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The notion of quiescence — the absence of outputs — is vital in both behavioural modelling and
testing theory. Although the need for quiescence was already recognised in the 90s, it has only
been treated as a second-class citizen thus far. This paper moves quiescence into the foreground and
introduces the notion of quiescent transition systems (QTSs): an extension of regular input-output
transition systems (IOTSs) in which quiescence is represented explicitly, via quiescent transitions.
Four carefully crafted rules on the use of quiescent transitions ensure that our QTSs naturally capture
quiescent behaviour.

We present the building blocks for a comprehensive theory on QTSs supporting parallel compo-
sition, action hiding and determinisation. In particular, we prove that these operations preserve all
the aforementioned rules. Additionally, we provide a way to transform existing IOTSs into QTSs,
allowing even IOTSs as input that already contain some quiescent transitions. As an important ap-
plication, we show how our QTS framework simplifies the fundamental model-based testing theory
formalised around ioco.

1 Introduction

Quiescence is a fundamental concept in modelling system behaviour. It explicitly represents the fact
that, in certain system states, no output is provided. The absence of outputs is often essential: an ATM,
for instance, should deliver the requested amount of money only once, not twice (see Figure 1). This
means that the ATM’s state just after paying out money (s0 in Figure 1) should be quiescent: it should
not produce any output until further input is given. On the other hand, the state before paying out
(s3 in Figure 1) should clearly not be quiescent. Hence, quiescence can also sometimes be considered as
erroneous behaviour.

Thus, the notion of quiescence is essential in testing: if a system under test (SUT) does not provide
any output, then the test evaluation algorithm must decide whether to produce a pass verdict (allowing
quiescence at this point) or a fail verdict (forbidding quiescence at this point).

Origins. The notion of quiescence was first introduced by Vaandrager in [14] to obtain a natural ex-
tension of the notion of a terminal or blocking state: if a system is input-enabled (i.e., always ready to
receive inputs), then no states are blocking, since each state has outgoing input transitions. However,
quiescence can still be used to denote the fact that a state would be blocking when considering only the
output actions. Quiescence is explored further in [6, 7].

Tretmans introduced the notion of repetitive quiescence [11, 12], which emerged from the need to
continue testing, even in a quiescent state: in the ATM example above, we need to test further behaviour
that arises from the (quiescent) state after providing money. To accommodate these needs, Tretmans
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Figure 1: A very basic ATM.

introduced the suspension automaton as an auxiliary concept. More recent uses of quiescence include [1],
applying it in the context of machine learning.

Example 1.1. Consider the automaton given in Figure 1. The states s0 and s1 are quiescent, since they
do not have any outgoing output transitions. To obtain the suspension automaton corresponding to such
a system, Tretmans adds self-loops, labelled with the quiescence label δ, to each quiescent state.

Limitations of current treatments. While the papers above all convincingly argued the need for qui-
escence, none of them presents a comprehensive theory of quiescence. Firstly, quiescence is not treated
as a first-class citizen: although the suspension automaton is used during testing, it is not defined as an
entity in itself. Therefore, quiescence cannot be used to specify systems, and neither is it clear what
properties a suspension automaton satisfies or should satisfy. Since conformance relations such as ioco
are defined based on ‘suspension traces’, which are the traces of a suspension automaton, it seems much
more appealing to directly start from these suspension automata and base the whole theory on them.

Secondly, basic operators like parallel composition and hiding were only defined for input-output
transition systems, but have not been studied for suspension automata at all. Therefore, it was still an
open question to what extent these operators could be lifted to the setting of quiescence.

Our approach. The current paper remediates the shortcomings of previous work and presents a com-
prehensive theory for quiescence, by introducing quiescent transition systems (QTSs). These are input-
output transition systems in which quiescence can be represented explicitly by δ-transitions, and form
a fully-formalised alternative to Tretmans’ suspension automata. Whereas suspension automata are al-
ways constructed by adding δ-transitions to existing LTSs and subsequently determinising [13], QTSs
are defined in a precise manner as a stand-alone entity, can be built from scratch and need not necessarily
be deterministic.

As a first step, we handle QTSs that are input-enabled (never reject an input) and most importantly
convergent (free of infinite sequences of internal transitions), since the interplay between quiescence and
infinite sequences of internal transitions is delicate. Hence, we first focus on the basics. Relaxing these
restrictions is an important direction for future work.

Starting point in our theory is the observation that, when treating quiescence as a first-class citizen,
restrictions need to be put in place. For instance, it should never be the case that a δ-transition is fol-
lowed by an output, as this would contradict the meaning of quiescence. As another example, as argued
elaborately in Section 3, we do not allow a δ-transition to enable additional behaviour; after all, it would
not make much sense if our observation of the absence of outputs impacts the system. In this paper we
present and discuss four such rules, that restrict the domain of all possible QTSs to a sensible subclass.

We define three well-known automata-theoretical operations on QTSs: parallel composition, hiding
and determinisation. These operations are very important, as they allow a modular approach to system
specification. Additionally, we explain how to obtain a QTS from an IOTS by a process called deltafi-
cation. We define this process in a liberal way, supporting also the construction of a QTS from an IOTS
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that already has some δ-transitions in place. We show that our four requirements on QTSs, which are a
key contribution of this paper, are preserved by all of these operations.

