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A major challenge in testing software product lines is efficiency. In particular, testing a product line
should take less effort than testing each and every product individually. We address this issue in
the context of input-output conformance testing, which is a formal theory of model-based testing.
We extend the notion of conformance testing on input-output featured transition systems with the
novel concept of spinal test suites. We show how this concept dispenses with retesting the common
behavior among different, but similar, products of a software product line.

1 Introduction

1.1 Motivation

Testing and debugging are labor-intensive parts of software development. In particular, testing a software
product line is extremely time- and resource-consuming due to the various configurations of products that
are derivable from the product line. In order to manage the complexity, the test process of a software
product line must be efficiently coordinated: common features ought to be tested once and for all and
only specific variation points of various configurations should be tested separately.

Model-based testing is an approach to structure the test process by exploiting test models. Input-
output conformance testing (ioco) [24] is a formalization of model-based testing employing input-output
labeled transition systems as models. In the past, we extended the formal definition ioco to the setting of
software product lines [3], by exploiting input-output featured transition systems. In this paper, we define
a theoretical framework, which serves as the first step towards an efficient discipline of conformance
model-based testing for software product lines.

To this end, we define the notion of spinal test suite, which allows one to test the common features
once and for all, and subsequently, only focus on the specific features when moving from one product
configuration to another. We show that spinal test suites are exhaustive, i.e., reject each and every non-
conforming implementation under test, when the implementation satisfies the orthogonality criterion.
This is a rather mild criterion, which implies that old features are not capable of disabling any enabled
behavior from the new features on their own and without involving any interaction with the new feature’s
components.

1.2 Running example

To motivate various concepts throughout the paper, we use the following running example. Consider
an informal description of a cruise controller, present in contemporary cars. The purpose of a cruise
controller is to automatically maintain the speed of the car as specified by the driver. We denote the
basic feature of a cruise controller by cc. Cruise controllers also have an optional feature, called collision
avoidance controller (cac), whose task is to react to any obstacle detected ahead of the car within a danger
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zone. In case the collision avoidance feature is included in a cruise controller and an obstacle is detected,
the engine power is regulated using an emergency control algorithm.

1.3 Organization

The rest of this paper is structured as follows. In Section 2, we recall the formal definitions regarding
models, product derivation and conformance testing. In Section 3, we define the notion of spinal test
suite, which is a compact test suite for the “new” features with respect to an already tested product (or a
set of features). In Section 4, we study the exhaustiveness of the spinal test suites: we show that spinal
test suites are in general non-exhaustive, but this can be remedied by requiring mild conditions on the
implementation under test. In Section 5, we sketch the context of this research. In Section 6, we conclude
the paper and outline the direction of our ongoing research.

2 Background

2.1 Input-output featured transition systems

Feature diagrams [13, 22] have been used to model variability constraints in SPLs using a graphical
notation. However, it is well known that feature diagrams only specify the structural aspects of variability
and they should be complemented with other models in order to specify the behavioral aspects [7]. To
this end, we describe the behavior of a software product line using an input-output featured transition
system (IOFTS) [3], defined and explained below.

Let F be the set of features (extracted from a feature diagram) and B= {>,⊥} be the set of Boolean
constants; we denote by B(F) the set of all propositional formulae generated by interpreting the elements
of the set F as propositional variables. For instance, in our running example, formula cc∧¬cac asserts
the presence of cruise controller and the absence of collision avoidance controller. We let ϕ,ϕ ′ range
over the set B(F).

Definition 1. A input-output featured transition system (IOFTS) is a 6-tuple (S,s,Aτ ,F,T,Λ), where

1. S is the set of states,

2. s ∈ S is the initial state,

3. Aτ = AI ]AO ]{τ} is the set of actions, where AI and AO are disjoint sets of input and output
actions, respectively, and τ is the silent (internal) action,

4. F is a set of features,

5. T ⊆ S×Aτ×B(F)×S is the transition relation satisfying the following condition (for every s1,s2 ∈
S,a ∈ Aτ ,ϕ,ϕ

′ ∈ B(F)):

(s1,a,ϕ,s2) ∈ T ∧ (s1,a,ϕ ′,s2) ∈ T ⇒ ϕ = ϕ
′, 1

6. Λ⊆ {λ : F → B} is a set of product configurations.

