Proving Equivalence Between Imperative and
MapReduce Implementations Using Program
Transformations

Bernhard Beckert Timo Bingmann  Moritz Kiefer
Peter Sanders  Mattias Ulbrich  Alexander Weigl

Institute of Theoretical Informatics
Karlsruhe Institute of Technology, Germany

Distributed programs are often formulated in popular functional frameworks like MapReduce,
Spark and Thrill, but writing efficient algorithms for such frameworks is usually a non-trivial
task. As the costs of running faulty algorithms at scale can be severe, it is highly desirable
to verify their correctness.

We propose to employ existing imperative reference implementations as specifications
for MapReduce implementations. To this end, we present a novel verification approach in
which equivalence between an imperative and a MapReduce implementation is established
by a series of program transformations.

In this paper, we present how the equivalence framework can be used to prove equiva-
lence between an imperative implementation of the PageRank algorithm and its MapReduce
variant. The eight individual transformation steps are individually presented and explained.

1 Introduction

Today requirements on the efficiency and scale of computations grow faster than the capabilities
of the hardware on which they are to run. Frameworks such as MapReduce [6], Spark [I4] and
Thrill [3] that distribute the computation workload amongst many nodes in a cluster, address
these challenges by providing a limited set of operations whose execution is automatically and
transparently parallelised and distributed among the available nodes.

In this paper, we use the term “MapReduce” as a placeholder for a wider range of frameworks.
While some frameworks such as Hadoop’s MapReduce [13] strictly adhere to the two functions
“map” and “reduce”, the more recent and widely used distribution frameworks provide many
additional primitives — for performance reasons and to make programming more comfortable.

Formulating efficient implementations in such frameworks is a challenge in itself. The original
algorithmic structure of a corresponding imperative algorithm is often lost during that transla-
tion since imperative constructs do not translate directly to the provided primitives. Significant
algorithmic design effort must be invested to come up with good MapReduce implementations,
and flaws are easily introduced during the process.

The approach we proposed in our previous work [2] and will refine and apply in this paper
supports algorithm engineers in the correct design of MapReduce implementations by providing
a transformation framework with which it is possible to interactively and iteratively translate a
given imperative implementation into an efficient one that operates within a MapReduce frame-
work.

The framework is thus a verification framework to prove the behavioural equivalence between
an imperative algorithm and its MapReduce counterpart. Due to often considerable structural
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Figure 1: Chain of equivalent programs is translated into formalised functional language

differences between the two programming paradigms, our approach is interactive: It requires
the specification of intermediate programs to guide the translation process. While it is not in
the focus of this publication, our approach is designed to have a high potential for automation:
The required interaction is designed to be as high-level as possible. The rules are designed such
that their side conditions can be proved automatically, and pattern matching can be used to
allow for a more flexible specification of intermediate steps.

We present an approach based on program transformation rules with which a MapReduce
implementation of an algorithm can be proved equivalent to an imperative implementation.
From an extensive analysis of the example set of the framework Thrill, we were able to identify
a set of 13 transformation rules such that a chain of rule applications from this set is likely to
succeed in showing the equivalence between an imperative and a functional implementation.

We describe a workflow for integrating this approach with existing interactive theorem
provers. We have successfully implemented the approach as a prototype within the interac-
tive theorem prover Coq [12].

The main contribution of this paper is the demonstration of the abilities of the framework to
establish equivalence between imperative and MapReduce implementations. We do this (1) by
motivating and thoroughly explaining the rationales and the nature of the transformation rules
and (2) by reporting on the successful application of the framework to a relevant non-trivial case
study. We have chosen the PageRank algorithm as the demonstrative example since it is one of
the original and best known MapReduce application cases.

Overview of the approach. The main challenge in proving the equivalence of an imperative
and a MapReduce algorithm lies in the potentially large structural difference between the two
algorithms. To deal with this, the equivalence of imperative and MapReduce algorithms is not
shown in one step, but as a succession of equivalence proofs for structurally closer program
versions.

