the Figaro 0 model, only a sub-set
of these three uses may be available.

The BDMP knowledge base not only implements all concepts of [11]: it also includes generalized
stochastic Petri nets (GSPNs). It is possible to build models essentially made of a BDMP, in interaction
with one or several GSPNs. The use of such extensions gives the tool KB3-BDMP (KB3 in which the
BDMP knowledge base is loaded) a very high modeling power and flexibility, but it may reduce the
number of possible solvers.

FIGSEQ explores paths in the Markov graph implicitly defined by the model whose behaviour is de-
scribed in a Figaro 0 file. The model must be Markovian, which means that only two kinds of transitions

4 http://sourceforge.net/projects/visualfigaro/files/VisualFigaro/ 5 http://ariste.fr/figaroide.html

http://sourceforge.net/projects/visualfigaro/files/VisualFigaro/
http://ariste.fr/figaroide.html
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are allowed: instantaneous probabilistic choices and timed transitions associated to an exponentially dis-
tributed delay. Most systems, even very reliable ones, have some weak points. The exploration of all
sequences having a probability larger than a given threshold can reveal those weak points and save the
work of exploration of sequences negligible compared to dominant sequences. Figseq always gives an
upperbound for the total probability of discarded sequences, hence the use of cutoff criteria is safe.

But there is an additional advantage if the model to be processed is a BDMP. It is the properties of
BDMP that reduce drastically the number of sequences to explore thanks to the relevant event filtering
technique, explained in detail in [11]. Here is an intuitive summary of the relevant event filtering: sup-
posing that a subsystem is failed, it is both closer to reality and good for reducing the state space size
to inhibit all failures in this subsystem, until it is repaired. Then all sequences explored by Figseq only
contain relevant events, i.e., events that make the system state closer to a global failure.

Sequence generator: FIGSEQ 

Most probable sequences 

Reliability, MTTF 

 Asymptotic availability 

 

(limited to markovian models) 

Monte Carlo simulator: YAMS 

 Most probable sequences 

 Reliability, Availability 

 Mean value of numerical  

     variables… 

Figaro 
Model 
(read-

able text) 

Formally  

defined 

semantics 

Fault tree generator: FIGARBRE 

Fault trees in XML format 

RiskSpectrum I&AB 

check_valve_1
tank_1
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motor_driven_pump_3

!

test_loss_fluid_1380
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(incl. BDMP)MP) 

KB3 

Figaro IDE 

RiskSpectrum 

Static 

Dynamic 

Figure 4: The KB3 workbench.

YAMS uses event driven, non-
accelerated Monte Carlo simulation.
Besides simplicity, the main advantage
of this method is that it can process
any Figaro 0 model, whatever the prob-
ability distributions associated to tran-
sitions (exponential, fixed time, uni-
form, Weibull, Lognormal, Gamma,
Beta etc.). The main drawback of
Monte Carlo simulation is its large
CPU consumption and its lack of pre-
cision in the case of reliable systems.

Since 2003, KB3-BDMP has been
used with FIGSEQ and YAMS for as-
sessing the reliability, availability, and
safety of many complex reconfigurable
systems of various kinds: electrical,
thermohydraulic, information systems,
etc. The possibility to quantify them with the I&AB method in RISKSPECTRUM PSA will widen their
application domain as it will lift the scalability limits of a dynamic analysis. The I&AB method can
handle full-scale PSAs of nuclear power plants [1].

4.3 RiskSpectrum PSA

RISKSPECTRUM PSA is a professional tool for constructing, maintaining and solving fault tree/event
tree models of system reliability. The tool allows for full-scale Probabilistic Safety Assessment (PSA)
of entire nuclear power plants. It is licensed for use at more than 60 % of the worlds nuclear power
plants. The calculation engine RSAT [25], based on the classical MOCUS algorithm [18], is heavily
optimised and can handle Boolean models built by combining event trees and fault trees containing tens
of thousands of basic events, and resulting in hundreds of thousands of minimal cut sets, while using
reasonable computational resources. Appropriate use of a cutoff is instrumental in the efficiency for
real-life PSA models while keeping the effect of discarding cut sets within acceptable bounds.

All I&AB quantification presented in this paper are made with an alpha version of RISKSPECTRUM

PSA/ RSAT which includes the I&AB quantification method as an add-on. The I&AB method decom-
poses the fault tree into minimal cut sets and quantifies these minimal cut sets by the calculation method



M. Bouissou, S. Khan, J.P. Katoen & P. Krcal 9

sketched in Section 3, taking repairs into account. For industrial-size models which have to be solved
with a cutoff, it is not sufficient to use the same approach during the generation of minimal cut sets as in
the static analysis. The final cut set value is not a simple product of values from the contributing basic
events. This means that for a correct application of the cutoff, a conservative estimate of the value of a
partially-generated cut set needs to be calculated each time we would like to apply the cutoff. Therefore,
a close integration of the I&AB method to the whole cut set generation and quantification process is
needed.

