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We present two formal models for the OSPF routing protocol, designed for the model checker UPP-
AAL. The first one is an optimised model of an existing model that allows to check larger network
topologies. The second one is a specialised model for adjacency building, a complex subprocedure of
OSPF, which is not part of any existing model and which is known to be vulnerable to cyber attacks.
We illustrate how both models can be used to discover vulnerabilities in routing protocols.

1 Introduction

The Open Shortest Path First (OSPF) protocol [22] is a widely used, proactive, link-state routing protocol
that distributes routing information throughout a single autonomous system. Similarly to many other
routing protocols, it aims to establish shortest paths between network routers while keeping network
overhead — messages carrying routing information rather than user data — to a minimum. Although
OSPF, as many other routing protocols, is based on ‘simple’ algorithms such as Dijkstra’s shortest path
algorithm [9], it seems incredibly hard to ensure that the protocol is functionally correct, see e.g. [21, 14].

To allow formal analysis of OSPF, three detailed formal models have been presented in [10]:1 two are
formalised in the timed process algebra T-AWN [5], which is not only tailored to routing protocols, but
also specifies protocols in pseudo-code that is easily readable. The difference between the two models
lies in the level of detail. The more abstract model is the basis for the third, which presents OSPF as a
network of timed automata that can be executed in the model checker UPPAAL [18, 2].

The process-algebraic models do not allow automatic analysis of the protocol, for there is currently
no tool support available for T-AWN. UPPAAL, however, provides several tools, from simulation to
model checking. Unfortunately, the current model faces a combinatorial blow up of the state space that
must be addressed before automatic analysis of the protocol becomes feasible. In fact, the current model
is already infeasible when analysing networks consisting of three nodes only.

Based on the existing UPPAAL-model, we advance the modelling efforts for OSPF:
1. We develop a UPPAAL model that is behaviourally equivalent to the model presented in [10] but

with a much smaller state space.
2. We develop a new model for adjacency building, a subprocedure of OSPF, which so far has been

ignored in formal models.
3. We develop flexible models of adversaries that cover many different attack scenarios. Although the

modelling is straightforward, it is extremely powerful and can be used to discover vulnerabilities.
4. We illustrate how this adversarial model can be used in combination with both new models to dis-

cover vulnerabilities in OSPF.
1Some other models of OSPF exist [24, 19]; see Section 8 and [10] for a discussion.

http://dx.doi.org/10.4204/EPTCS.355.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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2 The Open Shortest Path First (OSPF) Protocol

The Open Shortest Path First (OSPF) protocol [22] is a link-state protocol that falls into the group of
interior gateway protocols, operating within a single autonomous system. As with any link-state protocol,
OSPF routers (nodes in a network) exchange topological information about one-hop links with their
neighbours, i.e. the nodes within transmission range. That information is distributed through the network
so that (eventually) every router has a complete picture of all available links. This knowledge is used to
calculate the shortest/best route between any two nodes, using a variant of Dijkstra’s algorithm [9].

To discover immediate (one-hop) neighbours, OSPF uses HELLO messages, which are broadcast pe-
riodically by all nodes. HELLO messages consist of the sender’s unique identification (ID) and a list
of all known one-hop neighbours of the sender, i.e. nodes from which the sender has received HELLO

messages. Upon receipt of a HELLO message, a node updates its own data structures accordingly. The
receiver consequently drops that HELLO message, i.e. HELLO messages are not forwarded.

A node distributes information about its known connections using Link State Advertisements (LSAs).
A node stores data concerning connections between other nodes in their Link-State Database (LSDB).

This database represents the router’s current view of the network topology. It contains the most recently
received LSAs from each unique originator. Next to the LSDB, every node maintains a list of discovered
neighbours, with whom routing information may be exchanged.

HELLO messages (or the lack thereof) are also used to determine whether nodes have become inactive
or lost connectivity. When a node receives the first HELLO message from a neighbour, it learns of its
existence. If the node finds its own ID listed within that HELLO message — meaning that the neighbour
is aware of the node — it checks whether it needs to form an adjacency with that neighbour.

The term adjacency describes the relationship between two neighbouring nodes that exchange all of
their topological information — the content of their LSDBs. After information has been shared between
two adjacent nodes, they have an identical understanding of the entire network. Nodes not forming
an adjacency do not share this information and hence network overhead is reduced. When two nodes
recognise that they need to form an adjacency, the node with the larger node ID becomes the master, and
the other becomes the slave. It is the master that initiates the exchange of data by sending the necessary
information using Database Description (DBD) messages. After that, the two nodes exchange a sequence
of DBD messages. We describe further details about adjacencies in Section 5.