This novel theory of QTSs simplifies the theory of model-based testing. Hence, we conclude this
paper by showing how QTSs can be used to define the conformance relation ioco, and aid in test case
generation and evaluation.

Overview of the paper. First, we present some preliminaries on input-output transition systems in
Section 2. Then, Section 3 introduces the QTS model and its operations, as well as a variety of important
(closure) properties. Section 4 explains how to construct QTSs based on IOTSs, and Section 5 discusses
the application of QTSs to test theory. Finally, conclusions and future work are presented in Section 6.

Due to space limitations, we refer to [8] for detailed proofs of all our lemmas, propositions and
theorems.

2 Background

2.1 Preliminaries

Given a set L, we denote by L∗ the set of all sequences over L. Given a sequence σ = a1a2 . . .an, we
define the length of σ, denoted |σ|, as n. The empty sequence is denoted by ε.

Given two sequences ρ = a1a2 . . .an ∈ L∗ and υ = b1b2 . . . bk ∈ L∗, we define the concatenation of
ρ and υ, denoted ρ+υ or ρυ, as a1a2 . . .anb1b2 . . . bk. The sequence ρ is a prefix of υ, denoted ρv υ, if
there is a ρ′ ∈ L∗ such that ρρ′ = υ; if ρ′ 6= ε, then ρ is a proper prefix of υ, denoted ρ@ υ.

Given a set S ⊆ L∗, a sequence σ ∈ S is called maximal with respect to v if there does not exist a
sequence ρ ∈ S such that σ @ ρ. Clearly, such a maximal sequence always exists.

We use ℘(L) to denote the power set of L, i.e., ℘(L) is the set of all subsets of L, including the
empty set and L itself.

2.2 Input-Output Transition Systems

Before we introduce Input-Output Transition Systems, we first describe the modelling formalism they
are based on: Labelled Transition Systems.

Definition 2.1 (Labelled Transition Systems). A Labelled Transition System (LTS) is a quadruple
A= 〈S,S0,L,→〉, such that:

• S is a (possibly uncountable) set of states;

• S0 ⊆ S is a non-empty set of initial states;

• L is a set of labels, each representing a different action. We take τ /∈ L to stand for an internal
(unobservable) action and define Lτ = L∪{τ};

• → ⊆ S×Lτ ×S is the transition relation. We use s −a→ s′ to denote (s,a,s′) ∈ → , write s −a→ if
there is an s′ ∈ S such that s−a→ s′, and s 6−a→ if this is not the case. If s−a→, we say that the action a
is enabled in state s.

We use SA, S0
A, LA and→A to denote the components of an LTS A. These subscripts are left out

when it is clear from the context which LTS is referred to.
Example 2.2. Figure 2(a) shows an LTS A.
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Figure 2: Visual representation of the LTSA and the IOTSs B and det(B). We represent states by circles,
and transitions by arrows; each arrow in turn is labelled with the associated action for that particular
transition. The initial state is marked by an arrow without a source state. Frow now on, we typically will
not label individual states.

Often, in particular in the context of testing, it is desirable to be able to distinguish between actions
that are initiated by the environment (inputs), and actions that are initiated by the system itself (outputs).
To this end, we introduce Input-Output Transition Systems, which are an extension of regular LTSs.

Definition 2.3 (Input-Output Transition Systems). An Input-Output Transition System (IOTS) is a quin-
tuple A = 〈S,S0,LI,LO,→〉, where LI is a set of input labels and LO a set of output labels such that
LI ∩ LO = ∅. We define L= LI ∪ LO and Lτ = L∪{τ }, where τ /∈ L. S, S0 and→ are as defined for
LTSs. Additionally, IOTSs must be input-enabled, i.e., s−a→ for all s ∈ S,a ∈ LI.

Remark 2.4. Throughout this article we sometimes suffix a question mark (?) to the input labels and an
exclamation mark (!) to the output labels, to help differentiating the two types. These are, however, not
part of the label.

Note that IOTSs are similar to I/O automata [5, 4], except that the latter allow multiple internal
actions, rather than τ only. All our results can easily be phrased in the I/O automata framework.

By requiring IOTSs to be input-enabled, any input initiated by the environment is never refused by
the system. For deterministic systems (see Definition 2.7), this restriction can easily be lifted by adding
a sink state which has self-loops for all possible actions, and adding transitions for the missing inputs
to that sink state (so-called demonic completion [4, 15]). For nondeterministic systems, a solution is
provided in [3].
Example 2.5. Figure 2(b) shows an IOTS B. Note that since LI = {a} and s −a→ for every s ∈ S, B is
input-enabled.

We introduce the standard language-theoretic concepts for IOTSs.

Definition 2.6 (Notations). Let A= 〈S,S0,LI,LO,→〉 be an IOTS, then:

• A path in A is a (possibly infinite) sequence π = s0a1s1 . . .sn such that for all 1≤ i≤ n we have
si−1 −ai−→ si with ai ∈ Lτ . The set of all paths in A is denoted paths(A).