The I&AB quantification of minimal cut sets (MCS) lists is significantly more complex than for static
PSA quantification (which uses a simple product of basic event values). On the other hand, compared
to a fully dynamic analysis, the required computation time for a MCS list (re-)quantification becomes
very short. This brings another advantage of this method, namely a possibility of efficient importance
and uncertainty analyses in a dynamic setting. These calculations re-quantify the MCS list, which is
generated only once, for each alteration of the model.

5 Use case: emergency power supply of a nuclear power plant

5.1 System to be Studied

This use case, described in full details in [9] is a discrete system, including most difficulties one can
encounter when assessing the dependability of a complex system: re-configurations with cascades of
instantaneous probabilistic transitions, repairs, high redundancy level, common cause failures, large dif-
ferences between the lowest and highest transition rates, multi-directional interactions (because of short
circuits), looped interactions, existence of deterministic delays (due to battery depletion).

This system is a part of a French nuclear power plant. The hypotheses on the qualitative behavior
of the components and the control system are as accurate as possible, but the reliability data (failure and
repair rates) are fake, for confidentiality reasons. However, the orders of magnitude are realistic.

5.2 Model Characteristics

We used the BDMP described in [9] as the starting point of all our reliability calculations. Two kinds
of descriptions are available for this BDMP: the graphical representation given in the article itself and
the Figaro 0 file which is the basis for calculations by FIGSEQ or YAMS. Both the article and the
model can be downloaded from the MARS 2017 workshop proceedings 6. Here, we will just give a few
characteristics of the BDMP: it comprises 81 basic events, 14 AND gates, 5 PAND (priority AND) gates
and 35 OR gates. The number of states of the CTMC specified by this BDMP is unknown, but its order
of magnitude is 281 ≈ 2.42E24.

We made a few simplifying assumptions in order to keep the model relatively simple. We supposed
that the sources of the low voltage part (which, in fact, come from the high voltage part except for the
battery) are perfectly reliable: this is to avoid a loop in the structure of the BDMP. We did not model
“negligible” short-circuit propagations. The idea is the following: If a short circuit is possible (directly)
on a bus bar, taking into account, in addition, the propagation of a short circuit coming from one of its
two or three neighbors will not have a significant impact. This propagation would require the refuse to
open a circuit-breaker, an event with a low probability (< 0.001); hence, for a bus bar B the occurrence
rate of ”short circuit on a neighbor and propagation on B” is negligible compared to the rate of ”short
circuit on B”. Slightly different variants of the BDMP are necessary for different uses, because of the
6 http://arxiv.org/abs/1703.06575

http://arxiv.org/abs/1703.06575
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intrinsic limitations of methods. The fact of having variants is easy to handle with KB3 because the tool
has built-in functions for this kind of task.

In a first variant (that we call “Markov approx.” in the comparison of results), we replaced the fixed
time (one hour) of the battery depletion by an Erlang distribution: Erlang(2, 2/h). This is necessary to
keep a Markovian model and to be able to use the tool FIGSEQ which uses analytical formulae. For
the Monte Carlo simulation performed with YAMS, this approximation is not necessary. More precisely,
two options are possible in the model, corresponding to an optimistic and a pessimistic hypothesis.
Optimistic: as soon as the battery is no longer needed, it recovers its full capacity so that it can again
provide power for 1 hour. Pessimistic: if the battery is intermittently used, it will cease to provide power
as soon as the accumulated function time reaches 1 hour. This even holds for very distant uses of the
battery, for example after two different initiators. For the system studied here, this distinction makes no
difference on the results, because the influence of the battery is very low. A long repair time (1000h) is
chosen for the battery, to ensure that, after a given initiating event, the battery is not restored.

In the model to be quantified by FIGSEQ or YAMS, it is possible to take into account the fact that
the house load functioning cannot be repaired until the GRID is available. To do so, we created a single
repairman who repairs the basic events relative to the GRID and the house load functioning. Since from
the initial state, the house load functioning is not active, this repairman will always be taken first to
repair the GRID. This will inhibit the repair of the house load functioning until the GRID is repaired.
With I&AB, it is not possible to take into account this kind of dependence. So, we set the repair rate
of the two basic events corresponding to the loss on-demand and in the operation of the house load
functioning to 0. This amounts to considering that the repair is impossible after a given occurrence of an
initiating event that triggers the house load functioning and that as soon as the initiating event is repaired,
the house load functioning is available anew.

5.3 Comparison of Quantification Methods

5.3.1 Repairable

Table 1 compares the performances in terms of CPU consumption and precision of three methods, applied
to the same (except for the variants mentioned above) BDMP model. All calculations were performed
on the same laptop, with an Intel Core i5 processor.