Once a node has received a full description of the other node’s LSDB, it compares that description
with its own LSDB. To resolve inconsistencies between the two, it sends Link State Request (LSR) mes-
sages, asking for LSAs containing the newest available information. LSR messages are answered by
Link State Update (LSU) messages; they contain the requested LSAs. Each receipt of an LSU message is
acknowledged by a Link State Acknowledgement (LSACK) message.

Designated routers are used in combination with adjacencies to further reduce network traffic. As
they are not crucial to the understanding of the main functionality of OSPF, we omit the details.

3 Modelling OSPF in UPPAAL

One of our aims is to analyse OSPF automatically, both with regards to functional correctness and to
discovery of vulnerabilities. A standard tools for analysing and verifying systems automatically is model
checking. As there are existing models for UPPAAL, we have chosen to stick with that model checker.

UPPAAL [2, 18] is an established model checker, which is frequently used for protocol verification,
e.g. [3, 26, 25, 13, 12]. UPPAAL analyses networks of timed automata, with clocks supporting the
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Figure 1: Model Network Message Passing: unicast and multicast

modelling and the analysis of temporal aspects. It provides two synchronisation mechanisms: binary and
broadcast channels. In the setting of routing protocols these usually translate to unicast and broadcast
communication; the latter presenting the transmission of messages to all neighbours of a node. Hence,
when using UPPAAL’s broadcast mechanism one must consider the network topology to determine the
exact set of nodes that are able to receive messages (see below). UPPAAL also provides common data
structures, such as arrays, and a C-like programming language to define updates on these data structures.

Networks of Timed Automata The state of the system is determined, in part, by the values of data
variables that can be either local or shared between automata. We assume a data structure with several
types, variables ranging over these types, operators and predicates. Common Boolean and arithmetic
expressions are used to denote data values and statements about them.

The automata are extended with clock variables. UPPAAL uses a dense-time model where a clock
variable evaluates to a real number. All the clocks progress synchronously.

Each automaton is a graph, with locations, and edges between locations. Every edge has a guard,
optionally a synchronisation label, and an update, which allows local and global data structures to be
updated. Synchronisation occurs via so-called channels; for each channel a there is one label a! to denote
the sender, and a? to denote the receiver. Transitions without labels are internal; all other transitions use
one of the two types of synchronisation.

Synchronisation In binary handshake synchronisation, an automaton having an edge with a label that
has the suffix ! synchronises with another automaton with an edge having the same label with a ?-suffix.
These two transitions may synchronise if and only if both guards are true in the current state of the
system. When the transition is taken, both locations change, and the updates will be applied to the state
variables; first the updates on the !-edge, then the updates on the ?-edge. If there is more than one
possible pair, then the transition is selected non-deterministically.

In broadcast synchronisation, one automaton with a !-labelled edge synchronises with the set of other
automata that all have a matching edge with a ?-label. The initiating automaton can change its location,
and apply its update, if the guard on its edge evaluates to true. It does not require a second synchronising
automaton. Automata with a matching ?-labelled edge have to synchronise if their guard is currently
true. They change their location and update the system state. The automaton with the !-edge will update
the state first, followed by the other automata in some lexicographic order. If more than one automaton
can initiate a transition on an !-edge, the choice will be made non-deterministically.

Network Communication To model the network mechanisms of unicast, broadcast and multicast —
sending to a dedicated set of neighbours — we combine UPPAAL’s synchronisation with guards. Mes-
sage contents are exchanged via global data using UPPAAL’s update mechanism.

For communication within routing protocols, unicast is a node-to-node communication with an in-
built acknowledgment-of-receipt mechanism, which is implemented at a lower layer in the network
stack.2 More formally, unicast in networking means that a node sip can only send to another node

2Usually implemented by the link layer of relevant standards such as IEEE 802.11 [16].
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dip if (a) both nodes are within transmission range of each other, (b) dip is ready to receive and (c) after
attempting to send a message, the node sip is aware of whether transmission was successful. The corre-
sponding model in UPPAAL is depicted on the top of Figure 1. It uses a unicast channel uc. The network
topology is modelled by a Boolean predicate connect. The sender has two successors, one for successful
transmission — as we do not model lossy channels, this can be modelled as connect(sip,dip) — and one
for failed transmission (!connect), which models the actions of a failed sending attempt. The receiving
edge is straight forward.

Broadcast in networking means sending a message to all other network nodes within transmission
range. Similarly to unicast, this is modelled by UPPAAL’s broadcast mechanism — the broadcast channel
is named bc — in combination with the predicate connect. However, the model has to ensure that all
nodes within transmission range are in a state where messages can be received.

