
A. Fehnker and H. Garavel (Eds.):
Models for Formal Analysis of Real Systems (MARS 2020)
EPTCS 316, 2020, pp. 134–148, doi:10.4204/EPTCS.316.6

c© M.J. Friese & D. Nowotka
This work is licensed under the
Creative Commons Attribution License.

Estimating End-to-End Latencies in Automotive
Cyber-physical Systems

Max J. Friese
Mercedes-Benz AG

Sindelfingen, Germany
Department of Computer Science

Kiel University
Kiel, Germany

max jonas.friese@daimler.com

Dirk Nowotka
Department of Computer Science

Kiel University
Kiel, Germany

dn@informatik.uni-kiel.de

Controller networks in today’s automotive systems consist of more than 100 ECUs connected by var-
ious bus protocols. Seamless operation of the entire system requires a well-orchestrated interaction
of these ECUs. Consequently, to ensure safety and comfort, a performance analysis is an inherent
part of the engineering process. Conducting such an analysis manually is expensive, slow, and error
prone. Tool support is therefore crucial, and a number of approaches have been presented. However,
most work is limited to either network latencies or software latencies which results in an analysis gap
at the transition between different layers of the communication stack. The work presented here in-
troduces an approach to close this gap. Furthermore, we discuss the integration of different methods
to obtain an end-to-end latency analysis.

1 Introduction

Distributed cyber-physical systems (CPS) are the key for many technology developments in today’s
connected world, one prominent example is the development of automated vehicles. Advancing classic
embedded computing, CPS stand for the integration of computing and physical processes in networks
of heterogeneous components. Due to their distributed nature, system functions span over multiple
devices and possibly contain feedback loops [22]. Two aspects need to be considered to assess the
correct behavior of a CPS with regards to a system function: how does the system react and when does
the system react. More precisely, if a certain stimulus occurs, the system has to react correctly and at the
correct time, e.g. an automated car should start to brake immediately, if its sensors detect a pedestrian on
the road. Consequently, the time to react is part of the requirements for the correct behavior.

Accordingly, the specification and validation of the temporal behavior of CPS is an important part of
system’s engineering. The latter is getting considerably more complex due to the continuing growth of
hard- and software architectures. The former usually starts with an end-to-end time budget for a system
function, e.g. the backup camera should show an image within 300ms after the car was put into reverse.
To verify that the system meets the timing constraints for a function, one or more cause-effect chains are
analyzed. Each cause-effect chain describes one flow of data through the system in detail. The cause-
effect chains are further subdivided and broken down into smaller parts, e.g. the sub-chain within one
electronic control unit (ECU). Each sub-chain contributes to the end-to-end latency and receives a share
of the timing budget accordingly. The implementer of the different sub-chains have to assure that their
part of the chain meets its timing constraints.

The latency caused within the cyber part of the system falls into one of the following categories: (1)
latencies due to processing of software, or (2) latencies due to network communication. For the software

http://dx.doi.org/10.4204/EPTCS.316.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

M.J. Friese & D. Nowotka 135

part, the possible core execution times of the involved tasks and the dataflow through the tasks is analyzed
to find the path which yields the worst-case latency. The latency induced by network communication is
the sum of the so-called transmission and the so-called propagation delay. In summary: the analysis of
software latencies ends at the last write access on some variable in global memory and the analysis of
network latencies starts at the transmission of a network frame.

In this work we argue that meeting local timing constraints is no sufficiency for meeting end-to-end
timing constraints if partitioning of the chain is not done carefully. In this context we call attention to an
important aspect currently not sufficiently considered in the integration of software- and network analy-
ses. It originates in the need for increased bandwidth which lead to a relaxation in the static mapping of
protocol data units (PDUs) into their encapsulating PDUs. To increase flexibility and thereby save net-
work resources, e.g. by sending two encapsulated PDUs alternately, PDU mapping is done dynamically.
The actual mapping is determined at runtime. On the data link layer, PDUs are triggered for sending
either when full, when certain timers expire, or when a higher-layer PDU needs to be sent immediately.
The combination of event-based packing, immediate sending, and dynamic mapping leads to complex
situations where it is not directly evident whether an updated value is sent with the very next encapsu-
lating PDU. The impacts of these mechanisms on end-to-end timings are currently neither considered
in software-focused nor in network-focused analyses, leaving a gap in the methodology for formally
derived, safe end-to-end estimations.

1.1 Contribution

The contributions of this paper are twofold. First, we present an analysis model and technique for the
temporal behavior of PDU-transmission mechanisms, which are commonly used in automotive CPS.
Secondly, we discuss the integration of formal methods to obtain end-to-end estimations. In particular
we

• introduce timing models and show how two or more can be combined to model the composite of
temporal behaviors.

• present an approach to encode different trigger mechanisms for signals, PDUs and frames to obtain
safe estimations on their impact on end-to-end latencies.

• describe how to integrate this approach with analyses for software-level estimations to obtain end-
to-end latencies.

• report the applicability on an industrial-scale use case.

1.2 Outline

This paper is organized as follows: related work is presented in the next section. Subsequently, we
describe the systems considered here in Section 3. In Section 4.2 we present our approach to estimate the
impact of different PDU triggering mechanisms on end-to-end timing. We use CAN-FD as an example
for the data link layer and show how to plug-in respective analyses. In Section 4.4 we discuss how to
integrate the approach of the previous section with existing approaches for the software part to obtain
an end-to-end latency. To demonstrate applicability, we report the application of the approach on an
automotive use case in Section 5. Finally, in Section 6 and Section 7 we provide an insight into planned
future work and conclude.

136 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

2 Related Work

Related work comes from two categories. Firstly, these are approaches to estimate the latency due to net-
work communication, i.e. the delay between a network controller of one ECU and the network controller
of the next ECU in the chain. Respective analyses have been presented for different automotive field
busses [8, 24]. So-called holistic approaches are additionally concerned with parts of the ECU’s soft-
ware [19]. However, currently they rely on single-core analyses [20]. Earlier, so-called compositional
approaches were developed to cope complexity and therefore make analysis applicable. In compositional
performance analysis (CPA) different local scheduling analyses are combined to obtain end-to-end esti-
mations [25]. CPA got a lot of research attention, and was used e.g. for the end-to-end response time
analysis in automotive systems [27]. However, in its basic form, CPA suffers from the problem that mul-
tiple worst-cases are possibly considered simultaneously although they can not occur at the same time.
Recent work in the area underlines applicability for industrial-scale use cases [13, 28] and improves, i.e.
reduces, pessimism of the estimations [18].