We write s a−→ϕ s′ to denote an element (s,a,ϕ,s′) ∈ T and drop the subscript ϕ whenever it is clear
from the context. Graphically, we denote the initial state of an IOFTS by an incoming arrow with no

1Here, by ϕ = ϕ ′ we assert that ϕ and ϕ ′ are syntactically equivalent.
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source state and we refer to an IOFTS by its initial state. Following the standard notation, we denote the
reachability relation by −→→ ⊆ S×A∗×S, which is inductively defined as follows:

s ε−→→ s

s σ−→→ s′,s′ τ−→ s′′

s σ−→→ s′′
s σ−→→ s′,s′ a−→ s′′,a 6= τ

s σa−→→ s′′
.

Furthermore, the set of reachable states from a state s is denoted by Reach(s) = {s′ | ∃σ s σ−→→ s′}.
Example 1. Consider the IOFTS of a cruise controller, drawn in Figure 1, where inputs and outputs are
prefixed with symbols ? and !, respectively. (Note that ? and ! are not part of the action names and are
left out when the type of the action is irrelevant or clear from the context.) The regulate action, indicated

s0 s1 s2

?on/cc

?off/cc !rgl/cc

?det/cac

?nor/cac

!srgl/cac

Figure 1: IOFTS of the cruise controller.

by rgl, regulates the engine power of the car when the cruise controller is activated. Furthermore, when
cac is included in a product, some additional behavior may emerge. Namely, while the cruise controller
is on, if an object is detected within a danger zone, then the cruise controller regulates the engine power
in a safe manner denoted by srgl. When the sensor signals a normal state, the cruise controller returns
to the normal regulation regime. (For a realistic case study of a cruise controller and its formal model,
we refer to [15].)

2.2 Product derivation operators

In [3], we introduced a family of product derivation operators (parameterized by feature constraints),
which project the behavior of an IOFTS into another IOFTS representing a selection of products (a
product sub-line).
Definition 2. Given a feature constraint ϕ and an IOFTS (S,s,Aτ ,F,T,Λ), the projection operator ∆ϕ

induces an IOFTS (S′,∆ϕ(s),Aτδ ,F,T ′,Λ′), where
1. S′ = {∆ϕ(s′) | s′ ∈ S} is the set of states,

2. ∆ϕ(s) is the initial state,

3. Aτδ = Aτ ]{δ} is the set of actions, where δ is the special action label modeling quiescence [24],

4. T ′ is the smallest relation satisfying:

s a−→ϕ ′ s′

∃λ (λ ∈ Λ∧λ |= (ϕ ∧ϕ
′))

∆ϕ(s)
a−→ϕ∧ϕ ′ ∆ϕ(s′)

(1)

Λ̄ = {λ ∈ Λ | λ |= ϕ ∧Q(s,λ )} Λ̄ 6= /0

∆ϕ(s)
δ−→ϕ∧(

∨
λ∈Λ̄

λ ) ∆ϕ(s)
(2)

where the predicate Q(s,λ ) is defined as

∀s′,a,ϕ ′
(
s a−→ϕ ′ s′∧a ∈ AO∪{τ}

)
⇒ λ 6|= ϕ

′.
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5. Λ′ = {λ ∈ Λ | λ |= ϕ} is the set of product configurations.