• The path operators first and last yield the first and last state of a finite path, respectively, e.g., for
π = s0a1s1a2s2 we have first(π) = s0 and last(π) = s2. A path π is called initial if first(π) ∈ S0.

• The path operator trace yields the sequence of actions that is obtained by erasing all states and
τ -actions from a given path, e.g., for π = s0a1s1τs2a2s3 we have trace(π) = a1a2; we call such a
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Figure 3: One deterministic (A) and three nondeterministic (B, C, D) IOTSs. The IOTS D is divergent.

sequence of actions a trace of A. The length of a trace σ = a1a2 . . .an, denoted |σ|, is the length
of the corresponding sequence, i.e., |σ|= |a1a2 . . .an|= n.

• Given an action a and a set of actions P , we denote by a �P the projection of a on P , i.e., a �P = a
if a ∈ P , and a � P = ε otherwise. The projection of a trace σ = aσ′ on a set of actions P follows
naturally from this: σ � P = aσ′ � P = a � P + σ′ � P . Finally, the projection of a set of traces T
on a set of actions P is defined as T � P = {σ � P | σ ∈ T }.

• If there is a finite path π in A such that first(π) = s, last(π) = s′ and trace(π) = σ, we write
s=

σ⇒ s′; if there exists an s′ ∈ S such that s=σ⇒ s′, we write s=σ⇒, and s 6=σ⇒ if this is not the case.

• For a finite trace σ and state s ∈ S, we denote by reach(s,σ) the set of states in A (possibly
empty) that can be reached from s via σ, i.e., reach(s,σ) = {s′ ∈ S | s =σ⇒ s′ }. Similarly, for a
given finite trace σ and a set of states S′ ⊆ S, we denote by reach(S′,σ) the set of states in A that
can be reached from any of the states in S′ via σ, i.e., reach(S′,σ) = {s ∈ S | ∃s′ ∈ S′ . s′ =σ⇒ s}.

• For a finite trace σ and state s ∈ S, out(s,σ) is the set of output actions that are enabled in any of
the states reachable from s by σ, i.e., out(s,σ) = {a ∈ LO | ∃s′ ∈ reach(s,σ) . s′ =a⇒}. We use
the shorthand out(s) for the case out(s,ε), i.e., the set of output actions that are enabled in s itself.

• For every s ∈ S we denote by traces(s) the set of all traces of A that correspond to paths that
start in s, i.e., traces(s) = { trace(π) | π ∈ paths(A) ∧ first(π) = s}. We denote by traces(A) =⋃
s∈S0 traces(s) the set of all traces that correspond to initial paths in A. Two IOTSs B and C are

trace equivalent if traces(B) = traces(C).

A fundamental concept in automata theory is determinism.

Definition 2.7 (Determinism). An IOTSA= 〈S,S0,LI,LO, −→〉 is deterministic if for all s,s′,s′′ ∈S,a∈
L we have that s−a→ s′ and s−a→ s′′ imply a 6= τ and s′ = s′′. Otherwise, A is nondeterministic.

Example 2.8. Figure 3 shows some deterministic and nondeterministic IOTSs.

Lastly, we introduce the notions of convergence and divergence.

Definition 2.9 (Divergence). Given an IOTS A = 〈S,S0,LI,LO, −→〉, a state s ∈ S of A is divergent if
there is an infinite path s0a1s1a2s2 . . . with s0 = s and si ∈ S, that contains only τ transitions, i.e., ai = τ
for all i. An IOTS is called divergent if it contains at least one such state, otherwise it is convergent.

For the purposes of this paper, we require all IOTSs to be convergent.

Example 2.10. Figure 3(d) shows the divergent IOTS D. Clearly, it is possible for D to perform an
infinite sequence of τ -transitions by continuously looping through the innermost four states.
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Figure 4: The IOTSs A and B, and their parallel composition A ‖ B. Note that we have left out some of
the b?-labelled self-loops from the visualisation of A ‖ B to reduce clutter.

2.3 Operations on IOTSs

In this section, we introduce several standard operations on IOTSs. First, every nondeterministic IOTS
can be transformed into a deterministic IOTS [9]; the latter is called the determinisation of the original
IOTS and is trace equivalent to it [2]. Using this operator, modelling effort is saved since no attention
needs to be paid to making the specification deterministic.

Definition 2.11 (Determinisation). The determinisation of an IOTS A = 〈S,S0,LI,LO,→A 〉 is the
IOTS det(A) = 〈T,{S0 },LI,LO,→d 〉 such that T = ℘(S)\∅ and→d = {(U,a,V ) ∈ T ×L×T | V =
reachA(U,a) ∧ V 6= ∅}.
Example 2.12. Consider the nondeterministic IOTS B shown in Figure 2(b). Its corresponding determin-
isation det(B) is shown in Figure 2(c).

Second, we define the parallel composition operator. This operator is fundamental in modelling
frameworks for component-based design. It allows one to build complex system models from smaller
ones, thus breaking up the specification of a system into manageable pieces. Parallel composed IOTSs
synchronise on shared inputs and complementary input-output pairs [4].