Related work from the second category is concerned with estimations for the time needed to propa-
gate signal changes through the software within an ECUs. For automotive CPS, this analysis is performed
by analyzing the end-to-end response time of task chains. Two types of task chains are distinguished.
On the one hand, there are chains where tasks activate their successors based on events generated by
changes in signal values [26]. These chains are also referred to as functional chains [14]. On the other
hand, there are chains through tasks activated by periodic timers; these are so-called cause-effect chains.
For the sake of simplicity, we will refer to both kinds of chains as cause-effect chains in this work. Two
latency semantics are of interest for cause-effect chains: response time is the time needed to react to a
certain input, and data age is the time span an input has still an impact on the output [11]. Like functional
chains, cause-effect chains in software are well-studied in terms of algorithmic approaches to estimate
latencies [3, 4]. Other approaches to tackle this problem include encoding of the system’s behavior in
integer linear programming [5, 21] and constraint programming [12]. Furthermore, the work around the
logical execution time paradigm (LET) [16] must be attributed, as it aims to simplify timing analysis
through deterministic behavior, also on system-level [10]. Corresponding work was done in researching
LETs potential to determine end-to-end latencies [15, 23].

However, integrating models from different development stages, and therefore with different levels of
details to determine end-to-end latencies in all stages of systems engineering is still an ongoing challenge.
The constraint programming (CP) approach followed in this paper is especially promising because the
level of detail can easily adjusted by adding or removing constraints.

3 System Model

Network clusters in modern automotive systems are usually divided into multiple domains focused on a
set of functionalities of the car, e.g. powertrain or infotainment [17]. Each domain comprises a set of
controllers collaborating to implement system functions. Additionally, gateway controllers encapsulate
the communication with other domains. The topology of the network is also reflected in the commu-
nication design. Communication can be divided into two categories. On the one hand there are classic
field busses like LIN, CAN or FlexRay which are compatible with static resource allocation of real-time
embedded systems. In current architectures they are commonly used to interconnect ECUs within a do-
main. Due the increasing amount of bandwidth-intense applications, like e.g. image recognition, domain
controllers, on the other hand, are connected via Ethernet backbones. The Ethernet deployment coincides

M.J. Friese & D. Nowotka 137

ECU-A

BSW
RTE

ASW

IO MEM COM

x

R-A0 R-A1

ECU-B

BSW
RTE

ASW

COM MEM IO

x

R-B0 R-B1

BUS
Frame-0 PDU-0 PDU-1 PDU-2 PDU-3

Figure 1: Cause-effect Chain (green) spanning over two ECUs

with a paradigm shift from signal-based to service-oriented communication, especially for inter-domain
communication. In signal-based communication the possible data exchange between ECUs is static and
concluded after design, whereas service-oriented communication allows to extend communication dy-
namically. However, both paradigms have in common that PDUs are used for the vertical communication
through the stack within an ECU. Different mechanisms exists to trigger the transmission of PDUs. After
a PDU was triggered, e.g. by a timeout, it is encapsulated in a lower-layer PDU. Once the data link layer
is reached, PDUs are put on the physical medium by the communication controller of the ECU. Nowa-
days, for some PDUs, encapsulation is decided dynamically at runtime. As a consequence, an update
in a signal value is not necessarily sent in the next available PDU if another PDU is first in line. The
postponed PDU is sent with a subsequent transmission. This leads to complex scenarios aggravating a
manual verification of the end-to-end latency constraints of distributed system functions.

Within an ECUs the data flow for computing a system function passes multiple so-called runnables
as depicted in Figure 1 (e.g. R-A0). A runnable is a piece of software dedicated to the computation
to parts of the overall functionality. For processing, multiple runnables are combined to a task. Task
sets of automotive ECUs comprise multiple, periodically activated tasks with different rates and offsets.
Additionally, sporadically activated task handle interrupts, e.g. for sensor readings. The signals used to
exchange values are stored in variables located in a global memory.

At the bound of the ECU and the network, dedicated communication tasks copy data from global
memory to the buffer of the communication controller if transmission requested. In this work, we divide
the cause-effect chains associated to a time-constrained system function into two kinds of sub-chains: (1)
communication task to communication task via network and (2) communication task to communication
task via task chain. The course of events for both kind of chain is mainly driven the possible time
intervals memory is accessed by the runnables of a task. In this work, we consider implicit data reception
and transmission on task-level [2], meaning that a task receives all signal values when it is activated and
that all signal values are written collectively when the task terminates.

We describe how to obtain estimations for the first kind of sub-chain in Section 4.2. The problem of
estimating latencies for task chains is well researched. We briefly revisit the problem in Section 4.3 in
order to discuss how to obtain overall end-to-end latencies in Section 4.4.

4 Formal abstractions

The temporal behavior of the system with regard to a cause-effect chain depends on the possible time
intervals for different events, e.g. a PDU being triggered for sending. The trigger mechanism for PDUs

138 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

are described in detail in the next section. However, less specifically speaking, a PDU can be triggered by
a timer or due to a value change in a signal. As described above, the latter depends on the points of time
a task produces an update for the signal value. Although signals are likely to be produced by a dedicated
runnable and therefore written by a single task, in general it is possible that multiple tasks write a signal.
To describe and combine intervals of time in which this might happen, we introduce the notion of Timing
Models. Our formalization is based on a discrete and finite time model: let T= {Tmin, . . . ,Tmax } ⊆N be
the time domain with Tmin and Tmax as minimum and maximum valid points of time. Furthermore, let
Tsup = sup(T) be a value to indicate invalid points of time.