A restricted version of broadcast is multicast: a node sip tries to transmit a message to destinations
dests, and proceeds regardless of whether any of the transmissions is successful. The corresponding
modelling in UPPAAL is shown on the bottom of Figure 1. Here, D is a global data structure, maintaining
the set of intended destinations. Before the actual message transfer occurs, the sender sip has to update D.
By doing so, nodes within transmission range of sip can determine whether they are intended recipients,
using the Boolean function iselem.

4 Optimising a Model of OSPF

Drury et al. [10] have created a UPPAAL-model that closely follows the OSPF specification [22]; they also
take into account the amendments described in [7]. In that model, each network router is modelled by
two automata: one describing the core behaviour of OSPF and the other a queue for outgoing messages.

The main automaton (Figure 2) is built around a ‘central’ location OSPF pro. This location models
an idle state of the protocol — the protocol can stay there indefinitely. As soon as a message is received,
the automaton identifies the type of message and acts accordingly. For example, the two transitions in the
upper right of Figure 2 model the receipt of an incoming HELLO message: the automaton checks whether
the content of the message shows the node’s ID (see Section 2) and takes the corresponding transition.
The automaton uses a clock to send out HELLO messages periodically (upper left of Figure 2). The
receipt of messages does not take time; only the transmission of messages does. When the protocol
needs to send a message, this automaton creates the message and passes it, via unicast-synchronisation,
to another automaton that models a queue for outbound messages. The queue manages the delivery of the
message to corresponding recipients. Each node maintains a data structure for LSDBs, two independent
arrays of messages to be sent (as part of the queue automaton) and to be received (part of the main
automaton), as well as two clocks, one for each automaton. Each router makes use of four different
channels, one for internal communication, one for broadcast, one for unicast, and one for multicast.

As often occurs, this model faces a combinatorial blow up of the state space that must be addressed
to analyse the protocol automatically. The state-space explosion is caused by multiple factors:

1. Each additional router adds two automata to the network of timed automata.
2. Each additional router adds two clocks to the model, which exponentially increases the complexity.
3. The underlying data structures, messages and message queues significantly add to the state space.

As a result, checking even simple properties, such as deadlock, fails already on topologies of size three.4

3The diagrams are intended to show the models’ complexity, not to be ‘read’.
All models are available at http://mars-workshop.org.

4Deadlock checking failed on a machine with an AMD Ryzen 7 CPU and 64GB RAM.

http://mars-workshop.org
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Figure 2: An OSPF router as a timed automaton3

To overcome (some of) the problems regarding the state space, we create a single automaton describ-
ing the entire network. It is depicted in Figure 3.

This single automaton models the nondeterministic interaction between routers, rather than actual
routers. Data structures of the individual nodes are organised into multidimensional arrays. This allows
a single automaton to gain all knowledge of the network and it is no longer necessary to model the
concrete content of OSPF messages. We instead model message transmission as a function that extracts
information from the sender’s ‘local’ data structures, such as a the LSDB, and updates the ‘local’ data
structure of the receiver(s) directly.

As the entire model is assembled into a single automaton. We summarise some advantages of our
newly developed model, compared to the original model:

1. The content of messages are not modelled; hence a significant reduction in the complexity of the
required data structures.

2. Only one clock is required rather than 2 ·N, where N is the number of routers in a network; the model
requires an additional small data structure to manage the periodic sending of HELLO messages.

3. Message queues and message propagation delays are removed; the model provides similar behaviour
through a choice of nondeterministic transitions.

A simple automaton is added alongside the main automaton to monitor the model’s clock and notify
the main automaton when HELLO messages need to be sent for each router. Although we did not prove
the relationship to the original model of OSPF, the model is carefully designed that it is behaviourally
equivalent to the original one.
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Initialiser

OSPF

lsr_on_wire_oracle() && !lsu_on_wire_oracle()
propagate_lsr()

dbd_on_wire_oracle() && !ongoing_exchange()
propagate_dbd(),
find_next_lsu_sender()

lsu_on_wire_oracle()
propagate_lsu(),
find_next_lsu_sender()

can_lsu() && !ongoing_exchange() && !dbd_on_wire_oracle()
generate_and_send_lsu(lsu_ip),
propagate_lsu(),
find_next_lsu_sender()

hello_on_wire_oracle() && !dbd_on_wire_oracle()
propagate_hello(),
find_next_lsu_sender()

can_hello() && !dbd_on_wire_oracle()
reduce_lifetime_nbrs(hello_ip),
generate_and_send_hello(hello_ip),
sent_hello_intvl[hello_ip] = true,
hello_ip = next_hello(second_tracker),
find_next_lsu_sender()

node_idx==N
start_timing!
node_idx=0,
hello_ip = next_hello(0)

t : int[0,hellointvl-1]
node_idx<N
initialise(node_idx), 
choose_hello_intvl(t,node_idx),
++node_idx

Figure 3: A single automaton for OSPF

In a further abstraction, we can replace the (dense-time) clock by a bounded integer that takes over
the periodic sending of HELLO messages. We assume that this model is behaviourally equivalent with
regards to message sending and data structures, but obviously not regarding timing properties.