Definition 2.13 (Parallel composition of IOTSs). Given are two IOTSs A = 〈SA,S0
A,L

I
A,L

O
A,→A 〉

and B = 〈SB,S0
B,L

I
B,L

O
B,→B 〉 such that LO

A ∩ LO
B = ∅. The parallel composition of A and B is the

IOTS A ‖ B = 〈SA‖B,S0
A‖B,L

I
A‖B,L

O
A‖B,→A‖B 〉, where SA‖B = SA×SB, S0

A‖B = S0
A×S0

B, LI
A‖B =

(LI
A ∪ LI

B)\ (LO
A ∪ LO

B), and LO
A‖B = LO

A ∪ LO
B. The transition relation→A‖B is defined as follows:

→A‖B = {((s, t),a?,(s′, t′)) | s−a?−→A s
′ ∧ t−a?−→B t

′ }

∪ {((s, t),a!,(s′, t′)) | s−a?−→A s
′ ∧ t−a!−→B t

′ }

∪ {((s, t),a!,(s′, t′)) | s−a!−→A s
′ ∧ t−a?−→B t

′ }
∪ {((s, t),a,(s′, t)) | s−a→A s

′ ∧ t ∈ SB ∧ a ∈ LτA \LB }
∪ {((s, t),a,(s, t′)) | t−a→B t

′ ∧ s ∈ SA ∧ a ∈ LτB \LA }

Thus, LA‖B = LI
A‖B ∪ L

O
A‖B = LA ∪ LB.

Example 2.14. Figure 4 shows two IOTSs A and B, and their parallel composition A ‖ B. We have
LI
A= {a,b,c}, LO

A= {d}, LI
B = {b,d}, and LO

B = {a,c,e}. Note that indeed LO
A ∩LO

B = ∅, as required;
therefore, by Definition 2.13, LI

A‖B = {b} and LO
A‖B = {a,c,d,e}.
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Figure 5: The IOTSs A and hide(A,{a,b}).

Finally, it is often useful to hide certain actions of a given IOTS, thereby essentially renaming the
corresponding labels to τ . For example, when parallel composing two IOTSs, some actions are only used
for synchronisation; after composition, they are not needed anymore.

Definition 2.15 (Action hiding in IOTSs). Let A = 〈S,S0,LI,LO,→A 〉 be an IOTS and H ⊆ LO a set
of output labels, then one can hide H inA to get the IOTS hide(A,H) = 〈S,S0,LI,LO \H,→h 〉, where
→h = {(s,a,s′) ∈→A| a /∈H } ∪ {(s,τ,s′) ∈ S×{τ }×S | ∃a ∈H . (s,a,s′) ∈→A }.

Thus, we only allow output actions to be hidden. Furthermore, we do not allow action hiding to lead
to divergent IOTSs, i.e., the hiding of outputs may not lead to the creation of τ -loops.
Example 2.16. Figure 5 shows the IOTSs A with LO

A = {a,b,c} and B = hide(A,{a,b}).
From now on, we typically won’t show all input-labelled self-loops in visualisations of IOTSs, to

reduce clutter. Thus, we assume that every IOTS is input-enabled (unless mentioned otherwise).

2.4 Properties of IOTSs

IOTSs possess several interesting properties, that will also be of use when working with QTSs later
on. We provide three results, showing that (1) hiding of actions corresponds to projection of traces,
(2) parallel composition does not introduce new traces when projecting on the alphabet of either one of
the components, and (3) parallel composition of components that synchronise on all actions yields the
intersection of the traces of the components.

Proposition 2.17. Given an IOTS A and a set of labels H ⊆ LO
A, we have traces(hide(A,H)) =

traces(A) � (LA \H).

Proposition 2.18. Given two IOTSs A and B, we have traces(A ‖ B) � LA ⊆ traces(A) and
traces(A ‖ B) � LB ⊆ traces(B).

Proposition 2.19. Given two IOTSsA, B withLA=LB, we have traces(A‖B)= traces(A)∩ traces(B).

3 Quiescent Transition Systems

3.1 Basic notions and requirements

IOTSs can be used to model the inputs and outputs of a system, but cannot explicitly express the obser-
vation of the absence of outputs, also called the observation of quiescence [14, 11, 7]. To fill this void,
we introduce Quiescent Transition Systems. These automata can be used to model all possible observa-
tions for a particular system, including quiescence, and can thus be thought of as ‘observation automata’.
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Figure 6: The QTSsA, B, C andD that do not satisfy rule R1, rule R2, rule R3 and rule R4, respectively.

They are based on Tretmans’ suspension automata [11], in the sense that a δ-transition represents the
observation of quiescence. A basic variant of QTSs was already used in [10] in a testing framework.
However, restrictions for QTSs to prohibit counterintuitive behaviour, as well as characteristics and clo-
sure properties of such models, have never been studied before.

Definition 3.1 (Quiescence). Let A = 〈S,S0,LI,LO,→〉 be an IOTS. A state s ∈ S is called quiescent
if @a ∈ LO ∪ {τ } . s−a→, i.e., no outputs or internal transitions can be executed in state s.