4.1 Timing Models

To model the temporal behavior of the system that is being analyzed, we consider different events, like
e.g. a PDU being triggered for sending. Similar to the Arrival Curves introduced in [7] we use Timing
Models to describe the nature of how events occur. However, unlike the Cumulative Function of Network
Calculus [6] or the Interval Bound Functions of Real-time Calculus [29] we do not use them to derive
request and response counts but use them to bound the interval of time in which an event might occur
within T.
Definition 1 (Timing Model). A timing model is a function m : N→N×N which maps the occurences of
an event to the first and the last possible point of time the event might occur. For elements of the codomain
we use the projection functions π1 and π2 to access the respective element, e.g. let p = (a,b) ∈ N×N,
then π1(p) = a and π2(p) = b.

We distinguish two types of timing models. Firstly, Periodic Timing Models are used to describe
events triggered by periodic clocks. The time in which these events might occur does not vary. Secondly,
Sporadic Timing Models allow for the specification of temporally less predetermined events. Here, the
time span for an occurrence of the event can only be be narrowed down to a minimum and maximum
interarrival time.
Definition 2 (Periodic Timing Models). A periodic timing model tP

o,p,n : N→ N×N is a timing model
parameterized with three arguments o ∈ N and p,n ∈ N>0 with tP

o,p,n(i) = (ai,ai) where ai = o+
⌈ i

n

⌉
· p

for all i ∈ N. The family of periodic timing models is defined as TMP = { to,p,n | o ∈ N, p,n ∈ N>0 }.
Definition 3 (Sporadic Timing Models). A sporadic timing model tS

l,u,n : N→ N×N is a timing model
parameterized with three arguments l,n ∈ N>0 and u ∈ N>l with tS

l,u,o(i) = (li,ui) where

li =
⌈ i

n

⌉
· l and ui =

(⌈ i
n

⌉
+1
)
·u

for all i ∈ N. The family sporadic timing models is defined as TMS = { tS
l,u,n | l,n ∈ N>0,u ∈ N>l }

Let TM = TMP∪TMS be the set of timing models. Finally, to combine multiple possible time
intervals for an event, we define the t-operator for timing models.
Definition 4 (Union of Timing Models). Let t0, t1 ∈ TM be timing models. To define the union of t0 and
t1, formally t0t t1, we distinguish three cases:
Case 1 t0 = tP

o0,p0,n0
is a periodic timing model and t1 = tP

o1,p1,n1
is a periodic timing model.

to0,p0 t to1,p1 =

{
tP
o,p′,n′ if o0 = o1∧mod(pmax, pmin) = 0

tS
l,u,n′ else

with pmin =min{ p0, p1 }, pmax =max{ p0, p1 }, l =min{ p0, p1 } , u=max{o0,o1 }+ pmax, n′= n0+n1,
and p′ = pmin.

M.J. Friese & D. Nowotka 139

Case 2 t0 = tS
l,u,n0

is a sporadic timing model and t1 = tP
o,p,n1

is a periodic timing model.

tS
l,u,n0
t tP

o,p,n1
= tP

o,p,n1
t tS

l,u,n0
= tS

l′,u′,n′

with l′ = min{ l, p}, u′ = max{o+ p,u}, and n′ = n0 +n1.

Case 3 t0 = tS
l0,u0,n0

is a sporadic timing model and t1 = tS
l1,u1,n1

is a sporadic timing model.

tS
l0,u0,n0

t tS
l1,u1,n1

= tS
l′,u′,n′

with l′ = min({ l0, l1, |l0− l1|}), u′ = max({u0,u1 }), and n′ = n0 +n1.

The t-operator allows us to combine arbitrary timing models for events. This is particularly suitable
for describing all possible points of time at which a signal value might be updated. Consider a signal
written by two runnables processed in two different tasks. One task is activated every 5ms and without
an offset and the other one is activated every 10ms with an offset of 2.5ms. This means, updates of the
signal will happen after the following points of time:
first:0ms second:2.5ms third:5ms fourth:10ms fifth:12.5ms sixth:15ms.

This pattern is safely approximated by the sporadic activation pattern tS
5000,12500,2 which gives the

following possible intervals for the ith update:

tS
5000,12500,2(1) = (0,12500) tS

5000,12500,2(2) = (0,12500) tS
5000,12500,2(3) = (5000,25000)

tS
5000,12500,2(4) = (5000,25000) tS

5000,12500,2(5) = (10000,37500) tS
5000,12500,2(6) = (10000,37500)

Safely here means, that the possible point of time for the nth activation lies within the value of the
timing model for n. In the next section we use this to describe the complex temporal behavior of different
PDU triggers based on the potential updates of signal values.

4.2 Estimations on Network-level

Based on the system model described in Section 3 our formal model comprises four types of elements:
(1) signals, (2) PDUs, (3) frames and (4) communication tasks. For each element type we distinguish
two types of variables: (1) input parameter, and (2) modeling variables. The input parameter of a task
include a timing model for its activation and a deadline. The input parameter for a signal consists of
a single timing model and a reference to a PDU. Signal changes are generated by the runnables of
the transmitting ECU. For each producing runnable, a timing model describing the points of time the
signal value possibly changes is derived from the activation model of the task. These timing models are
summed up with the help of the t-operation. The resulting timing model is the aforementioned input.
The input parameters of a PDU are more diverse. First of all, the different triggering options have to be
considered. Besides a direct triggering by contained signals, this can be a threshold for the filling level,
and a timeout. Furthermore, for PDUs which are encapsulated in dynamically filled container PDUs,
the collection semantics are needed to describe possible behaviors. The collection semantics can either
be last-is-best or queued. Queued collection semantics guarantees that every instance of the contained
PDU is visible on the wire (cf. [1]). Thirdly, the maximum length and the size of the threshold for
triggering need to be known to determine a triggering due to the filling level. Finally, a reference to the
encapsulating frame is included in the set of input parameters for a PDU. The input parameters of a frame
comprise its priority for arbitration, its length and a reference to the communication task responsible for
its transmission. These parameters are specific for CAN FD and might need to be adjusted for other
physical layer protocols.