To this end, we require that the translation of the algorithm is broken down (by the user)
into a chain of intermediate programs. For each pair of neighbouring programs in this chain,
the difference is comparatively small such that the pair can be used as start and end point of a
single program transformation step induced by a rule application.

The approach uses two programming languages: One is the imperative input language (IL)
in which the imperative algorithm, the intermediate programs, as well as the target MapReduce
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implementation are stated. Besides imperative language constructs, IL supports MapReduce
primitives.

Each program specified in the high-level imperative language is then automatically trans-
lated into the formalised functional language (FFL). The program transformations and equiva-
lence proofs operate on programs in this functional language. The translation of the original,
the intermediate and the MapReduce programs form a chain of programs. For each pair of
neighbouring programs in the chain, a proof obligation is generated that requires proving their
equivalence. These proof obligations are then discharged independently of each other. Since, by
construction, the semantics of IL programs is the same as that of corresponding FFL programs,
the equivalence of two IL programs follows from the equivalence of their translations to FFL.
An overview of this process can be seen in Fig. [I} Figure [2| shows two example IL programs for
calculating the element-wise sum of two arrays.

The implementation of our approach based on the Coq theorem prover has only limited
proof automation and still requires a significant amount of interactive proofs. We are convinced,
however, that our approach can be extended such that it becomes highly automatised and only
few user interactions or none at all are required — besides providing the intermediate programs.
To enable this automation, one of the design goals of the approach was to make the matching of
the rewrite rules as flexible as possible. Further challenges include the extension of our approach
to features such as references and aliasing which are commonly found in imperative languages.

Structure of the paper. The remainder of the paper is structured as follows: After intro-
ducing the supported programming languages IL and FFL in Sect. [2] a description of the two
different kinds of transformation rules applied in the framework follows in Sect. The case
study on the PageRank example is conducted in Sect. ] After a report on related work in
Sect. B} the paper is wrapped up with conclusions in Sect. [6]

2 Foundations

This section introduces the programming language IL used to formulate the programs, and briefly
describes the language FFL used for the proofs.

The high-level imperative programming language IL is based on a while language. Besides the
usual while loop constructor, it possesses a for loop constructor which allows traversal of the
entries of an array. The supported types are integers (Int), rationalﬂ (Rat), Booleans (Bool),
fixed length arrays ([7]) and sum (77 + T5) and product types (17 * T5). Since arrays are an
important basic data type for MapReduce, a number of functions are provided to operate on this
data type. Table[l|lists the IL-functions relevant for this paper. Besides the imperative language
constructs, IL supports a number of MapReduce primitives. In particular, a lambda abstraction
for a variable v of type T over an expression e can be used and is written as (v : T) =>e. IL does
not support recursion.

Given that allegedly MapReduce programs tend to be more of a functional than an impera-
tive nature, it might seem odd that we use IL also for specifying the MapReduce algorithm and
not a functional language. However, most existing MapReduce frameworks are not implemented
as separate languages, but as frameworks built on top of imperative languages. This implies

'In the current implementation, rationals are implemented using integers with the operators being uninter-
preted function symbols.
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Function Explanation

replicate(n, x) returns an array of length n whose entries hold value x.

range(a, b) returns an array containing the values (a,...,b—1).

zip(zs, ys) returns for two arrays of equal length an array of pairs containing a value
of each array.

map(f, xs) returns an array of the same length as zs that contains the result of
applying function f to the values in xs.

fst(p), snd(p) returns the first (second) component of a pair p of values.

group (zs) transforms a list of key-value pairs into a list of pairs of a key and a list
of all values associated with that key.

concat (zss) returns the concatenation of all arrays in the array of arrays zss.

flatMap(f, xss) = map(f, concat(xzss))

reduceByKey(f, i, xs) = map((k,vs) => (k, fold(f,i,vs)), group(zs))

Table 1: Relevant built-in functions of IL.