In the above-given rules λ |= ϕ , denotes that valuation λ of features satisfies feature constraint ϕ .
Intuitively, rule (1) describes the behavior of those valid products that satisfy the feature constraint ϕ in
addition to the original annotation of the transition emanating from s. Rule (2) models quiescence (the
absence of outputs and internal actions) from the state ∆ϕ(s). Namely, it specifies that the projection with
respect to ϕ is quiescent, when there exists a valid product λ that satisfies ϕ and is quiescent, i.e., cannot
perform any output or internal transition. Quiescence at state s for a feature constraint λ is formalized
using the predicate Q(s,λ ), which states that from state s there is no output or silent transition with a
constraint satisfied by λ . In the conclusion of the rule, a δ self-loop is specified and its constraint holds
when ϕ holds and at least the feature constraint of one quiescent valid product holds. This ability to
observe the absence of outputs (through a timeout mechanism) is crucial in defining the input-output
conformance relation between a specification and an implementation [3].

Example 2. Consider the feature constraint ϕ = cc∧¬cac. The IOFTS generated by projecting the
IOFTS of cruise controller (in Figure 1) using feature constraint ϕ is depicted in Figure 2. As mentioned
before, this represents the product that has the basic cruise controller functionality but does not contain
collision avoidance controller.

s0 s1

δ/cc∧¬cac

?on/(cc∧¬cac)

?off/(cc∧¬cac)

!rgl/(cc∧¬cac)

Figure 2: Cruise controller after projecting with feature constraint cc∧¬cac.

In the sequel, we use the phrase “a feature specification ∆ϕ(s)” to refer to the following IOFTS:

(Reach(∆ϕ(s)),∆ϕ(s),Aτδ ,F,T,Λ).

We interpret the original IOFTS of Definition 1 as ∆>(s0); this has the implicit advantage of always
including quiescence in appropriate states.

2.3 Input-output conformance

The input-output conformance (ioco) testing theory [24] formalizes model-based testing in terms of a
conformance relation between the states of a model (expressed as an input-output transition system) and
an implementation under test (IUT). Note that the ioco theory is based on the testing assumption that
the behavior of the IUT can be expressed by an input-output transition system, which is unknown to the
tester.

The conformance relation can be checked by constantly providing the SUT with inputs that are
deemed relevant by the model and observing outputs from the SUT and comparing them with the possible
outputs prescribed by the model. In the following, we recall such an extensional definition of ioco,
extended to software product lines in [3]. An equivalent intensional definition of ioco that relies on
comparing the traces of the underlying IOFTS was also given in [3], but for the purpose of this paper we
only work with the extensional definition. (After all, the extensional definition is the one that is supposed
to be applied in practice.)
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We begin with a notion of suspension traces generated by an IOFTS. Informally, a suspension trace
is a trace that may contain the action δ denoting quiescence [24].

Definition 3. The set of suspension traces of a feature specification ∆ϕ(s), denoted by Straces(∆ϕ(s)) is
defined as: {σ ∈ Aδ

∗ | ∃s′ ∆ϕ(s)
σ−→→ ∆ϕ(s′)}.

For example, in the IOFTS of Example 2, δ?on!rgl is a suspension trace emanating from the initial
state s0. Next, we define the notion of test suite, which summarizes all possible test cases that can be
generated from a feature specification.

Definition 4. The test suite for an IOFTS (Reach(∆ϕ(s)),∆ϕ(s),Aτδ ,F,T,Λ), dennoted by T (s,ϕ), is
the IOFTS (X∪{pass, fail},X0,Aδ ,F,T ′,Λ),, where

1. X=
{(
{s′ |∆ϕ(s)

σ−→→∆ϕ(s′)},σ
)
|σ ∈ Straces(s)

}
is the set of intermediate states and {pass, fail}

is the set of verdict states [24],

2. X0 = {({s′ | ∆ϕ(s)
ε−→→ ∆ϕ(s′)},ε)} is the initial state of the test suite,

3. Aδ = A]{δ} is the set of actions, and

4. the transition relation T ′ is defined as the smallest relation satisfying the following rules.