140 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

Table 1: Time Variables of Network Model Elements
Element Variable Event description
Signal ϕS

i, j The time span for the jth change of signal i
PDU αP

i, j The time span in which the jth instance of PDU i is triggered
PDU σP

i, j The time span in which the jth instance of PDU i is moved to the lower level buffer
Frame αF

i, j The time span in which the jth instance of frame i is triggered
Frame σF

i, j The time span in which the jth instance of frame i is tried to be sent by its sending communication task
Frame εF

i, j The time span in which the jth instance of frame i is fully received by its receiving communication task
Task αT

i, j The time span for the activation of the jth instance of task i
Task εT

i, j The time span for the completion of the jth instance of task i

Besides its input parameters, each model element has different types of modeling variables subjected
to the modeling constraints. Firstly, there a the time related variables listed in Table 1. Secondly, each
instance of any element is encapsulated in an instance of a lower-layer element. This is modeled in the
parameter n for the types signal (nS), PDU (nP) and frame (nF). It contains a reference to the instance of
the container for each occurrence of the respective element. For frames the semantic is slightly different
as n contains the instance of the transmitting communication task in this case. Thirdly, in order to obtain
safe estimations, a minimum amount of occurrences of each element needs to be considered. Therefore,
assume that T covers a sufficient period of time in which all combinations of relative offsets between
occurrences of the timing models appear. Bounds on the length of this period are discussed below. The
maximum number of occurrences can be computed for most model elements, if this time interval is fixed.
For all the remaining elements, i.e. the container PDUs, the number of occurrences has to be derived
from the occurrences of the contained elements. Let ΩS

i = {occ minS
i , . . . ,occ maxS

i } be the index set
for the occurrences of signal i. Let ΩP, ΩF , and ΩT hold the index set of occurrences for PDUs, frames,
and tasks respectively.

The update of a signal value is modeled with the help of a timing model as described above. Let tS
i

be the timing model of signal i. Note that tS
i can be sporadic or periodic. The S indicates that it belongs

to a signal here. The following constraint is added to the model for all j ∈ΩS
i :

ϕ
S
i, j ≥ π1

(
tS
i (j)

)
∧ϕ

S
i, j ≤ π2

(
tS
i (j)

)
(1)

When a signal value was updated, the so-called update bit is set. The update of the value then
eventually triggers the sending of a PDU. However, since we are interested in the transmission time
for the changed value, we also need to model in which occurrence of its designated container (PDUS)
the update is transmitted. This is done by adding the following constraints for all signals i and their
occurrences j ∈ΩS

i :

∀k ∈Ω
P
` : (ϕS

i, j > σ
P
`,k−1∧ϕ

S
i, j ≤ σ

P
`,k)→ (nS

i, j = k) . (2)

As described above two different events have to be considered for the triggering of PDUs : triggering
due to timeout modeled by αP−T , and triggering due to transmission request by containees modeled by
αP−E . If no clock triggering is configured, αP−T is set to Tsup. Analogously, if a PDU is not triggered
by any containee, αP−E is set to Tsup. The containees of a non-container PDU i are signals. Accordingly,
the following constraint is added for all j ∈ΩP

i :

α
P−E
i, j = min{ϕ

S
`,k | ` ∈ sigsP

i ,k ∈Ω
S
` ∧nS

`,k = j} . (3)

M.J. Friese & D. Nowotka 141

For container PDUs, possibilities for triggering are more complex. The following points of time are
considered conditionally: the point of time the first containee was triggered α

P−C1
i, j , the point of time the

first containee was triggered plus the timeout of the container α
P−CT
i, j , and the point of time the length of

the contained PDUs exceeds the threshold of the container α
P−Cn
i, j . To detect a triggering of a container

PDU due to exceeding of the threshold, the filling level needs to be determined. To this end, we introduce
an additional variable foreach instance j of a PDU i, lenP

i, j, which contains the total length of the PDU.
Additionally, for a pair of PDUs i and j and each instance j of i and k of ` we add an auxiliary variable
cP

i, j,`,k which holds 1 if k is contained in j and 0 otherwise, i.e.

cP
i, j,`,k =

{
1 if ` ∈ PDUP

i ∧nP
`,k = j

0 else
(4)

for all PDUs i, ` and j ∈ΩP
i , k ∈ΩL

i .
Depending on the collection semantics, an instance of a PDU might be overwritten if its container is

not send between two updates. This means, that cP is 1 for two instances of the contained PDU. To model
the fact that an instance k of a PDU ` might be overwritten by a subsequent instance in the instance j of
its container PDU i, we add an additional variable oP

i, j,`,k with

oP
i, j,`,k =

{
1 if cP

i, j,`,k = 1∧∃k′ ∈ΩP
` : k′ > k∧nP

`,k′ = j

0 else
(5)

for all PDUs i, ` and j ∈ΩP
i , k ∈ΩP

` .
The length of a non-container PDU is fixed, based on the contained signals and a fixed-size header.

The length of a container PDU depends on its PDU layout. If it has a static layout, the length is fixed.
Otherwise, if it has a dynamic layout, the collection semantics of the contained PDUs is the crucial factor.
If the collection semantic is last-is-best the content in the container can be overwritten. Otherwise, if the
collection semantic is queued, multiple instances of the same PDU can be transmitted in one container.
Note, that we assume that containers cannot be nested. The actual length of a container can therefore
finally be calculated by summing the length of all not-overwritten containee instances, i.e.

lenP
i, j = lengthP−H

i + ∑
`∈PDUP

i ,
k∈ΩP

`

(1−oP
i, j,`,k) · cP

i, j,`,k · lenP
i, j (6)

for all PDUs i, ` and j ∈ ΩP
i , k ∈ ΩP

` where lengthP−H
i is the length of the header. In order to ensure

correct modeling of the collection semantics, the following constraints are added conditionally:

ni, j ≤ ni, j+1 if i is collected last-is-best (7)

ni, j < ni, j+1 if i is collected queued (8)

To determine the possible point of time for the triggering of a container PDU, the minimum of the
values is used:

α
P
i, j = min{α

P−C1
i, j ,αP−CT

i, j ,αP−Cn
i, j } . (9)

If one of the triggers is not applicable, the respective value is set to Tsup. This means, if αP
i, j = Tsup the

instance of the container PDU has not been triggered and must not be considered further if not triggered

142 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

due to a timeout. Finally, the triggering of an instance j of an PDU i happens at the first point of time it
is possibly triggered by any of the described triggers, i.e.