5 Adjacency Building

The original model of OSPF, as well as the model described above, capture all but one core functionality
of OSPF. The missing functionality, adjacency building, is an independent subroutine with no immediate
effect on other functionality and hence is usually abstracted away. As discussed in Section 2, adjacency
building describes the activities involved when two neighbouring nodes exchange all of their topological
information – the content of their LSDBs. After the exchange, the nodes have an identical understanding
of the entire network.

In this section, we present a new, detailed model of adjacency building. When nodes have been
assigned to form an adjacency, they progress through the following six neighbour states:
Down: No information has been exchanged between the two nodes.
Init: A participating node has recently received a HELLO message from a neighbour. However, bidirec-

tional communication is not confirmed yet – the node’s own IP is not part of the HELLO message.
ExStart: This is the first step in the adjacency-establishment procedure; it establishes the master/slave

relationship between the nodes.
Exchange: The master/slave relationship has been agreed upon, and nodes send DBD messages sum-

marising their LSDBs.
Loading: Nodes compare the full description of their neighbour’s LSDB with their local data. Missing

information is requested via LSR messages.
Full: All requested LSAs have been received.
A node’s neighbour state determines which messages it will send to its neighbour, as well as how it
responds to messages received.
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NeighbourExStart() && Messages_Processed()

unicast!

Generate_Exstart_DBD()

NeighbourExchange() && RequestListEmpty()

Delete_Message_In_Queue()

!RequestListEmpty()

unicast!

Generate_LSR(),
Delete_Message_In_Queue()

NeighbourLoading() && RequestListEmpty()

LoadingDone(),
Delete_Message_In_Queue()

(NeighbourExchange() || NeighbourLoading()) && !RequestListEmpty() && Messages_Processed()

unicast!

Generate_LSR()

CanAcceptLSU() && AppropriateLSA()

unicast!
Install_LSA(),
Generate_ACK(),
Delete_Requests()

ACKMessage()

Delete_Message_In_Queue()

CanAcceptLSU() && !AppropriateLSA() && !OnRequestList()

unicast!

Generate_ACK(),
Delete_Message_In_Queue()

CanAcceptLSU() && !AppropriateLSA() && OnRequestList()

unicast!
Bad_LSReq(),
Increment_Sequence(),
Generate_Exstart_DBD(),
Delete_Message_In_Queue()

!CanAcceptLSU()

Delete_Message_In_Queue()

CanAcceptLSR() && LSA_Exists()

unicast!
Generate_LSU(),
Delete_Message_In_Queue()

CanAcceptLSR() && !LSA_Exists()

unicast!

Bad_LSReq(),
Increment_Sequence(),
Generate_Exstart_DBD(),
Delete_Message_In_Queue()

!CanAcceptLSR()

Delete_Message_In_Queue()

LSRMessage()

LSUMessage()

Is_Duplicate()

Delete_Message_In_Queue()

!Is_Duplicate()

unicast!
Sequence_Mismatch(),
Increment_Sequence(),
Generate_Exstart_DBD(),
Delete_Message_In_Queue()

Is_Duplicate()

unicast!

Generate_Exchange_DBD(),
Delete_Message_In_Queue()

!Is_Duplicate()

unicast!

Sequence_Mismatch(),
Increment_Sequence(),
Generate_Exstart_DBD(),
Delete_Message_In_Queue()

!IsMaster()

IsMaster()

NeighbourLoading() || NeighbourFull()

Neighbour_Finished_Sending() && Last_Message()

unicast!

Exchange_Done(),
Generate_Exchange_DBD(),
Record_Last_DBD_Message(),
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Increment_Sequence(),
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Generate_Exstart_DBD(),
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Become_Slave(),
Accept_Sequence(),
Generate_Exchange_DBD(),
Record_Last_DBD_Message(),
Delete_Message_In_Queue()

IsMasterExStart()

unicast!

Negotiation_Done(),
Increment_Sequence(),
Add_Reqs(),
Generate_Exchange_DBD(),
Record_Last_DBD_Message(),
Delete_Message_In_Queue()

Is_Duplicate()

unicast!