A system in a quiescent state will be idle until a new input is supplied. Note that a state s that can
still perform a τ -step is not considered quiescent, even if there is no output a! ∈ LO such that s =a!

=⇒.
After all, since quiescence signifies that a system is idle indefinitely, it would not make sense if there are
still internal steps possible. Moreover, from a more technical point of view, this ensures that QTSs are
closed under hiding and that hiding and deltafication (see Section 4) are commutative.

Definition 3.2 (Quiescent Transition Systems). A Quiescent Transition System (QTS) is an IOTS
A = 〈S,S0,LI,LO ∪ {δ},→〉, where δ /∈ LI ∪ LO is a special output label that is used to denote the
observation of quiescence. We define L= LI ∪ LO, Lδτ = LI ∪ LO ∪ {δ,τ } and let→ ⊆ S×Lδτ ×S be
the transition relation. Like regular IOTSs, QTSs must be input-enabled, i.e., s −a→ for all s ∈ S,a ∈ LI.
Furthermore, we also require the following rules to hold for all states s,s′,s′′ ∈ S:

Rule R1 (Quiescence should be observable): if s is quiescent, then s−δ→.

This rule requires that each quiescent state has an outgoing δ-transition. Consider the QTS A in
Figure 6(a). This QTS does not satisfy this rule, as the topmost state cannot produce any outputs,
but neither can execute an outgoing δ-transition.

Rule R2 (No outputs after quiescence): if s−δ→ s′, then s′ is quiescent.

This rule ensures that the system is idle after a δ-transition, i.e., it cannot provide an output (except
for δ itself) or execute an internal transition, before another input is provided. In Figure 6(b) the
QTS B is shown which does not satisfy this rule. From the top-most state it is possible to first
observe quiescence (the δ-transition) and after that the a! output, without an intermediate input.
Since there is no particular observation duration associated with quiescence, but quiescence rather
means that the system idles indefinitely, this is clearly counterintuitive and therefore disallowed.

Rule R3 (Quiescence does not enable new behaviour): if s−δ→ s′, then traces(s′)⊆ traces(s).

Given a state s′ of a QTS that is reached from another state s by a δ-transition (i.e., observation
of quiescence), this rule demands that any trace that can be executed starting from state s′ can
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also be executed in state s, i.e., the observation of quiescence may not introduce any new possible
observations. This rule was added to prevent situations like the one depicted in Figure 6(c). For
QTS C it is possible to observe the output c! (after the input a?) after first observing quiescence,
but if quiescence is not observed (because, for instance, the input a? was directly given) the output
b! will be observed after the input a? instead. Thus, the prior observation of quiescence allows
new behaviour to be observed later on, which is counterintuitive. This rule therefore ensures that
all behaviour that can be observed after observing quiescence can also be observed before.

Rule R4 (Continued quiescence preserves behaviour): if s−δ→ s′ and s′−δ→ s′′, then traces(s′)= traces(s′′).
A QTS D that violates this rule is shown in Figure 6(d). From the initial state an observation
of quiescence can be made, which then leads to a new state where the trace ac can no longer be
observed. From the latter state another observation of quiescence can be made, which leads to
another state where the trace ad can no longer be observed. Rule R3 allows this, but as there
is no particular time interval associated with the observation of quiescence, this does not make
sense. We therefore have the additional requirement that any observations possible after two (or
more) consecutive observations of quiescence should also be possible after a single observation of
quiescence, and vice versa.

Just as for IOTSs, we require QTSs to be convergent. The reason for this is that divergent systems
have states that can execute internal transitions infinitely often and never output anything. Considering
such a state quiescent would be nonintuitive, as it is not idle (and might even be able to provide an output
action, even though it does not show it). Not considering it quiescent would also be nonintuitive, because
of the possibility that no visible behaviour is observed.

Note that the converse of rule R1 is not required, e.g., we do not forbid that a state has both a δ-
transition and an output action enabled. This situation can arise during the determinisation of a QTS, as
we will see in Section 4. However, the δ-transition should still end up in a quiescent state, as required by
rule R2. Also note that a trace of a QTS can contain a sequence of δ-actions. Although this might seem
odd, it corresponds to the practical testing scenario of observing a time-out rather than an output more
than once in a row.

Since computing trace inclusion is expensive [1], an easier way to ensure that a QTS complies to rule
R3 is to make sure the following alternative rule R3′ holds for all states s,s′,s′′ ∈ S.

Rule R3′: if s−δ→ s′ and ∃a? ∈ LI such that s′ −a?−→ s′′ then also s−a?−→ s′′.

Clearly, any QTS that satisfies rule R3′ also satisfies rule R3.
Similarly, conformance to rule R4 for a QTS can be achieved by making sure that the following

alternative rule R4′ holds for all states s,s′ ∈ S of the QTS.

Rule R4′: if s−δ→ s′ then s′ −δ→ s′, and if also s′ −δ→ s′′ then s′′ = s′.

Clearly, any QTS that satisfies rule R4′ also satisfies rule R4.
When comparing the structure of two QTSs A and B, the notion of isomorphisms can be useful.