α
P
i, j = min{α

P−E
i, j ,αP−T

i, j } (10)

for all PDUs i and PDU occurrences j ∈ΩP
i .

Given αP
i, j it can be described in which occurrences of the encapsulating PDU (PDUP) j is possi-

bly transmitted. However, since we are considering container PDUs with dynamic layouts decided at
runtime, a PDU is not necessarily send within the next instance of a container. In other words, if the con-
tainer PDU is already filled to capacity, the containee has to wait until the next instance is sent. To model
this, we constrain all instances of the container which are sent between the instance encapsulating the an
instance j of an PDU i and the point of time j was triggered to be too full to contain j. The variable nP

i, j
holds index of the encapsulating instance for all PDUs i and j ∈ΩP

i . The variable fnP
i, j holds the index of

the first instance which is a candidate for encapsulation, i.e. for all PDUs i and PDU occurrences j ∈ΩP
i

which are mapped to a container PDU `,

fnP
i, j = min

(
{occ maxP

` }∪{k | k ∈Ω
P
` ∧α

P
`,k ≥ α

P
i, j }
)

. (11)

If the collection semantic of the PDU i into the container PDU ` is queued, the following constraint
is added for each occurrence j in j ∈ΩP

i :

∀k ∈Ω
P
` : (k ≥ fnP

i, j ∧ k > nP
i, j−1∧ k < nP

i, j])→ (lenP
`,k + lenP

i, j > lengthP
`). (12)

Otherwise, if the collection semantic of the PDU i into the container PDU ` is last-is-best, the constraints
for j in j ∈ ΩP

i are depending on whether an instance of the same PDU is already part of the container.
If this is the case, the content would simply be overwritten. Otherwise, if there exists no j′ ∈ ΩP

i \{ j}
such that nP

i, j′ = k, the following constraint needs to be added:

∀k ∈Ω
P
` : (k ≥ fnP

i, j ∧ k < nP
i, j)→ (lenP

`,k + lenP
i, j > lengthP

`). (13)

It is important to note that in this case, instances of PDU i must be excluded when computing the length
of ` as previously contained instances would be overwritten.

Together with the constraint for the length of a container PDU, the Constraints 12 and 13 assure that
if no non-full container can be sent if one of its contained PDU is queued for sending and could fit into
the container instance lengthwise.

Once triggered, the frame is queued for transmission on the bus. Thereupon, the frame data is copied
from global memory to the buffer of the communication controller by the next instance of the responsible
communication task. Therefore, in order to get the relative temporal distance between sending and
receiving communication task, the possible point of time it was queued for transmission needs to be
tracked for an instance of a frame. The following constraint is added for all frames i and their instances
j ∈ΩF

i :

α
F
i, j = min{α

P
`,k | ` ∈ PDUF

i ,k ∈Ω
P
` ∧nP

`,k = j} . (14)

In the following, we describe the constraints needed to model CAN FD network. They can easily
be plugged in by adding the corresponding constraints. The constraints listed up to this point can con-
sequently be reused for other bus types. Let iT x be the communication task for frame i and jT x be the
first instance of this iT x after occurrence j of i was queued for transmission. Furthermore, let αT

iT x, jT x

M.J. Friese & D. Nowotka 143

be the activation time of this task and frameHP
i the set of frames which have a higher priority than i. The

following constraint is added to model the start of transmission:

σ
F
i, j = max{α

T
iT x, jT x }∪{ε

F
`,k | ` ∈ frameHP

i ,k ∈Ω
F
` ∧σ

F
`,k ≤ σ

F
i, j } . (15)

For CAN FD, the transmission time of a frame is resulting from an arbitration phase and the time
the bits are transmitted on the physical medium. In the arbitration phase, all nodes of the network agree
on the node allowed to transmit next. The node trying to transmit the frame with the highest priority is
allowed to continue sending after arbitration. From Constraint 15 it can be inferred that the occurrence
j of frame i has the highest priority at point of time σF

i, j. Therefore, the end of transmission εF
i, j can be

calculated in the following way:⌊
tarb +(lenF

i, j · tbit)
⌋
≤ ε

F
i, j ≤

⌈
tarb +(lenF

i, j · tbit)
⌉

(16)

where tarb worst-case time needed for arbitration and tbit is the time needed to transfer one bit of data.
The length of the instance j of frame i, lenF

i, j, can be computed analogously to the PDUs (cf. Constraint
6). With the help of εF

i, j the instance of the communication task at the receiving ECU can be determined.
The time between the initial change of the signal and the deadline of this task is the time needed for a
value change of this signal to be transferred from the global memory of one ECU to the next. Depending
on whether the clocks of the ECUs in the network are synchronized, a clock drift can additionally be
considered for the receiving communication task.

Given all constraints for a set of network artifacts, a constraint solver is deployed to obtain the worst-
case transmission time. The solver searches all satisfying assignments for the one modeling the longest
transmission time. This emulates an exhaustive search if all situations are covered. To guarantee this,
all possible relative offset between the PDU containing the objective signal and all PDUs possibly caus-
ing a delay of this PDU needs to be covered. If all relevant PDUs are triggered by periodic timers or
periodically changing signals, the least common multiple of these periods covers all relative offsets. If
sporadic events are included, a lot more relative offsets are possible. However, in this case the solver
freely chooses values between the first and last possible point of time for the event to happen (cf. Con-
straint 1). For practical application, it is furthermore important that T covers a sufficiently large time
interval such that it is possible that all PDUs which are triggered can also be sent.