Generate_Exchange_DBD(),
Delete_Message_In_Queue()

Is_Duplicate()

Delete_Message_In_Queue()

!IsMaster()

IsMaster()

NeighbourExchange()

!IsSlaveExStart() && !IsMasterExStart()

Delete_Message_In_Queue()

NeighbourExStart()

NeighbourInit()
unicast!

Two_Way_Received(),
Increment_Sequence(),
Generate_Exstart_DBD()

NeighbourDown() || NeighbourTwoWay()

Delete_Message_In_Queue()

DBDMessage()

TwoWay() && NeighbourInit()

unicast!
Two_Way_Received(),
Delete_Message_In_Queue(),
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Delete_Message_In_Queue()

!TwoWay()
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Delete_Message_In_Queue()

HelloMessage()
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(NeighbourDown() || NeighbourInit() ) && Messages_Processed() && !SentHello

unicast!

Generate_Hello(),
HelloSent()

i: int[0,M-1]

Initialise_Neighbour(DOWN),
NeighbourStructure.sequence = i,
Initialise_LSDB()

unicast?

Add_Message_To_Queue(),
Flush_Global_Message()

Figure 4: Adjacency Building3

Figure 5: Receiving of LSU messages

Our adjacency model, depicted in Figure 4, mod-
els the entire adjacency process from the Down state
to the Full state. Similar to the original model [10],
the adjacency model uses one automaton per node. In
contrast to the previous model, we do not encounter
problems with the state space as adjacency building is
an activity between two nodes (two automata). The
model closely follows the OSPF standard. Due to
its complexity – it would take a lot of space to ex-
plain all details of the adjacency-building process,
so they are omitted. The model can be found at
http://mars-workshop.org and should be self-
explanatory. The model does not include a clock,
and instead is forced to make progress by using ur-
gent and committed states within the automata.5 The
automata exchange messages using binary synchro-
nisation. To provide some insight in our model, we
provide details on the handling of LSU messages re-
ceived (Figure 5).

The transition from the central state to a committed state ensures that the message received is indeed
an LSU message. There are four possibilities as to how this message can be handled. The transition
guarded by !CanAcceptLSU() corresponds to the case where the node is not in the state Exchange,
Loading or Full, and hence any incoming LSU message is ignored and deleted. The top two transitions
correspond to cases where a node can accept an LSU message, but the received message contains outdated
or incorrect information. The final transition models the default case where the content of the LSU

message is more recent than the information stored in the node’s LSDB. In this case, the node updates
its LSDB and LSA request list, and generates an acknowledgement message in response.

5For a formal definition of urgent and committed locations see [18].

http://mars-workshop.org
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To validate the correctness of our model, we run some sanity checks. Among others we check that
adjacencies are always completely established, i.e. both nodes reach the state Full, and that LSDBs are
identical when the adjacency is established. Using UPPAAL’s CTL syntax, these properties correspond to

A<>(n1.NeighbourState == FULL && n2.NeighbourState == FULL) and
A[]((n1.NeighbourState == FULL && n2.NeighbourState == FULL) imply LSDB Sync())

Here n1 and n2 are the two nodes forming an adjacency, and LSDB Sync() is a function that checks
LSDBs for synchronicity. The CTL formula A<>ϕ is satisfied if ϕ holds on some state along all paths,
and A[]ϕ is satisfied if ϕ holds on all states along all paths (e.g. [11]). We are able to verify these
properties for a number of different starting configurations of the node’s LSDBs.

6 Modelling Adversaries

Over the last decades, model checking has become one of the standard tools for analysing and verifying
systems, with the main focus on functional correctness, i.e. checking whether a system acts as expected.

Although correctness proofs are important, they are only half of the story. With systems connected
more than ever, detecting and analysing vulnerabilities of systems are of equal importance. In the general
area of security protocols, including cryptographic protocols, modelling adversaries and finding vulner-
abilities using model checking techniques are common [20, 4]. With very few exceptions, e.g. [15],
finding vulnerabilities in systems, such as routing protocols, using model checkers is uncommon.

In this section, we present first attempts to discover vulnerables, using model checking. When mod-
elling routing attacks we distinguish two different concepts: attack capabilities and attack goals. Attack
capabilities define the behaviour of the adversary. They include properties such as the number of ma-
licious nodes and connectivities (e.g. [23]). In contrast, an attack goal describes the specific aim of an
attack. This includes general properties such as delivery failure and routing loops, as well as protocol-
specific targets such as the destruction of adjacencies. The consequences of (successful) attacks are
sometimes also analysed. For example, a routing-loop attack yields packet loss.