fn SumArrays(xs: [Int], ys: [Int]) { fn SumArraysZipped(xs: [Int], ys: [Int]) {
var sum := replicate(n, 0); var sum := replicate(n, 0);
for(i : range(0, length(xs))) { zipped := zip(xs, ys);
sum[i] := xs[i] + ys[i]; for(i : range(0, length(xs))) {
¥ sum[i] := fst(zipped[i]) + snd(zipped[i]);
return sum; b
b return sum;
3

Figure 2: Two IL programs which calculate the element-wise sum of two arrays.

that the sequential imperative constructs of the host language can also be found in MapReduce
programs. Sequential parts of MapReduce algorithms are realised using imperative programming
features, while the computational, distributed parts are composed using the MapReduce primi-
tives. Figure [2] shows two behaviourally equivalent implementations of a routine that computes
the sum of the entries of two Int-arrays.

The programs specified in IL are then automatically translated into FFL, the functional
language based on A-calculus in which the equivalence proofs by program transformation are
conducted. We follow the work by Radoi et al. [I1] and use a simply typed lambda calculus
extended by the theories of sums, products, and arrays. Moreover, to allow the translation of
both imperative and MapReduce IL code into FFL, the language also contains constructs for
loop iteration and the programming primitives usually found in MapReduce frameworks. FFL is
formally defined as a theory in the theorem prover Cogq which allowed us to conduct correctness
proofs on the rewrite rules.

Without going into the intricacies of the details of the translation between the formalisms, the
idea is as follows: Any IL statement becomes a (higher order) term in FFL in which the currently
available local variables acc make up the A-abstracted variables. The two primitives iter and fold
serve as direct translation targets for imperative loops. The fold function is used to translate
bounded for loops into FFL. The iterator loop for(x : xs) { £ } in IL is translated into FFL as
the expression Aacc. fold( f ,acc, £s) in which f and Zs are the FFL-translations of £ and xs. This
starts with the initial loop state acc and iterates over each value of the array £s updating the loop
state by applying f . The more general while loops cannot be translated using fold since that
always has bounded number of iterations. Instead, while is translated using the iter fixed point
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operator. The loop while(c) { f } translates as iter(\acc. if ¢(acc) then inrf(acc) else inl unit)
and is evaluated by repeatedly applying f to the loop state until f returns unit to indicate
termination. iter is a partial function; if the loop does not terminate it does not yield a value.
The semantics of FFL is defined as a bigstep semantics. A program together with its input
parameters are reduced to a value. Ill-typed or non-terminating programs do not reduce to a
value. Details on the design of IL and FFL can be found elsewhere [2].

The design of FFL’s core follows the ideas of Chen et al. [4] who describe how to reduce the
large number of primitives provided by MapReduce frameworks.

3 Transformation Rules

For the examples shipped with the MapReduce framework Thrill, we analysed how the steps
of a transformation of an algorithm into MapReduce would look and detected typical recurring
patterns for steps in a transformation. We were able to identify two different categories of
transformation rules that are needed for the process:

1. Local, context-independent rewrite rules with which a statement of the program can be
replaced with a semantically equivalent statement. Such rules may have side conditions
on the parts on which they apply, but they cannot restrict the application context (the
statements enclosing the part to be exchanged).

2. Context-dependent equivalence rules that cannot replace a statement without considering
the context. Some transformations are only valid equivalence replacements within their
surrounding context. These are not pattern-driven rewrite rules, but follow a deductive
reasoning pattern that proves equivalence of a piece of code locally.

Context-independent rules are good for changing the control flow of the program. In Sect.
we will encounter an example of a rule which replaces a loop by an equivalent map expression.
The data flow, while differently processed, remains the same. The context-independent rules are
a powerful tool to bridge larger differences in the control structure between the two programming
paradigms. These changes must be anticipated beforehand and cannot be detected and proved
on the spot. We identified a total of 13 rules that allow us to transform imperative constructs
into MapReduce primitives. (See App. B of [2] for a complete list.) Their rigid search patterns
make context-independent rules less flexible in their application.