4.3 Estimations for Software Task Chains

Software task chains can either start with a sensor reading or a network communication task and end
at an actuator or another network communication task. Regardless of type, estimating latencies for
task chains is concerned with the question which relative offsets are possible between task instances
on the chain. The activation pattern of the task, the method for accessing memory, as well as the core
execution times are factors affecting the possibilities for these relative offsets. In Section 2 state-of-the
art approaches to obtain latencies for different kind of task chains are listed. We want to highlight the
approach described in [12] as it provides the interesting possibility to create a combined model for both
types of sub-chains considered in this work. The combination of both approaches would allow for an
end-to-end timing model comprising multiple ECUs and networks. Although attention needs to be payed
to potential scalability problems such a model is promising in terms of the precision of the results.

4.4 End-to-end Estimations

Due to complexity, estimations of end-to-end latencies are often performed on smaller, easier to handle
segments of a chain. This comes with the price of a context loss at each cut of the analysis. After a

144 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

context loss, most information on the situation which lead to the worst case in previous segment need to
be dropped. As a result, mutually exclusive situations might be considered cumulatively. This can lead
to significant overestimations. To reduce the impact of context losses, we propose to cut analysis only at
communication tasks. This cut essentially results in two kind of sub chains: communication task to com-
munication task via software and via network. An advantage of cutting analysis at communication tasks
is, that context losses with regard to changes of signal values are not too costly in terms of information
loss. The task chain on the next ECU certainly starts with the receiving communication task where local
signals of the sending ECU have no direct impact. Moreover, having a context loss prior to determining
the possibilities for the PDU trigger is unavoidable with many approaches to estimate task chains. They
only keep track of the one signal relevant for the chain. However, as described above, different signals
can be decisive for the triggering of the PDU transporting the signal over the network. With the approach
presented in this work, the trigger mechanisms for PDUs can be considered independently.

5 Experiments

ECM CPC TCM

ECM CAN TCM CAN

Figure 2: Case-Study: Topology and
Chain

To test the constraint model for the estimation of signal trans-
mission times, we applied it on a case study based on real au-
tomotive data. It contains synthetic but realistic data for two
CAN-FD networks connecting three ECUs as depicted in Fig-
ure 2. The amount of frames and PDUs roughly matches the
amount of artifacts for the functional communication between
the powertrain domain controller (CPC), the engine controller
(ECM), and the transmission controller (TCM). Responses to
diagnostic messages as well as network management commu-
nication is not considered. Furthermore, only signals poten-
tially having an impact on the triggering of a PDU are in-

cluded. Two signals are aggregated to one signal if it has no impact on the estimation. More precisely,
two signals are combined to one modeling the same behavior if they are sent as part of the same PDU
with the same trigger-related properties and periodic timings and neither is the objective signals. In this
way, the amount of signals in the model is greatly reduced when compared to a naive model.

We analyzed the worst-case time for the transmission of eight different signals, four contained in
dynamic container PDUs, four being part of the cause-effect chain depicted in Figure 2. The first-
mentioned signals represent status updates sent from the ECM and TCM to the CPC. The cause-effect
chain on the other hand is a control loop and has two parts. The first part of the chain describes the
data flow when the TCM sends a request for torque to the ECM. The CPC checks the requests before
forwarding it to the ECM. After providing torque to the extend possible, the ECM reports to the CPC.
The answer of the ECM is directly routed from the ECM CAN to the TCM CAN for fast reception at the
TCM.

To implement the constraint model described in Section 4 we used the high-level constraint language
MiniZinc. The constraints can be translated almost directly. An advantage of using MiniZinc is the de-
scriptive nature of the resulting model. It is readable and verifiable for anyone with a basic understanding
of constraint modeling. The greatest benefit however is the form of the results. If a feasible solution was
found, constraint solvers do not only answer yes or no but they give a assignment for all variables of the
constraint set. The feasible solutions for our set of time and decision variables can directly be interpreted
to identify the situation which lead to the worst case. Each set of artifacts is encoded in a data file to

M.J. Friese & D. Nowotka 145

Table 2: Resource Usage for Compiling and Solving the Model

Sender Receiver Signal Compiler Solver Result
s kbyte s kbyte µs

ECM CPC Status A 2:29 4,435,568 2:30 57,462,088 ∗ 15500
ECM CPC Status B 2:28 4,441,504 2:16 60,797,024 ∗ 20500
TCM CPC Status C 0:55 1,723,920 0:46 8,772,148 15500
TCM CPC Status D 0:52 1,723,896 1:03 9,863,388 15500
TCM CPC Request 1 0:52 1,723,808 0:41 8,499,072 11250
CPC ECM Request 2 2:24 4,432,880 3:02 19,298,896 12500
ECM CPC Response 1 2:27 4,466,500 2:45 91,870,500 5500
CPC TCM Response 2 0:56 1,734,188 0:49 9,050,628 6000

∗Running instances of the solver were interrupted after the optimum was found.

replace constraint parameters with their actual values. This data file is then linked to the constraints
and compiled to a second constraint model in the low-level constraint language FlatZinc. FlatZinc is
supported by different solver back-ends. We used the parallel version of the lazy-clause generation con-
straint solver Chuffed [9]. The experiments have been carried out on a desktop computer equipped with
an Intel(R) Core(TM) i9-7940X CPU and 128GB of memory. The time and memory needed to com-
pile the MiniZinc model as well as the time and memory needed for solving the FlatZinc model by 16
instances of Chuffed working in parallel are shown in Table 2.

6 Future Work

In future work we want to examine the possibilities arising from the integration of software-level and
network-level models. The scalability of a holistic model must be examined. If it can be contained by
with current hardware and solver technologies, it could not only be used to verify system designs but also
to automatically generate suggestions on the optimization. In distributed system with cause-effect chains
spanning over multiple ECUs the effects of changes are very difficult to predict and might influence the
performance of other cause-effect chains. With precise end-to-end estimations however, these impacts
could be estimated quickly to evaluate system designs quickly.

7 Conclusion

In this paper we addressed the problem of estimating the end-to-end latency of distributed cause-effect
chains in automotive systems. A previously unsupported part of the problem is estimating the tempo-
ral behavior of the PDU triggering mechanism. For this, we introduced timing models which can be
combined to model the temporal behavior of two or more event sources. Based on this we presented
a constraint model to estimate the time needed to transmit signal changes in CAN FD communication
clusters. We discussed how this approach can be integrated in an end-to-end analysis and why this would
improve estimations. Finally, the application on an OEM use case shows scalability for industrial-scale
problems.