6.1 Attack Capabilities

We model capabilities as one or more separate timed automata. This modular approach allows us to
combine the same attacker model with different formalisations of OSPF, or even other routing protocols.

Number of Malicious Nodes The number of malicious nodes in the network is one of the capabilities.
In our setting, each malicious node (attacker) is modelled by a separate automaton executed in parallel
to the model of the routing protocol. For the moment, we restrict ourselves to one malicious node only.

Connectivity There exist two reasonable scenarios: (a) a malicious node can only send to its immediate
neighbours, similar to a node running an uncorrupted version of OSPF, and (b) a node can inject messages
to all nodes in the network, which can be achieved in real networks (e.g. [23]). In both models of OSPF,
we characterise connectivity as a Boolean matrix, or equivalently with a Boolean predicate connect, see
Section 3. When modelling capability (a), no change is required. For option (b), a minor modification of
the predicate connect suffices. Technically, the relation is not symmetric any longer.

Time of the Attack The third capability is the time point an attack begins. It determines at what point
during the lifetime of the network a malicious actor performs the take over of a router and begins an
attack. Although this point in time is arbitrary, we only consider two scenarios: (a) the node is already
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Initialiser

OSPF

CheckMalLSR

CheckMalDBD

CheckMalLSU

CheckMalHello

hello_on_wire.sip >= N
mal_hello!

!(hello_on_wire.sip >= N)
propagate_hello(),
find_next_lsu_sender()

!(lsu_on_wire.sip >= N)
propogate_requested_lsu(),
find_next_lsu_sender()

lsu_on_wire.sip >= N
mal_lsu!

!(dbd_on_wire.sip >= N || dbd_recipient >= N)
propagate_dbd(),
find_next_lsu_sender()

dbd_on_wire.sip >= N || dbd_recipient >= N
mal_dbd!

!(lsr_on_wire.sip >= N || lsr_recipient >= N)
propagate_lsr()

lsr_on_wire.sip >= N || lsr_recipient >= N
mal_lsr!

lsr_on_wire_oracle() && !lsu_on_wire_oracle()

tau!

dbd_on_wire_oracle() && !ongoing_exchange()

tau!

lsu_on_wire_oracle()

tau!

can_lsu() && !ongoing_exchange() && !dbd_on_wire_oracle()

tau!

generate_and_send_lsu(lsu_ip),
propagate_lsu(),
find_next_lsu_sender()

hello_on_wire_oracle() && !dbd_on_wire_oracle()

tau!

can_hello() && !dbd_on_wire_oracle()

tau!

reduce_lifetime_nbrs(hello_ip),
generate_and_send_hello(hello_ip),
sent_hello_intvl[hello_ip] = true,
hello_ip = next_hello(second_tracker),
find_next_lsu_sender()

node_idx==N
start_timing!
node_idx=0,
hello_ip = next_hello(0)

t : int[0,hellointvl-1]
node_idx<N
initialise(node_idx), 
choose_hello_intvl(t,node_idx),
++node_idx

Figure 6: A single automaton for OSPF, modified for attacks3

malicious when the protocol is initiated, and (b) the attacker gains access to a node after OSPF reaches a
steady state, i.e. all adjacencies are established and all nodes have the same view of the network topology.

Other possible time points, e.g. the attack starts during initialisation of the protocol, are not consid-
ered since the likelihood of exploitation during these time periods is basically zero.

Adversaries’ Activities The final, and arguably most important, capability describes the activities an
adversary can perform. They are manifold, sometimes protocol-specific, and include the following:

• type of OSPF messages (DBD, LSR, LSU, . . . ) the attacker is allowed to send;
• components of the message which can be manipulated; e.g. the attacker can ‘only’ change the con-

tent of a message or it can pretend to send the message on behalf of some other node (false identity);
• the order of messages sent; . . .

For our initial experiments, described below, we use an ‘all mighty’ adversary that can inject any type of
message with arbitrary content at any time. We model this behaviour as a nondeterministic automaton.

Such an adversary is trivial to run in parallel with the original model of OSPF, featuring individual
automata for each router (Figure 2), since concrete messages exist as first-class citizens. An ‘all mighty’
attacker in our optimised model requires some minor modifications as message contents are abstracted
away. Figure 6 demonstrates the modified automaton; each transition for delivering a message is split
into two branches. One is used for the exchange of standard OSPF messages, the other allows for the
exchange of messages involving a malicious party.