Context-dependent rules, on the other hand, are suited for transforming a program into a
structurally similar program (they do not/little change the control flow); the data flow may be
altered however using such rules. It is comprehensible that a change in the data representation
is an aspect which cannot be considered locally, but requires analysing the whole program.

The collection of rewrite rules for context-independent replacements comprises various dif-
ferent patterns. The context-dependent case is different. There exists one single rule which can
be instantiated for arbitrary coupling predicates and is thereby highly adaptable. We employ
relational reasoning using product programs [I] to show connecting properties. The rule bases
on the observation that loops in the two compared programs need not be considered separately
but can be treated simultaneously. If x; (z2) are the variables of the first (second) program,
and if the conditions ¢; and co, as well as the loop bodies by and by refer only to variables of the
respective program, then the validity of the Hoare triple

{1 =29} while(cy) { b1 } ; while(co) { bo } {x1 =2} (1)
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is implied by the validity of
{z1 =22} while(cy) { by; be; assert ci=cp; } {z1=uu2} . (2)

Condition expresses that given equal inputs, the two loop programs terminate in the same
final state. Condition manages to expressE| this with a single loop. This gives us the chance
to prove equivalence using a single coupling invariant that relates to both program states. To
show equivalence for context-dependent cases, the specification of a relational coupling invariant
with which the consistency of the data can be shown is required.

An example of two programs which are equivalent with similar control structure, yet dif-
ferent data representation, has already been presented in Fig. 2] Both programs can be shown
equivalent by means of the coupling invariant sum; = sumy A zipped, = zip(zs1, ys;) where the
subscripts indicate which program a variable belongs to. Sect. [£.3] demonstrates the application
of the rule within the PageRank example.

In the formal approach (also outlined in [2]) and the Cog implementation, all rules are
formulated on and operate on the level of FFL (which has been designed for exactly this purpose).
For the sake of better readability we show the corresponding rules here on the level of IL and
notate the context independent rewrite rules as

program; ~» program, (rulename)

meaning that under the specified side conditions any statement in a program matching program;
can be replaced by the corresponding instantiation of programs, yielding a program behaviourally
equivalent to original program.

The application of rules are transformations only in a broader sense. The approach is targeted
as interacting with a user who provides the machine with the intermediate steps and the rule
scheme to be applied. It would likewise be possible to instead allow specifying which rules must
be applied and have the user specify the instantiations instead of the resulting intermediate
programs.

In particular the context-dependent rule is hardly a rewrite rule due to the deductive nature
of the equivalence proof. It is not astonishing though that the transformation into MapReduce
does not work completely by means of a set of rewrite patterns since transforming imperative
programs to MapReduce programs is more than simple pattern matching process but requires
some amount of ingenious input to come up with an efficient implementation.

4 Example: PageRank

In this section, we demonstrate our approach by applying it to the PageRank algorithm. We
present all intermediate programs in IL and explain the transformations and techniques used in
the individual steps. While the implementation executes the actual equivalence proofs on FFL
terms, we only present the IL programs here since these are the intermediate steps specified by
the user. Where the translation of a transformation to FFL is not straightforward, we also give
an explanation of the transformation expressed on FFL terms.

|D is stronger than in general, but is equivalent in case both loops are guaranteed to have the same
number of iterations.
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4.1 The algorithm

PageRank is the algorithm that Google originally successfully employed to compute the rank
of web pages in their search engine. This renowned algorithm is actually a special case of
sparse matrix-vector multiplication, which has much broader applications in scientific computing.
PageRank is particularly well suited as an example for a map reduce implementation and is
included in the examples of Thrill and Spark. While more highly optimized PageRank algorithms
and implementations exist, we present here a simplified version.

The idea behind PageRank is the propagation of reputation of a web page amongst the
pages to which it links. If a page with a high reputation links to another page, the latter page’s
reputation thus increases.