Definition 3.3 (Isomorphic QTSs). Two QTSs A = 〈SA,S0
A,L

I
A,L

O
A ∪ {δ},→A 〉 and

B = 〈SB,S0
B,L

I
B,L

O
B ∪ {δ},→B 〉 are called isomorphic, denoted A ∼= B, if there exists a bijection

h : SA→ SB (called an isomorphism) such that the following holds:

1. for all s0 ∈ S0
A there exists a t0 ∈ S0

B such that h(s0) = t0, and vice versa;

2. s−a→A s′ if and only if h(s)−a→B h(s′), for all s,s′ ∈ SA and a ∈ LA ∪ {δ,τ }.
Thus, two isomorphic QTSs are structurally equivalent.
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Figure 7: The QTSs A, B and A ‖ B.

3.2 Operations on QTSs

Since QTSs are a specialisation of IOTSs, all operations that are applicable to IOTSs (such as deter-
minisation, parallel composition and hiding of actions) are also applicable to QTSs. Determinisation for
QTSs is exactly the same as for IOTSs, but there are some minor differences for parallel composition
and action hiding.

Definition 3.4 (Parallel composition of QTSs). Let A = 〈SA,S0
A,L

I
A,L

O
A ∪ {δ},→A 〉 and

B = 〈SB,S0
B,L

I
B,L

O
B ∪ {δ},→B 〉 be two QTSs such that LO

A ∩ LO
B = ∅. The parallel composition of

A and B is then the QTS A ‖ B = 〈SA‖B,S0
A‖B,L

I
A‖B,L

O
A‖B ∪ {δ},→A‖B 〉, where SA‖B = SA×SB,

S0
A‖B = S0

A×S0
B, LI

A‖B = (LI
A ∪ LI

B)\ (LO
A ∪ LO

B), and LO
A‖B = LO

A ∪ LO
B. →A‖B is defined as follows:

→A‖B = {((s, t),a?,(s′, t′)) | s−a?−→A s
′ ∧ t−a?−→B t

′ }

∪ {((s, t),a!,(s′, t′)) | s−a?−→A s
′ ∧ t−a!−→B t

′ }

∪ {((s, t),a!,(s′, t′)) | s−a!−→A s
′ ∧ t−a?−→B t

′ }
∪ {((s, t), δ,(s′, t′)) | (s,δ,s′) ∈→A ∧ (t,δ, t′) ∈→B }
∪ {((s, t),a,(s′, t)) | s−a→A s

′ ∧ t ∈ SB ∧ a ∈ LτA \LB }
∪ {((s, t),a,(s, t′)) | t−a→B t

′ ∧ s ∈ SA ∧ a ∈ LτB \LA }

Thus, when compared to the parallel composition of regular IOTSs, we have the additional require-
ment that parallel composed QTSs must synchronise on the δ-action, as the observation of quiescence
can be made simultaneously for multiple QTSs. Again, we find that LA‖B = LI

A‖B ∪ L
O
A‖B = LA ∪ LB.

Example 3.5. See Figure 7(a) for the visual representation of a QTSAwhich satifies all the requirements
for QTSs listed in Definition 3.2. Figure 7(b) shows another QTS B and Figure 7(c) shows the parallel
composition of the QTSs A and B.

Definition 3.6 (Action hiding in QTSs). LetA= 〈S,S0,LI,LO ∪ {δ},→A 〉 be a QTS andH ⊆LO a set
of labels, then one can hide H in A to obtain the IOTS hide(A,H) = 〈S,S0,LI,(LO \H) ∪ {δ},→h 〉,
where→h = {(s,a,s′) ∈→A| a /∈H } ∪ {(s,τ,s′) ∈ S×{τ }×S | ∃a ∈H . (s,a,s′) ∈→A }.

We do not allow the special output label δ to be hidden, as this label doesn’t represent a specific
output but rather (the observation of) a lack of outputs. Furthermore, as for IOTSs, we do not allow
action hiding to lead to divergent QTSs, i.e., hiding may not lead to the creation of τ -loops.
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3.3 Properties of QTSs

In this section, we present several interesting properties of QTSs. First of all, it turns out that our model
is closed under all operations defined thus far: determinisation, action hiding and parallel composition.
Therefore, these operations are indeed well-defined for QTSs.
Theorem 3.7. QTSs are closed under determinisation, action hiding and parallel composition. Hence,
given two QTSs A, B and a set of labels H ⊆ LO

A, also det(A), hide(A,H) and A ‖ B are QTSs.
We also provide two results concerning the traces of parallel compositions of QTSs, generalising the

corresponding properties of IOTSs as given in Section 2.4. First, parallel composition does not introduce
new traces when projecting on the alphabet of either one of the components. That is, when disregarding
the actions of component B in the traces ofA ‖ B, the resulting set of traces is a subset of the traces ofA.
It then quite easily follows that, when two parallel QTSs have the same alphabet (and hence synchronise
on all actions), we obtain a subset of the intersection of their individual traces.
Proposition 3.8. Given two QTSs A and B, we have traces(A ‖ B) � (LA ∪ {δ})⊆ traces(A) and
traces(A ‖ B) � (LB ∪ {δ})⊆ traces(B).
Proposition 3.9. Given two QTSsA, B with LA =LB, we have traces(A ‖ B) = traces(A)∩ traces(B).