YAMS is supposed to give the “most accurate” result, in the sense that it can process the model closest
to the real system behaviour. Unfortunately, it requires more than one hour to get a rough estimation (the
±3E−6 in the table means that the 90% confidence interval half width is 3E−6) of the system unreliability
at 104 hours. This global result is obtained with 20 million simulations. Each simulation ending with a
system failure defines a sequence; among them, so few are qualitatively identical that only 70 sequences
appeared more than once in the simulations. This is why in the table, sequences found by YAMS are said
to be among the first (i.e. most probable) ones.

The results given by FIGSEQ are based on the model using the Markov approximation described in
the previous paragraph. This approximation has a negligible impact: the best estimate by FIGSEQ is very
close to the result of YAMS. FIGSEQ yields the most accurate qualitative results (in the model checking
community, this would rather be called diagnostic feedback). In only 20 seconds, it finds the 106 most
probable sequences (or paths in the Markov chain) leading to the failure of the system. For I&AB, the
implementation available now in RISKSPECTRUM PSA is not able to take deterministic failures into
account, this is why we also used the Markov approximation. The calculations by RISKSPECTRUM

PSA are by far the fastest ones, especially with the use of a cutoff. It is then possible to obtain a precise
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global result and more than one thousand dominant cut sets in less than one second! The price to pay for
this rapidity is a loss of precision: the results are excessively conservative.

Table 1: Comparison of various quantification methods on the benchmark
Calculation CPU Cutoff Prob. Unrel. at 104 Qualitative

type Time at 104 h best estimate #cut sets/sequences
FIGSEQ (Markov
approximation)

20 s 1E−8 3.48E−5 106 first seq.
3 m 10 s 1E−10 3.84E−5 1266 first seq.

YAMS (batteries = exact 1 h) 82 m 3.80E−5±3E−6 70 seq. among first.
RISKSPECTRUM I&AB
(Markov approximation)

19 s 0 1.35E−4 467474 cut sets
1 s 1E−10 1.34E−4 1187 first

However, I&AB gives the correct dominant scenarios as it can be seen in the result files associated
to this paper. It also correctly accounts for changes in reliability data. For example, in the following
sensitivity analysis we change only the mean repair time of the loss of offsite power initiator (by a
common cause failure on the two lines), dividing it by a factor 10. The new results are in Table 2.

Table 2: Effects of a sensitivity analysis: division by 10 of the mean repair time of loss of offsite power
Calculation CPU Cutoff Prob. Unrel. at 104 Qualitative

type Time at 104 h best estimate #cut sets/sequences
FIGSEQ (Markov approximation) 8 m 1E−11 3.85E−6 2498 first seq.
YAMS (batteries = exactly 1 h) At least 10 h
RISKSPECTRUM I&AB (Markov approx.) 7 s 1E−11 1.46E−5 2448 first cut sets

The Monte Carlo simulation is no longer usable on a laptop: it would require hundreds of hours to
obtain a few sequences in addition to the global reliability estimator. The ratio of the I&AB result divided
by the FIGSEQ result changes from 3.9 to 3.3: I&AB becomes less conservative. In fact, this example is
not favorable to I&AB, because the dominant sequences involve several failures that can happen only in
a given sequence, whereas I&AB considers they can happen in any order. On other examples, we could
find that I&AB gives a result much closer to the result of FIGSEQ. One specific case is a model of a data
center supply very similar to the high voltage part of the current benchmark [1]. The main difference is
that in case of a loss of offsite power, the diesel generators start at once: there is no equivalent of house
load functioning. For that example of data center supply, the ratio of the equivalent failure rate found by
I&AB divided by the FIGSEQ result is only 1.03.

5.3.2 Non-repairable

As explained in Section 4.1, the STORM model checker cannot directly process BDMPs. But since
it can process DFTs, a formalism suitable for non-repairable systems, a non-repairable version of the
benchmark BDMP was used as a new test case. Thanks to the translation rules detailed in [24] it was
possible to translate it into a DFT and quantify it with STORM. This made it possible to compare STORM

performances with those of FIGSEQ, YAMS and RISKSPECTRUM PSA on that non-repairable model.
Since the system is not repairable, there is no longer an equivalent failure rate for the whole system, and
it becomes interesting to compute the unreliability at various mission times. The results are displayed in
Table 3.
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Table 3: Comparison of various quantification methods on the non-repairable version of benchmark
Calculation Mission CPU Cutoff Unreliability Qualitative (No. of Illustration of

type time time prob. (upper bound) sequences / cut sets) computation effort

FIGSEQ (Markov
approximation)