It is noteworthy that the new, modified automaton decouples the OSPF protocol logic from the at-
tacker logic and allows the same automaton of OSPF to be used for any number of different attack models
without modification. It also allows the possibility of executing standard OSPF without any malicious
nodes – in this case, our new automaton behaves identical to the original model.

6.2 Attack Goals

We model an attack goal as a state in the system. The reachability of this state determines if the attack is
successful. Of course, it is not required that the attack is successful under all possible scenarios.

The formula lsdp[sip][oip] describes sip’s current view of the network topology around node oip, i.e.
it lists, among other information, all neighbours of oip that are known to sip.
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Blackhole Attack In this type of attack, the attacker tries to convince one or more nodes to send (data)
packets via the attacker so that the packets can be dropped. Any packet routed through the malicious node
will suffer from partial or total data loss. These routes can only be established if either nonexistent links
are installed in a node’s LSDB or if some links are removed. Both existence and removal is characterised
by a malicious/fake topology:

E<>(
∧

sip∈S
dip∈T

lsdb[sip][dip].malicious) (1)

for some sets S and T . In case one does not want to encode non-optimal routes via concrete LSDB
entries, one can calculate the shortest routes from a given LSDB.

Sub-optimal Routes Establishing sub-optimal routes means that the number of hops of the established
route is greater than the actual shortest path. This attack does not cause packet loss but wastes network
resources. As packet routing is based on shortest paths, we can use the same formulas (Eq. (1)) to encode
this attack.

Adjacency Interruption The first two attacks are concerned with OSPF. An attacker can also inject or
spoof OSPF messages that prevent nodes which should form an adjacency from completing the synchro-
nisation process

7 Initial Experiments

Using our optimised model, we analyse the above attack goals on very small topologies. These experi-
ments are not intended to be a systematic analysis of vulnerabilities, but are merely intended to show the
power of our approach.

7.1 Blackhole Attack and Sub-optimal Routes

We report on a number of examples of networks up to size 4, a full, systematic analysis on all topologies
up to a much larger size is part of future work. Some topologies used for the experiments are depicted in
Figure 7. The solid lines indicate the real topology, the dashed lines stand for the malicious topology. In
all cases, the malicious router is node 3, and its (main) victim is node 0.

Attacks whose effects get subsequently corrected by the mechanisms of the protocol, in our case
OSPF, are called nonpersistent. They can, nevertheless, temporarily affect the way the traffic is routed
and can slow down the network traffic.

The attacks we discover rely on placing malicious entries in the victims’ LSDBs. Each experiment
related to an attack goal is run in two instances (cf. Section 6.1): (a) the attack starts before the network
is up and running, i.e. all nodes in the network start with an empty LSDB and the OSPF runs through
its initialisation, and (b) the attack starts after OSPF has been initialised, i.e. all LSDBs of all honest
nodes contain all truthful information about the topology. In both cases, the attacker starts with an LSDB
having malicious version of the topology as content. This LSDB will not change during an attack. The
adversary then tries to propagate this false information through the network.

In the blackhole attack, the adversary convinces its victim to redirect the traffic through the at-
tacker node. In the simple topology of Figure 7(a) an adversary can be successful, i.e. the property
E<>(lsdb[0][2].malicious && lsdb[0][3].malicious) holds. This is because most of the nodes are one-
hop neighbours and proper calculation of shortest paths are not needed. In this situation the attack is
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Figure 7: (a) Blackhole (b) Sub-optimal routes

successful if node 0 believes that there is a connection between nodes 2 and 3 (and no connection be-
tween 1 and 2). Instead of sending the traffic through node 1, node 0 will then forward the traffic for
node 2 through node 3, which will drop it.

Sub-optimal routes can be installed in many topologies, such as the one depicted in Figure 7(b). As
for the previous attack we can simplify the attack goal and use the formula E<>(lsdb[0][1].malicious &&
lsdb[0][3].malicious). The attacker convinces node 0 that there is a connection between nodes 1 and 3.
Node 0 then sends traffic for node 3 through node 1 (instead of sending it through node 2). Node 1
correctly believes that there is no link between itself and node 3, so it passes traffic through node 2.

The network easily recovers from these attacks by receiving further HELLO messages, or by receiv-
ing further LSU messages sent to correct faulty information. Remember that these simple attacks are
designed to test our setup, not to do a full-scale analysis of vulnerabilities.

7.2 Tear Down Adjacencies

Similarly to our use of the abstract model of OSPF, we perform initial experiments with the detailed
model for adjacency building. As before we use a nondeterministic automaton, which can inject arbitrary
messages. We also use more limiting attack capabilities that can only inject a certain type of OSPF
message. The one for HELLO messages is depicted in Figure 8.