The algorithm operates as follows: PageRank operates on a graph in which the nodes are the
pages of the considered network, and (directed) edges represent links between pages. Pages are
represented as integers, and the 2-dimensional array links holds the edges of the graph in the
form of an adjacency list: the i-th component of 1inks is an array containing all indices of the
pages to which page ¢ links. The result is an array ranks of rationals that holds the pagerank
value of every page. The initial rank is set to Ranky(p) = m for all pages p.

In the course of the k-th iteration (k > 0) of the algorithm, the rank of each link target is
updated depending on the pages that link to the page, i.e., the incoming edges in the graph:

1-96
|1links| ®)

Ag(p)= > Ranky_1(0) Ranky(p) = 0+ Ag(p) +

(o,p)€links

The factor 6 € (0,1) is a dampening factor to limit the effects of an iteration by weighting the
influence of the result of the iteration Ag(p) against the original value Ranko(p) = m Our
implementation iterates this scheme for a fixed number of times (iterations).
Listing|I|on page shows a straightforward imperative IL implementation of this algorithm
that realises the iterative laws of directly. It marks the starting point of the translation from
imperative to MapReduce algorithm. To allow a better comparison between the programs, the

programs are listed next to each other at the end of this section.

4.2 A context-independent rule application

The first step in the chain of transformations from imperative to distributed replaces the for
loop used to calculate the weighted new ranks with a call to map. This is possible since the
values can be computed independently. The map expression allows computing the dampened
values in parallel and can thereby significantly improve performance. The rewrite rule used here
can be applied to all for loops that iterate over the index range of an array where each iteration
reads a value from one array at the respective index, applies a function to it and then writes
the result back to another array at the same index.

for (i : range(0, length(xs))) {

ysli] := f(xs[il); ~ ys := map(f, xs); (map-introduce)

}

Sufficient conditions for the validity of this context-independent transformation are that £
does not access the index i directly and that xs and ys have the same length. The first condition
can be checked syntactically while matching the rule while the second requires a (simple) proof
in the context of the rule application. In our implementation, these proofs are executed in Cogq.
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As mentioned before, for loops in IL correspond to fold operations in FFL. The rewrite
rule expressed on FFL thus transforms fold(Aacc i. accli:= f(zsi])], ys,range(0,length(zs))) into
map(f,zs).

The result of the transformation is shown in Listing [2| on page For convenience, in this
and the following listings, the modified part of the program is highlighted in colour.

4.3 A context-dependent rule application

In this step, the body of the main while loop is changed to first combine the 1inks and ranks
arrays to an array outRanks of tuples using the zip primitive. In the remaining loop body, all
references to links and ranks point to this new array and retrieve the original values using the
pair projection functions £st and snd. The process of rewriting all references does not fit easily
into the rigid structure of the rewrite rules employed in our approach. We thus resort to using a
context-dependent rule using a coupling predicates to prove equivalence of the last and the new
loop body. Using the coupling predicate

newRanks; = newRankss A outRankss =zip(linksi,ranks;)

that relates the values in the states of the two programs (we use the subscript indices 1 and 2 to
refer to variables in the original and the transformed program) we obtain that the loop bodies
have equivalent effects, and hence, that the programs are equal.

The result of the transformation is shown in Listing |3| on page [195]

4.4 Rule range-remove

In the next transformation the for loop which iterates over all pages as the index range of the
array links is replaced by a for loop that iterates directly over the elements in outRanks. The
rewrite rule range-remove applied here can be applied to all for loops that iterate over the index
range of an array and only use the index to access these array elements. Again this is a side
condition for the rule which can be checked syntactically during rule matching.

acc := accO; acc := accO;

for (i : range(0, length xs)) { — for (x : xs) { (ran e-remo e)
acc := f(acc, xs[i]); acc := f(acc, x); 8 Vs

+ +

The result of the application of rewrite rule is shown in Listing [4] on page [195
Expressed on the level of FFL, this rewrite rule transforms terms of the form
fold(Aacc i. f(ace,xsli]), acco, range(0,length(xs)) into fold(Aacc x. f(ace,x), accy,xs).