146 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

References

[1] AUTomotive Open System ARchitecture (2017): Specification of I-PDU Multiplexer. Available
at https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_

IPDUMultiplexer.pdf.

[2] AUTomotive Open System ARchitecture (2017): Specification of RTE Software. Available at https://www.
autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf.

[3] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam & Thomas Nolte (2016): Synthesizing
Job-Level Dependencies for Automotive Multi-rate Effect Chains. In: 22nd IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, RTCSA 2016, Daegu, South Korea,
August 17-19, 2016, IEEE Computer Society, pp. 159–169, doi:10.1109/RTCSA.2016.41.

[4] Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam & Thomas Nolte (2017): End-to-end
timing analysis of cause-effect chains in automotive embedded systems. J. Syst. Archit. 80, pp. 104–113,
doi:10.1016/j.sysarc.2017.09.004.

[5] Frédéric Boniol, Michaël Lauer, Claire Pagetti & Jérôme Ermont (2013): Freshness and Reactivity Anal-
ysis in Globally Asynchronous Locally Time-Triggered Systems. In Guillaume Brat, Neha Rungta & Ar-
naud Venet, editors: NASA Formal Methods, 5th International Symposium, NFM 2013, Moffett Field,
CA, USA, May 14-16, 2013. Proceedings, Lecture Notes in Computer Science 7871, Springer, pp. 93–107,
doi:10.1007/978-3-642-38088-4 7.

[6] Jean-Yves Le Boudec & Patrick Thiran (2001): Network Calculus: A Theory of Deterministic Queuing
Systems for the Internet. Lecture Notes in Computer Science 2050, Springer, doi:10.1007/3-540-45318-0.

[7] Rene L. Cruz (1991): A calculus for network delay, Part I: Network elements in isolation. IEEE Trans.
Information Theory 37(1), pp. 114–131, doi:10.1109/18.61109.

[8] Robert I. Davis, Alan Burns, Reinder J. Bril & Johan J. Lukkien (2007): Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems 35(3), pp. 239–272,
doi:10.1007/s11241-007-9012-7.

[9] Thorsten Ehlers & Peter J. Stuckey (2016): Parallelizing Constraint Programming with Learning. In Claude-
Guy Quimper, editor: Integration of AI and OR Techniques in Constraint Programming - 13th International
Conference, CPAIOR 2016, Banff, AB, Canada, May 29 - June 1, 2016, Proceedings, Lecture Notes in
Computer Science 9676, Springer, pp. 142–158, doi:10.1007/978-3-319-33954-2 11.

[10] Rolf Ernst, Leonie Ahrendts & Kai Björn Gemlau (2018): System Level LET: Mastering Cause-Effect Chains
in Distributed Systems. In: IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society,
Washington, DC, USA, October 21-23, 2018, IEEE, pp. 4084–4089, doi:10.1109/IECON.2018.8591550.
Available at http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8560606.

[11] Nico Feiertag, Kai Richter, Johan Nordlander & Jan Jonsson (2008): A Compositional Framework for End-
to-End Path Delay Calculation of Automotive Systems under Different Path Semantics. In: Proceedings of the
IEEE Real-Time System Symposium - Workshop on Compositional Theory and Technology for Real-Time
Embedded Systems, Barcelona, Spain, November 30, 2008. Available at http://urn.kb.se/resolve?
urn=urn:nbn:se:ltu:diva-30306.

[12] Max J. Friese, Thorsten Ehlers & Dirk Nowotka (2018): Estimating Latencies of Task Sequences in Multi-
Core Automotive ECUs. In: 13th IEEE International Symposium on Industrial Embedded Systems, SIES
2018, Graz, Austria, June 6-8, 2018, IEEE, pp. 1–10, doi:10.1109/SIES.2018.8442095.

[13] Kai-Björn Gemlau, Johannes Schlatow, Mischa Möstl & Rolf Ernst (2017): Compositional Analysis for the
WATERS Industrial Challenge 2017. In: International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), Dubrovnik, Croatia.

[14] Alain Girault, Christophe Prévot, Sophie Quinton, Rafik Henia & Nicolas Sordon (2018): Improving and
Estimating the Precision of Bounds on the Worst-Case Latency of Task Chains. IEEE Trans. on CAD of
Integrated Circuits and Systems 37(11), pp. 2578–2589, doi:10.1109/TCAD.2018.2861016.

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_IPDUMultiplexer.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_IPDUMultiplexer.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_RTE.pdf
http://dx.doi.org/10.1109/RTCSA.2016.41
http://dx.doi.org/10.1016/j.sysarc.2017.09.004
http://dx.doi.org/10.1007/978-3-642-38088-4_7
http://dx.doi.org/10.1007/3-540-45318-0
http://dx.doi.org/10.1109/18.61109
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1007/978-3-319-33954-2_11
http://dx.doi.org/10.1109/IECON.2018.8591550
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8560606
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-30306
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-30306
http://dx.doi.org/10.1109/SIES.2018.8442095
http://dx.doi.org/10.1109/TCAD.2018.2861016

M.J. Friese & D. Nowotka 147

[15] Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler & Falk Wurst (2017): Communication
Centric Design in Complex Automotive Embedded Systems. In Marko Bertogna, editor: 29th Euromicro
Conference on Real-Time Systems, ECRTS 2017, June 27-30, 2017, Dubrovnik, Croatia, LIPIcs 76, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 10:1–10:20, doi:10.4230/LIPIcs.ECRTS.2017.10.

[16] Thomas A. Henzinger, Benjamin Horowitz & Christoph M. Kirsch (2001): Giotto: A Time-Triggered Lan-
guage for Embedded Programming. In Thomas A. Henzinger & Christoph M. Kirsch, editors: Embedded
Software, First International Workshop, EMSOFT 2001, Tahoe City, CA, USA, October, 8-10, 2001, Pro-
ceedings, Lecture Notes in Computer Science 2211, Springer, pp. 166–184, doi:10.1007/3-540-45449-7 12.