100 h 134 s 1E−12 3.448E−6 (3.453E−6) 3674 first sequences 229432 seq. explored
1000 h 23 s 1E−9 7.986E−3 (7.993E−3) 8567 first sequences 210720 seq. explored

10000 h 32 s 1E−7 3.59E−1 (3.61E−1) 12921 first sequences 329656 seq. explored

YAMS (Markov
approximation)

100 h 55 m Not relevant
for Monte
Carlo

3.23E−6 (±3E−7) 49 seq. among the first 1E8 simulation stories
1000 h 83 s 8.05E−3 (±2E−4) 149 seq. among the first 1E6 simulation stories

10000 h 19 s 3.59E−1 (±3E−3) 852 seq. among the first 1E5 simulation stories

STORM sparse
engine

100 h 10 s acc. up to
machine
precision

3.495E−6
Not supported by
STORM yet

Model Type : CTMC
States : 16386
Transitions : 138065

1000 h 10.4 s 7.925E−3

10000 h 17.2 s 3.604E−1

RISKSPECTRUM

(BDD Calc. from
min. content of seq.)

100 h < 1 s No cutoff
for MCS
generation

2.812E−5 53137 cut sets 118 BDD nodes
1000 h < 1 s 2.740E−2 53137 cut sets 148 BDD nodes

10000 h < 1 s 4.071E−1 53137 cut sets 390 BDD nodes

Let us first compare the calculations that take into account all dynamic features of the non-repairable
BDMP (above the double line in the table). The STORM results are always in the interval given by
FIGSEQ. This indicates that the translation rules from the BDMP to DFT worked well. STORM is
both faster and more precise than FIGSEQ but it does not give any qualitative result. It is interesting to
have both types of calculation, because STORM could serve for an uncertainty propagation calculation
based on repeated calculations with failure rates values sampled from distributions representing their
uncertainties (this technique is available in RISKSPECTRUM PSA). The calculation by Monte Carlo
simulation with YAMS is obviously the worst of all three techniques: long calculation times (when
the probability is small), imprecise numerical result and imprecise qualitative results (the number of
sequences indicated is for sequences found at least twice in the simulations).

The calculations by RISKSPECTRUM PSA differ from the other tools in one important aspect. That is
it solves a translation of the dynamic BDMP model into a static fault tree preserving the minimal content
of sequences (as minimal cut sets). Especially, the order of events is not considered. This leads to much
higher unreliability values at all mission times. As the mission time increases, the probability of basic
events increases. The conditions for a good approximation by the sum of cut set probabilities or Min
Cut Upper Bound are no longer preserved. RISKSPECTRUM PSA offers a quantification algorithm for
minimal cut set lists based on binary decision diagrams (the MCS BDD algorithm [3, 2]) that overcomes
this issue. It becomes more and more difficult to compare sequences in the CTMC (their probabilities
are always additive because by construction they are mutually exclusive) with cut sets as the mission
time increases. Probability of a sequence in the CTMC corresponds to the failure of the components
appearing in the sequence (in a given order) and nothing else. A cut set probability corresponds to the
failure of the components in the cut set in any order, whatever happens with other components. For the
shortest mission time in the current benchmark (100 h) the comparison is easier because the “and nothing
else” of the sequence has a probability close to 1. Then only the question of the order of events remains.

In the case of the benchmark, all predominant cut sets have 4 or 5 failures in function. The quan-
tification of the cut set implicitly considers that they can happen in any order, but in fact, only one or
two sequences are possible. For example, all first cut sets are variants of the following scenario: loss
of connection between the nuclear power plant and the grid, failure of house load mode, failure of the
two diesel generators A and B, failure of the ultimate backup by the generator called TAC. Such a cut
set corresponds to only 2 sequences (the failures of diesel generators can happen in any order, but all
other events can happen only in a given order). If there was no constraint at all on events order, the cut
set would correspond to 5! = 120 sequences. The difference would be much smaller if the dominant
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sequences contained only one or two failures. This shows the benefit of using dynamic methods if the
order of failures plays an important role. Note, that sequences of events occurring in a given order in a
CTMC are conceptually different from sequences in event trees.

6 Conclusion

In this article we have compared the performances of various analytical methods and of Monte Carlo
simulation on a benchmark that was published at the 2017 MARS workshop. The initial model is a
BDMP of medium size. Methods based on Boolean approximations show the greatest scalability, but
they cannot take the highly sequential behaviour of the model into account, which explains pessimistic
unreliability estimates. Monte Carlo simulation shows poor performances on this case (high CPU con-
sumption, imprecise determination of dominant scenarios), because the probabilities to estimate are very
small. Analytical calculations based on sequences or on a matrix generated from the BDMP perform
well, but their scalability is limited. Future work will be about translation of repairable BDMPs into
formalisms acceptable by STORM, in order to improve that scalability.
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