Can_Receive[victim_ip] 
&& Messages_Processed[fake_ip] 
&& AttackerTurn

unicast!
Generate_False_HELLO(),
AttackerTurn = 0

Figure 8: Injecting HELLOs

Our analysis reveals that adjacencies can be torn down. We sketch
this attack; here n1 and n2 are the two routers involved.

• Sending a HELLO message on behalf of n1 (n2) which does not
carry the IP address of n2 (n1) in its payload resets the adjacency
building process by reverting the neighbour state back to Init.

• Sending an LSR message on behalf of n1 or n2 which requests
an LSA that does not exist in the recipient’s LSDB reduces the
neighbour state to ExStart if it is in a higher state at the time of
receiving. In case the neighbour state is Down, Init or ExStart this
injection does not have any effect.

• Sending a DBD message on behalf of n1 or n2 which meets one of the following criteria will regress
to the neighbour state to ExStart if it is in a higher state at the time of receiving:

– The DBD sequence number, a unique number which is part of every DBD message, does not
match the expected sequence number.

– The DBD’s master flag is inconsistent with the current connection.
– The message has the init flag set – this flag indicates that this DBD is an attempt to initiate a

neighbour relationship.
Once a node’s neighbour state has been reverted to Init or ExStart, it is no longer able to share information
with its neighbour. As a consequence, the adjacency needs to be re-established. One of these attacks can
delay the establishment of adjacencies; repeating one of them indefinitely avoids the establishment of
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adjacencies entirely. When checking A<>(n1.NeighbourState == FULL && n2.NeighbourState ==
FULL) UPPAAL generates a trace that falsifies the property, characterising a specific attack.

The above trace demonstrates that adjacency building can be interrupted, but it does not show that it
is possible to tear down full adjacencies. In order to demonstrate this, we make very minor adaptations to
our model which enable the nodes to start in state Full with their LSDBs synchronised. Using the same
attacker automata, we use UPPAAL to show that it is possible to regress our node’s neighbour state to Init
or ExStart. Since UPPAAL does not allow for nested CTL expressions, it is not possible to verify that the
nodes are unable to re-establish a state Full. However, once the nodes have regressed to Init or ExStart,
we are able to apply our earlier findings, as this is the same configuration as in our first experiment.

8 Related Work

Some of the attacks presented in Section 7.2 are already mentioned in [17]. That analysis is based on a
manual inspection of the specification of OSPF. While it is an impressive piece of work, our analysis is
more systematic and reveals more vulnerabilities w.r.t. adjacency building.

As for OSPF in general, we are aware of only three other formal approaches that analyse the OSPF
routing protocol, using formal methods. We believe that our analysis is built on the most detailed, open-
source formal model of OSPF [10].

Nakibly et al. [24] have created their own model of OSPF for the model checker CBMC [6], a
bounded model checker accepting a simplified C-language as input. Their model uses a fixed topology
— similar to our model-checking models — and abstracts away from many details, including HELLO

and DBD messages. The model that is available online analyses a topology with three nodes, but not
more. Moreover, adjacency building is not modelled. With their level of abstraction, it is not possible to
model and find some of the attacks described in this paper.

Another model, which can be fed into the Z3-Solver [8], is described in [19]. The authors claim that
it is a detailed model covering concepts such as designated routers –a concept we abstract from– and that
topologies up to 30 nodes can be analysed. As the model is not presented in full nor available online, we
could neither verify these claims nor compare our analysis to theirs.

9 Conclusion and Future Work

We have presented two advanced models of OSPF: the first is an optimised model of an existing UPPAAL-
model; the second models adjacency building, a subprocedure of OSPF, in great detail. Furthermore, we
have developed several attack automata that can run in parallel to the models of OSPF. This means our
method is compositional: both the model and the attacker can be exchanged to variant versions.

While this paper concentrates on our modelling efforts, future work will aim at a vulnerability ana-
lysis of OSPF at scale. We hope to not only rediscover well-known attacks such as the remote false
adjacency attack (a.k.a. phantom router) [23], which allows a malicious router to successfully establish a
permanent link to a victim, but also to discover new attacks. We envision that we can transfer the knowl-
edge acquired in UPPAAL to (automatically) generate attacks for a real implementation. In particular we
believe that traces produced by UPPAAL can be used to generate attacks in test-bed implementations of
OSPF (e.g. the Quagga implementation running on the network emulator CORE [1]) or in real networks.
Acknowledgements: This work was conducted in partnership with the Defence Science & Technology
Group and Data61, CSIRO, through the Next Generation Technologies Fund. We thank Jack Drury for
fruitful discussions.
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