(X ,σ),(Y,σa) ∈ X

(X ,σ)
a−→ϕ (Y,σa)

(3)

a ∈ AO∪{δ}
(X ,σ)

a−→ϕ (Y,σ ′)

(X ,σ)
a−→ϕ pass

(4)

a ∈ AO∪{δ}
(X ,σ) 6 a−→ϕ pass

(X ,σ)
a−→ϕ fail

(5)
a ∈ AO∪{δ}
pass a−→ϕ pass
fail a−→ϕ fail

(6)

Intuitively, the test suite for a feature specification is an IOFTS (possibly with an infinite number of
states), which contains all the possible test cases that can be generated from the feature specification.
Rule (3) states that if X and Y are nonempty sets of reachable states from s (under feature restriction ϕ)
with the suspension traces σ and σa, respectively, then there exists a transition of the form (X ,σ)

a−→ϕ

(Y,σa) in the test suite. Rules (4) and (5) model, respectively, the successful and the unsuccessful
observation of outputs and quiescence. Note that input actions are not included in rules (4) and (5)
because the implementation is assumed to be input-enabled [24]; hence, they are already covered by
rule (3). Rule (6) states that the verdict states contain a self-loop for each and every output action, as
well as for quiescence.

Example 3. The test suite for the IOFTS of Example 2 is (partially) depicted in Figure 3.

A reader familiar with the original ioco theory [24] will immediately notice that our definition of a
test suite (Definition 4) is nonstandard. In particular, a test suite is defined as a set of test cases (i.e.,
input-output transition systems with certain restrictions) with finite number of states in [24]; whereas we
represent a test suite by an IOFTS, possibly with an infinite number of states. To this end, we define a
test case to be a finite projection of a test-suite with the additional restriction that at each moment of time
at most one input can be fed into the system under test (see [3] for a formal definition). As a result, our
test cases are structurally similar to Tretmans’ formulation of the test cases, by which we mean that:

• a test case is always deterministic,
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{s0},ε· · ·

fail{s1},on{s0},on off

· · ·

fail

{s1},on off on

{s2},on off on det

· · ·

{s2},on det

· · ·

{s1},on rgl

{s2},on rgl det

· · ·

rgl,srgl

δ

δ ,srgl

on

off
δ

rgl,srgl

on

det

srgl

det

srgl

rgl

det

srgl

Figure 3: The test suite of the cruise controller example.

• a test case is always input enabled, and

• a test case has no cycles except those in the verdict states pass and fail.
Another notable difference, that is key to define the concepts of Section 3, is that states of a test suite
(or test case) carry some mathematical structure, whereas the states of a test case in [24] are abstract and
carry no structure.

Next, we define a synchronous observation operator e| that allows us to model a test run on an
implementation (cf. [24]). This is defined over a test suite and an IOFTS (the intended implementation)
as follows. (Note that the calligraphic letters X ,Y in the following rules range over the states of a test
suite.)

X
a−→ Y ∆ϕ(s)

a−→ ∆ϕ(s′) a ∈ Aδ

X e|∆ϕ(s)
a−→> Y e|∆ϕ(s′)

(7)
∆ϕ(s)

τ−→ ∆ϕ(s′)

X e|∆ϕ(s)
τ−→> X e|∆ϕ(s′)

(8)

Having defined the notion of synchronous observation, we can now define what it means for a feature
specification to pass s test suite. Informally, a feature specification passes a test suite if and only if no
trace of the synchronous observation of the test suite and the feature specification leads to the fail verdict
state.
Definition 5. Let X0 be the initial state of a test suite T (s,ϕ). A feature specification ∆ϕ ′(s′) passes the
test suite T (s,ϕ) iff

∀σ∈Aδ
∗,X ,s′′ X0e|∆ϕ ′(s′)

σ−→→X e|∆ϕ ′(s′′) ⇒ X 6= fail.

The implementation ∆ϕ ′(s′) conforms to the specification ∆ϕ(s) iff ∆ϕ ′(s′) passes the test suite T (s,ϕ).