4.5 Aggregating link information

The next step is a typical step that can be observed when migrating algorithms into the MapRe-
duce programming model. A computation is split into two consecutive steps: one step processing
data locally on individual data points and one step aggregating the results. It can be anticipated
already now that these two steps will become the map and the reduce part of the algorithm.
The newly introduced variable linksAndContrib stores the (locally for each node) com-
puted rank contribution as a list of tuples. Assume ((s1,...,8,),r) is the i-th entry in the array
outRanks. This means that page i links to page s; for j <n and has a current rank of . After the
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newly introduced local computation, the entry becomes the list of pairs ((s1, \117qu\)’ ooy (Spy m)},
i.e., the rank is distributed to all successor pages and the data is rearranged with the focus now
on the receiving pages.

As in the transformation in Sect. a context-dependent transformation is employed to
prove equivalence using the following relational coupling loop invariant:

newRanks; = newRankss A
Vij. £st linksAndContribs[i|[j] = (£st outRanks;[i])[j] A
snd linksAndContribs[i|[j] = snd outRanks;[i]|/length(fst outRanks;[i])

The result of the transformation is shown in Listing [5] on page [195] Note that the nested
loops in the highlighted block no longer perform the computation of the rank updates (snd
links_rank / length(fst links_rank)), but only aggregate the contribution updates into
new ranks. This transformation is a preparation for collapsing the nested loops in the next step.

4.6 Collapsing nested loops

Since the computation of contribution has been moved outside in the previous step, the
iteration variable 1ink_contribs is now only used as the iterated array in the inner for loop.
This allows collapsing the nested loops into a single loop using concat. This rule can always be
applied if the iterated value in the inner for is the only reference to the values the outer for
iterates over.

acc := accO; acc := accO;
for (xs : xss) { for (x : concat(xss)) {
for (x : xs) { acc := f(acc, x); .
- ~ (concat-intro)
acc := f(acc, x); }
}
¥

The program with the two loops collapsed is shown in Listing [6] on page [196

This transformation is succeeded by a step that combines the call to concat in the for
loop and the map operation before the loop into a single call to flatMap. Its result is shown in
Listing [7] on page [196] In FFL, flatMap is not a builtin primitive but a synonym for successive
calls to concat and map. This step is thus one which has visible effects on the level of IL, but
no impact on the level of FFL.

4.7 Towards MapReduce

Now we are getting closer to a program that adheres to the MapReduce programming model. The
penultimate transformation step restructures the processed data by grouping all rank updates
that affect the same page. It operates on the array newRanks using the function group. The
updated result is calculated using a combination of map and fold. The results are then written
back to newRanks. The effects of the rule on the program structure are more severe than for the
other applied transformation rules, yet this grouping pattern is one that is typically observed in
the MapReduce transformation process and is implemented as a single rule for that reason.
The corresponding rewrite rule can be applied to all for loops that iterate over an array
containing index-value tuples and update an accumulator based on the old value stored for that
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index and the current valuefl

acc := accO; acc := accO;
for ((i,v) : xs) { var upd := map((i,vs) => fold(f, accli], vs),
accl[i] := f(acclil, v); — group(acc)); (group-intro)
} for (x : concat(xss)) { group
acc := f(acc, x);
+

Note that since accO could store values for indices for which there are no corresponding
tuples in xs, it is necessary to write the results back to that array instead of simply using the
result from the group operation which would be missing those entries.

The resulting program is shown in Listing [§] on page [196]

4.8 The final MapReduce implementation

In the last step, the expression that groups contributions by index and then sums them up is
replaced by the IL-function reduceByKey which is also provided by many MapReduce frame-
works. In the lower level language FFL, however, reduceByKey is not a primitive function, but a
composed expression using map, fold and group, such that this step changes the IL program, but
has no impact on the FFL level. The resulting implementation using map reduce constructs is
shown in Listing [9] on page It is very close to the MapReduce implementation of PageRank
that is delivered in the example collection of the Thrill framework.