4 From IOTS to QTS: deltafication

Usually, the specification and implementation of a system (under development) are given as IOTSs,
rather than QTSs. During testing, however, we typically observe the outputs of the system generated in
response to inputs from the environment; thus, it is useful to be able to refer to the absence of outputs
(i.e., quiescence) explicitly. Hence, we need a way to convert an IOTS to a QTS that captures all possible
observations of it, including quiescence; this conversion is called deltafication and is described in [11,
12, 13]. First, however, we need to introduce an additional condition C1 for IOTSs, for every s,s′ ∈ S:
Condition C1: if s−δ→ s′, then for all σ ∈ traces(s′):

∃ t′ ∈ reach(s′,σ) . t′ is quiescent ∧ t′ 6−δ→ ⇒ ∀ t ∈ reach(s,σ) . t is quiescent ∧ t 6−δ→

Condition C1 requires that if any trace σ ∈ traces(s′), when executed from s′, can lead to a state
that is quiescent and cannot execute a δ-transition, then it must always lead to a state that is quiescent
and cannot execute a δ-transition when executed from s. This condition is weaker than R1, and allows
us to determine the deltafication of systems that already contain some δ-transitions without requiring a
δ-transition from every quiescent state. Note that any IOTS without δ-transitions vacuously satisfies C1.
Definition 4.1 (Deltafication). Given an IOTS A = 〈S,S0,LI,LO,→A 〉 that for all s,s′ ∈ S satisfies
deltafication condition C1, and rules R2, R3 and R4 (see Definition 3.2), we define the deltafication
of A as the QTS δ(A) = 〈S,S0,LI,LO ∪ {δ},→δ 〉 where →δ = →A ∪ {(s,δ,s) ∈ S×{δ}×S |
s is quiescent ∧ s 6−δ→ A }.
Example 4.2. An IOTS A and its deltafication δ(A) are shown in Figure 8(a) and 8(b), respectively.
Remark 4.3. To see why condition C1 is necessary, consider the IOTS B and its deltafication δ(B) shown
in Figure 8(c) and Figure 8(d), respectively; the states have been labelled for convenience. B does not
satisfy condition C1, since s0 −δ→ s1, s4 ∈ reach(s1,a) and s4 is quiescent and s4 6−δ→, but s3 ∈ reach(s0,a)
and s3 is not quiescent. As a consequence, the deltafication δ(B) is not a valid QTS: for δ(B) we have
aδbc ∈ traces(s1), but aδbc /∈ traces(s0), thereby violating rule R3.

A more liberal version of C1, where the second quantification is changed to an existential one, would
not be strong enough to prevent this: it would not forbid this example, as s2 ∈ reach(s0,a) is quiescent
and cannot do a δ-transition.
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Figure 8: Deltafications of the IOTSs A and B.

4.1 Validity of deltafication

Now, we present several interesting properties regarding the deltafication of IOTSs and QTSs. First, we
show that deltafication indeed yields a valid QTS, and that it is idempotent.

Lemma 4.4. Given an IOTS A that satisfies condition C1 and rules R2, R3 and R4, δ(A) is a QTS.

Proposition 4.5. Deltafication is idempotent, i.e., given an IOTS A that satisfies condition C1 and rules
R2, R3 and R4, we have δ(δ(A)) = δ(A).

Any IOTS A with δ /∈ LA vacuously satisfies condition C1 and rules R2, R3 and R4. Therefore, the
following theorem follows directly from Lemma 4.4.

Theorem 4.6. Given an IOTS A such that δ /∈ LA, δ(A) is a QTS.

By Definition 3.2, QTSs are IOTSs that satisfy rules R1, R2, R3 and R4. Since every state s in a
QTS enables at least one output action or δ (due to rule R1), it never occurs that s is quiescent and does
not enable a δ-transition, and hence every QTS satisfies condition C1 vacuously.

By Lemma 4.4, this immediately implies the following theorem.

Theorem 4.7. QTSs are closed under deltafication, i.e., given a QTS A, δ(A) is also a QTS.

4.2 Commutativity results

In this section we investigate the commutativity of deltafication with determinisation, action hiding and
parallel composition. We will show that parallel composition can safely be swapped with deltafication,
but that determinisation has to precede deltafication to get sensible results. Also, we show that action
hiding does not commute with deltafication.

Proposition 4.8. Deltafication and determinisation do not commute, i.e., given an IOTS A that satisfies
condition C1 and rules R2, R3 and R4, it is not necessarily the case that det(δ(A))∼= δ(det(A)).

Proof. Observe the IOTSA, its determinisation det(A) and deltafication δ(A) in Figure 9(a,b,c). Clearly,
the deltafication of the determinisation ofA (i.e., δ(det(A))), shown in Figure 9(d), results in an incorrect
observation automaton, as it does not model the fact that in the nondeterministic QTS δ(A) quiescence
may be observed after an initial a? input, as required by rule R1.