3 Spinal test suite

As mentioned in the introduction, one of the challenges in testing a software product line is to minimize
the test effort. The idea pursued in this section is to organize the test process of a product line incre-
mentally. This is achieved by reusing the test results of an already tested product to test a product with
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similar features, thereby dispensing with the test cases targeted at the common features. To this end, we
introduce the notion of spinal test suite, which prunes away the behavior of a specified set of features
from an abstract test suite T (s,ϕ) with respect to a concrete test suite T (s,λ ) of the already tested
product λ ; the spinal test suite is only defined when λ is valid w.r.t. ϕ , i.e., λ |= ϕ . The latter constraint
means that the concrete product builds upon the already-tested features in the abstract test suite.

Notably, which behavior has to be pruned from an abstract test suite is crucial in defining a spinal
test suite. One way to address this situation is by allowing only those reachable states in the abstract
test suite from which a new behavior relative to the already tested product emanates. However, without
any formal justification, we claim that such a strategy will not reduce the effort to test new behavior with
respect to the already tested product.

For example, consider the test suite depicted in Figure 3 and suppose we have already tested the cruise
controller without collision avoidance feature and now are interested in the correct implementation of the
collision avoidance feature. By following the aforementioned strategy of pruning, none of the following
states ({s1},on),({s1},on off on), · · · will be removed because the event det is enabled from each of
these states. On the other hand, since we know that cruise controller without collision avoidance feature
was already tested, it is safe to consider the new suspension traces (or testing experiments) from only
one state in {({s1},on),({s1},on off on), · · ·}.

Definition 6. Let X0 be the initial state of a test suite T (s,ϕ). A path X0
σ−→→ (X ,σ) is a spine of a path

X0
σ ′−→→ (X ,σ ′), denoted by σ†σ ′, when σ is a sub-trace of σ ′ (obtained by removing zero or more action

from σ ′) and no two states visited during the trace σ have the same X-component; this is formalized by
the predicate bt(X ,σ), defined below:

∀σ1,σ2,σ3,Y,Z
(
X0

σ1−→→ (Y,σ1)
σ2−→→ (Z,σ2)

σ3−→→ (X ,σ)∧σ2 6= ε ∧σ = σ1σ2σ3
)
⇒ Y 6= Z.

Furthermore, we let bt(X0) =>.

Example 4. Recall the feature specification given ∆ϕ(s0) in Example 2, where ϕ = cc∧¬cac. Since
collision avoidance controller is an optional feature, we know that there exists a product configuration
λ with λ (cc) => and λ (cac) =⊥. Then, the path labelled “on” (in the test suite drawn in Figure 3) is
a spine of the path labelled “on off on” because they both reach to a common X-component {s1} in the
test suite and bt({s1},on) =>.

Definition 7. Let (X∪{pass, fail},X0,Aδ ,F,T,Λ) be a test suite T (s,ϕ) and let λ be a product such
that λ |= ϕ . Then a spinal test suite with respect to a product λ , denoted by S (ϕ,λ ), is an IOFTS
(X∪{pass, fail},X0,Aδ ,F,T ′,Λ′), where

1. The set of non-verdict states X is defined as X′∪X′′, where

X′ = {(X ,σ) ∈ Xϕ
s | σ ∈ Straces(∆λ (s))∧bt(X ,σ)}

X′′ = {(Y,σaσ
′) ∈ Xϕ

s | news,λ (σ ,a)∧∃X (X ,σ) ∈ X′∧ (X ,σ)
aσ ′−−→→ (Y,σaσ

′)}.

where, news,λ (σ ,a) ⇔ σ ∈ Straces(∆λ (s))∧∃s′,s′′ ∆ϕ(s)
σ−→→ ∆ϕ(s′)

a−→ϕ ′ ∆ϕ(s′′)∧λ 6|= ϕ ′. In-
tuitively, the predicate news,λ (σ ,a) asserts whether there is an a-transition after the suspension
trace σ that is “new” with respect to the tested product λ .

2. The set of transition relations T ′ is defined as

T ′ = {(X ,a,Y ) ∈ T |X ,Y ∈ X}.
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3. The set of product configurations Λ′ = Λ\{λ}.
Intuitively, Condition 1 defines X′ to be a set of non-verdict states of the form (X ,σ) such that σ is

a suspension trace of the already tested product ∆λ (s) and the predicate bt(X ,σ) holds; whereas, X′′ is
the set of non-verdict states reachable from a state in X′ by a trace that is not a suspension trace of the
tested product ∆λ (s). Condition 2 and 3 are self-explanatory.