Listing 1: Original imperative IL implementation of PageRank

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1. / length(links));
while (iter < iterations) {
var newRanks : [Rat] := replicate(length(links), 0);
for (pageld : range(0, length(links))) {
var contribution : Rat := ranks[pageld] / length(links[pagelId]);
for (outgoingId : links[pageId]) {
newRanks [outgoingId] := newRanks[outgoingId] + contribution;
}
¥
for (pageld : range(O, length(links))) {
ranks [pageld] :=
dampening * newRanks[pageId] + (1 - dampening) / length(links);

iter := iter + 1;

return ranks;

Listing 2: PageRank — After applying rule map-introduce

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1. / length(links));
while (iter < iterations) {
var newRanks : [Rat] := replicate(length(links), 0);
for (pageld : range(0, length(links))) {
var contribution : Rat := ranks[pageld] / length(links[pageld]);
for (outgoingld : links[pageId]) {
newRanks [outgoingId] := newRanks[outgoingId] + contribution;

}

ranks :=

3The actually implemented version of the rule allows £ to access not only the values vs, but also the index i
it operates on. See [2] for details.
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iter := iter + 1;

return ranks;

}

Listing 3: PageRank — After applying a context-dependent rule

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := 0;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {

var newRanks : [Rat] := replicate(length(links), 0);

ranks :=
map((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;

return ranks;

¥

Listing 4: PageRank — After applying range-remove
fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := 0;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {
var newRanks : [Rat] := replicate(length(links), 0);
var outRanks : [[Int] * Rat] := zip(links, ranks);

ranks :=
map((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;

return ranks;

}

Listing 5: PageRank — After aggregating the link information

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := 0;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {
var newRanks : [Rat] := replicate(length(links), 0);
var outRanks : [[Int] * Rat] := zip(links, ranks);
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b
ranks :=
map ((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;

return ranks;

Listing 6: PageRank — After collapsing nested loops

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {
var newRanks : [Rat] := replicate(length(links), 0);
var outRanks : [[Int] * Rat] := zip(links, ranks);
var linksAndContrib : [[Int * Rat]] :=
map((links_rank : [Int] * Rat) =>
map((link : Int) =>
(link, snd links_rank / length(fst links_rank)),
fst links_rank),
outRanks) ;
for (link_contrib : concat(linksAndContrib)) {
newRanks [fst link_contrib] :=
newRanks [fst link contrib] + snd link_contrib;

ranks :=
map ((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;
¥
return ranks;

}

Listing 7: PageRank — After introducing flatMap

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iteratiomns) {
var newRanks : [Rat] := replicate(length(links), 0);
var outRanks : [[Int] * Rat] := zip(links, ranks);
var linksAndContrib : [Int * Rat] :=
flatMap((links_rank : [Int] * Rat) =>
map((link : Int) =>
(link, snd links_rank / length(fst links_rank)),
fst links_rank),
outRanks) ;
for (link_contrib : linksAndContrib) {
newRanks [fst link_contrib] :=
newRanks[fst link_contrib] + snd link_contrib;

ranks :=
map((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;
¥

return ranks;

Listing 8: PageRank — After grouping the input for receiving pages
fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {
var outRanks : [[Int] * Rat] := zip(links, ranks);
var contribs : [Int * Rat] :=
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flatMap((links_rank : [Int] * Rat) =>
map((link : Int) => (link,
snd links_rank / length(fst links_rank)),
fst links_rank),
outRanks) ;

var rankUpdates : [Int * Rat] :=

map((link : Int) (contribs : [Rat]) =>

(1ink, fold((x: Rat) (y : Rat) => x + y, 0, contribs)),
group(contribs)) ;

var newRanks : [Rat] := replicate(length(links), 0);
for (link_rank : rankUpdates) {

newRanks[fst link_rank] := snd link_rank;
ranks :=
map((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;