Contrary to the deltafication of the determinisation ofA, the determinisation of the deltafication ofA
(i.e., det(δ(A))), which is shown in Figure 9(e), does preserve the fact that quiescence may be observed
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Figure 9: The determinisation and deltafication of IOTS A do not commute.

after an initial a? input. This shouldn’t come as a surprise, since for any IOTS A the determinisation
det(A) is trace equivalent to the original automaton, as was observed earlier.

Thus, when transforming a nondeterministic IOTSA to a deterministic QTS, one should take care to
first derive δ(A) and afterwards determinise to obtain det(δ(A)).

The following results show that deltafication does commute with both action hiding and parallel com-
position. For action hiding this is trivial. After all, hiding only renames output actions to τ and deltafica-
tion only adds δ-loops to states that have no outgoing output transitions, no outgoing τ -transitions and no
outgoing δ-transition. Hence, they work on disjoint sets of states; commutativity is therefore immediate.

Theorem 4.9. Deltafication and action hiding commute, i.e., given an IOTS A that satisfies condition
C1 and rules R2, R3 and R4, and a set of labels H ⊆ LO

A, we have δ(hide(A,H))∼= hide(δ(A),H).

Theorem 4.10. Deltafication and parallel composition commute, i.e., given two IOTSs A and B with
LO
A ∩ LO

B = ∅ that satisfy condition C1 and rules R2, R3 and R4, we have δ(A ‖ B)∼= δ(A) ‖ δ(B).

These results are vital, as they allow great modelling flexibility. After all, hiding and parallel com-
position are often already applied to the IOTSs that describe a specification and its implementation. We
now showed that this yields the same QTSs as in case these operations are applied after deltafication.

5 Application to testing

Our main motivation for introducing and studying the QTS model was to enable a clean theoretical
framework for model-based testing. In this section, we illustrate how the model can be incorporated in
the ioco (input-output conformance) testing theory [13].

5.1 A conformance relation based on QTSs

To interpret the results of testing, we need to know which implementations are considered correct. For
this, we use a conformance relation, such as ioco, that relates specifications to implementations if and
only if the latter is ‘correct’ with respect to the former. For ioco, this is the case if the implementation
never provides an unexpected output when it is only fed inputs that are allowed according to the specifi-
cation. In this setting, an unexpected absence of outputs of the implementation is also considered to be
unexpected output. This can be formalised very nicely using QTSs, as they already model the expected
absence of outputs by explicit δ-transitions.
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Figure 10: A specification with two correct and two erroneous implementations.

Definition 5.1. Let Aimpl,Aspec be QTSs over the same alphabet LO ∪ LI ∪ {δ}. Then

Aimpl vioco Aspec if and only if ∀σ ∈ traces(Aspec) . outAimpl(σ)⊆ outAspec(σ),

where outA(σ) = {a! ∈ LO ∪ {δ} | σa! ∈ traces(A)}.

Since we require all QTSs to be input-enabled, it is easy to see that ioco-conformance precisely
corresponds to traditional trace inclusion over QTSs.

Example 5.2. Consider the specification Aspec given in Figure 10. It allows the initial state to either be
quiescent, output an a! or output a b!. We present four implementations. The first two implementations
are ioco-correct with respect to Aspec: although they omit some of the traces of the specification, they
never provide an unexpected output after a trace that is in the specification. The third implementation is
erroneous since it can provide a d! output from the initial state, while the specification does not allow
this. The fourth implementation is erroneous since it is unexpectedly quiescent after the trace c?.

Note that QTSs allowed us in this example to explicitly model the fact that both quiescence and some
output actions are considered correct behaviour of a system. Also, note that the unexpected quiescence
of the fourth implementation is clearly marked by a δ-transition in the QTS.

5.2 Testing using QTSs

Using the notion of ioco-correspondence, it is quite easy to derive test cases for QTSs. Basically, at
each point in time we choose to either try to provide an input, observe the behaviour of the system
or stop testing. As long as the trace we obtain in this way (including the δ-actions) is also a trace of
the specification, the implementation is correct. Due to the explicit presence of quiescence in the QTS
model of the specification, it is easy to see that this straightforward way of testing precisely corresponds
to checking ioco-conformance.

6 Conclusions and Future Work

We introduced the notion of quiescent transition systems (QTSs), explicitly modelling the absence of
outputs as a first-class citizen. We provided four restrictions for QTSs, to eliminate counterintuitive be-
haviours. Also, we defined the common automaton operations — parallel composition, determinisation
and action hiding — directly on QTSs, and showed that all of our restrictions are indeed preserved by
the operations. We presented a way to obtain a QTS from a traditional input-output transition system
(IOTS), even allowing the situation in which the IOTS already partially models quiescence. Finally,
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we illustrated how our novel theory of QTSs can be used to greatly simplify the theory of model-based
testing, defining the conformance relation ioco in terms of QTSs.

So far, we only allowed input-enabled and convergent QTSs; i.e., systems that cannot perform an
endless series of unobservable transitions. Future work will focus on extending our framework to diver-
gent systems that are not necessarily input-enabled. Also, we plan on linking QTSs to timed automata, to
explicitly represent δ-transitions as finite timeouts, bridging the gap between formal and practical testing.
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