[17] Shugang Jiang (2019): Vehicle E/E Architecture and Its Adaptation to New Technical Trends. In: WCX SAE
World Congress Experience, SAE International, doi:10.4271/2019-01-0862.

[18] Leonie Köhler, Borislav Nikolic, Rolf Ernst & Marc Boyer (2019): Increasing Accuracy of Timing
Models: From CPA to CPA+. In Jürgen Teich & Franco Fummi, editors: Design, Automation &
Test in Europe Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, IEEE,
pp. 1210–1215, doi:10.23919/DATE.2019.8714770. Available at http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=8704855.

[19] Rodrigo Lange, Alexsandro C. Bonatto, Francisco Vasques & Rômulo Silva de Oliveira (2016): Tim-
ing Analysis of hybrid FlexRay, CAN-FD and CAN vehicular networks. In: IECON 2016 - 42nd An-
nual Conference of the IEEE Industrial Electronics Society, Florence, Italy, October 23-26, 2016, IEEE,
pp. 4725–4730, doi:10.1109/IECON.2016.7793791. Available at http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7782522.

[20] Rodrigo Lange, Rômulo Silva de Oliveira & Francisco Vasques (2016): A reference model for the tim-
ing analysis of heterogeneous automotive networks. Computer Standards & Interfaces 45, pp. 13–25,
doi:10.1016/j.csi.2015.10.004.

[21] Michaël Lauer, Frédéric Boniol, Claire Pagetti & Jérôme Ermont (2014): End-to-end latency
and temporal consistency analysis in networked real-time systems. IJCCBS 5(3/4), pp. 172–196,
doi:10.1504/IJCCBS.2014.064667.

[22] Edward A. Lee (2006): Cyber-Physical Systems - Are Computing Foundations Adequate? Proc. Workshop
CyberPhysical Syst. Res. Motiv. Tech. Roadmap. Available at http://ptolemy.eecs.berkeley.edu/
publications/papers/06/CPSPositionPaper/.

[23] Jorge Martinez, Ignacio Sanudo Olmedo & Marko Bertogna (2018): Analytical Characterization of End-to-
End Communication Delays With Logical Execution Time. IEEE Trans. on CAD of Integrated Circuits and
Systems 37(11), pp. 2244–2254, doi:10.1109/TCAD.2018.2857398.

[24] Moritz Neukirchner, Mircea Negrean, Rolf Ernst & Torsten T. Bone (2012): Response-time analysis of the
flexray dynamic segment under consideration of slot-multiplexing. In: 7th IEEE International Symposium
on Industrial Embedded Systems, SIES 2012, Karlsruhe, Germany, June 20-22, 2012, IEEE, pp. 21–30,
doi:10.1109/SIES.2012.6356566. Available at http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=6339458.

[25] Kai Richter, Dirk Ziegenbein, Marek Jersak & Rolf Ernst (2002): Model composition for scheduling analysis
in platform design. In: Proceedings of the 39th Design Automation Conference, DAC 2002, New Orleans,
LA, USA, June 10-14, 2002, ACM, pp. 287–292, doi:10.1145/513918.513993.

[26] Johannes Schlatow & Rolf Ernst (2016): Response-Time Analysis for Task Chains in Communicating
Threads. In: 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), Vi-
enna, Austria, April 11-14, 2016, IEEE Computer Society, pp. 245–254, doi:10.1109/RTAS.2016.7461359.
Available at http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7460013.

[27] Simon Schliecker, Jonas Rox, Mircea Negrean, Kai Richter, Marek Jersak & Rolf Ernst (2009): System Level
Performance Analysis for Real-Time Automotive Multicore and Network Architectures. IEEE Trans. on CAD
of Integrated Circuits and Systems 28(7), pp. 979–992, doi:10.1109/TCAD.2009.2013286.

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2017.10
http://dx.doi.org/10.1007/3-540-45449-7_12
http://dx.doi.org/10.4271/2019-01-0862
http://dx.doi.org/10.23919/DATE.2019.8714770
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8704855
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8704855
http://dx.doi.org/10.1109/IECON.2016.7793791
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7782522
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7782522
http://dx.doi.org/10.1016/j.csi.2015.10.004
http://dx.doi.org/10.1504/IJCCBS.2014.064667
http://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/
http://ptolemy.eecs.berkeley.edu/publications/papers/06/CPSPositionPaper/
http://dx.doi.org/10.1109/TCAD.2018.2857398
http://dx.doi.org/10.1109/SIES.2012.6356566
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6339458
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6339458
http://dx.doi.org/10.1145/513918.513993
http://dx.doi.org/10.1109/RTAS.2016.7461359
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7460013
http://dx.doi.org/10.1109/TCAD.2009.2013286

148 Estimating End-to-End Latencies in Automotive Cyber-physical Systems

[28] Daniel Thiele, Johannes Schlatow, Philip Axer & Rolf Ernst (2016): Formal timing analysis of
CAN-to-Ethernet gateway strategies in automotive networks. Real-Time Systems 52(1), pp. 88–112,
doi:10.1007/s11241-015-9243-y.

[29] Lothar Thiele, S. Chakraborty & M. Naedele (2000): Real-time calculus for scheduling hard real-time
systems. In: IEEE International Symposium on Circuits and Systems, ISCAS 2000, Emerging Tech-
nologies for the 21st Century, Geneva, Switzerland, 28-31 May 2000, Proceedings, IEEE, pp. 101–104,
doi:10.1109/ISCAS.2000.858698. Available at http://ieeexplore.ieee.org/xpl/tocresult.jsp?
isnumber=18601.

http://dx.doi.org/10.1007/s11241-015-9243-y
http://dx.doi.org/10.1109/ISCAS.2000.858698
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=18601
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=18601

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Related Work
	3 System Model
	4 Formal abstractions
	4.1 Timing Models
	4.2 Estimations on Network-level
	4.3 Estimations for Software Task Chains
	4.4 End-to-end Estimations

	5 Experiments
	6 Future Work
	7 Conclusion