}

return ranks;

Listing 9: PageRank — The final MapReduce implementation

fn pageRank(links : [[Int]], dampening : Rat, iterations : Int) -> [Rat] {
var iter : Int := O;
var ranks : [Rat] := replicate(length(links), 1 / length(links));
while (iter < iterations) {
var outRanks : [[Int] * Rat] := zip(links, ranks);
var contribs : [Int * Rat] =
flatMap((links_rank : [Int] * Rat) =>
map((link : Int) => (link,
snd links_rank / length(fst links_rank)),
fst links_rank),
outRanks) ;
var rankUpdates : [Int * Rat] := reduceByKey((x : Rat) (y : Rat) => x + y, O, contribs);
var newRanks : [Rat] := replicate(length(links), 0);
for (link_rank : rankUpdates) {

newRanks[fst link_rank] := snd link_rank;
ranks :=
map((rank : Rat) => dampening * rank + (1 - dampening) / length(links),
newRanks) ;
iter := iter + 1;

b

return ranks;

5 Related Work

A common approach to relational verification and program equivalence is the use of product
programs [1]. Product programs combine the states of two programs and interleave their be-
havior in a single program. RVT [§] proves the equivalence of C programs by combining them
in a product program. By assuming that the program states are equal after each loop iteration,
RVT avoids the need for user-specified or inferred loop invariants and coupling predicates.

Hawblitzel et al. [10] use a similar technique for handling recursive function calls. Fels-
ing et al. [7] demonstrate that coupling predicates for proving the equivalence of two programs
can often be inferred automatically. While the structure of imperative and MapReduce algo-
rithms tends to be quite different, splitting the translation into intermediate steps yields pro-
grams which are often structurally similar. We have found that in this case, techniques such
as coupling predicates arise naturally and are useful for selected parts of an equivalence proof.
De Angelis et al. [5] present a further generalised approach.
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Radoi et al. [I1] describe an automatic translation of imperative algorithms to MapReduce
algorithms based on rewrite rules. While the rewrite rules are very similar to the ones used in
our approach, we complement rewrite rules by coupling predicates. Furthermore we are able
to prove equivalence for algorithms for which the automatic translation from Radoi et al. is
not capable of producing efficient MapReduce algorithms. The objective of verification imposes
different constraints than the automated translation — in particular both programs are provided
by the user, so there is less flexibility needed in the formulation of rewrite rules.

Chen et al. [4] and Radoi et al. [IT] describe languages and sequential semantics for MapRe-
duce algorithms. Chen et al. describe an executable sequential specification in the Haskell
programming language focusing on capturing non-determinism correctly. Radoi et al. use a lan-
guage based on a lambda calculus as the common representation for the previously described
translation from imperative to MapReduce algorithms. While this language closely resembles
the language used in our approach, it lacks support for representing some imperative constructs
such as arbitrary while-loops.

Grossman et al. [9] verify the equivalence of a restricted subset of Spark programs by reducing
the problem of checking program equivalence to the validity of formulas in a decidable fragment
of first-order logic. While this approach is fully automatic, it limits programs to Presburger
arithmetic and requires that they are synchronized in some way.

To the best of our knowledge, we are the first to propose a framework for proving equivalence
of MapReduce and imperative programs.

6 Conclusion

In this paper we demonstrated how an imperative implementation of a relevant, non-trivial al-
gorithm can be iteratively transformed into an equivalent efficient MapReduce implementation.
The presentation bases on the formal framework described in [2]. Equivalence within this frame-
work is guaranteed since the individual applied transformations are either behaviour-preserving
rewrite rules or equivalence proofs using coupling predicates. The example that has been used
as a case study in this paper is the PageRank algorithm, a prototypical application case of the
MapReduce programming model. The transformation comprises eight transformation steps.

Future work for proving equivalence between imperative and MapReduce implementations
includes further automation of the transformation process.
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