As an example, the spinal test suite generated from the test suite in Figure 3 is partially drawn in
Figure 4.

{s0},εpass fail

{s1},on failpass

{s2},on det fail· · ·

· · ·

rgl,srglδ

δ ,srgl

on

rgl

δ , rgl

det

nor

sgl

Figure 4: Spinal test suite of the cruise controller

4 Exhaustiveness of Spinal Test Suites

The spinal test suite S (ϕ,λ ) contains the spines of those paths from the test suite T (s,ϕ) that lead to
new behavior w.r.t. to the already-tested product λ . Next, we show that the spinal test suite S (ϕ,λ ) is
not necessarily exhaustive for an arbitrary implementation under test, i.e., it may have strictly less testing
power than the test suite T (s,ϕ). We show this through the following example.

Example 5. Consider an implementation of a cruise controller with a collision avoidance feature mod-
eled as the IOFTS depicted in Figure 5. Clearly, this implementation is a faulty one as the action ‘rgl’

on

off

rgl

on

rgl

off

det

rgl

nor

det

nor

srgl

Figure 5: A faulty implementation of the cruise controller with control avoidance.

must be prohibited after detecting an obstacle, i.e., after executing the transition labeled ‘det’.
As soon as we place the test suite (Figure 3) in parallel (e|) with the above-given implementation,

we observe that the following synchronous interactions emerge: on.off.on.det.rgl, which lead to the fail
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verdict state. However, note that the aforementioned fault in the implementation cannot be detected
while interacting with the spinal test suite of Figure 4, because there are no transitions labeled with off
in the spinal test suite. Thus, a spinal test suite S (ϕ,λ ) has strictly less testing power than the test suite
T (s,ϕ).

Next, we explore when a spinal test suite S (ϕ,λ ) (where λ |= ϕ) together with a concrete test suite
T (s,λ ) have the same testing power as the abstract test suite T (s,ϕ).

Definition 8. Let λ |= ϕ . A feature specification ∆ϕ ′(s′) is orthogonal w.r.t ∆ϕ(s) and the product λ iff

∀s1,σ ′,a,σ ′′
(

news,λ (σ
′,a)∧∆ϕ ′(s′)

σ ′aσ ′′−−−→→ ∆ϕ ′(s1)
)
⇒ ∃s2,σ ∆ϕ ′(s′)

σaσ ′′−−−→→ ∆ϕ ′(s2)∧σ†σ
′.

Example 6. Recall the feature specification ∆ϕ(s0) and the product λ (which omits the control avoidance
feature) from Example 4. Note that the implementation given in Figure 5 is not orthogonal w.r.t the feature
specification ∆ϕ(s0) and the product λ because the underlined subsequence in “on off on det rgl” cannot
be extended with the spine sequence on.

In the remainder, we prove the main result (Theorem 1) of this section that an orthogonal implemen-
tation passes the test suite T (s,ϕ) whenever it passes the concrete test suite T (s,λ ) and the spinal test
suite S (ϕ,λ ).

Lemma 1. Let X0 be the initial state of a test suite T (s,ϕ) and let λ be a product with λ |= ϕ . If

X0
σ ′aσ ′′−−−→→ fail, news,λ (σ

′,a), and σ†σ ′ then X0
σaσ ′′−−−→→ fail.

Proof sketch. Let us first decompose the sequence of transitions X0
σ ′σ ′′−−−→→ fail as X0

σ ′−→→ (X ,σ ′)
σ ′′−→→ fail,

for some X . Then by definition of a spine path we get Xϕ
s

σ−→→ (X ,σ). Next, it is straightforward to show

by induction on σ ′′ that (X ,σ)
aσ ′′−−→→ fail, whenever (X ,σ ′)

aσ ′′−−→→ fail and news,λ (σ
′,a).

Theorem 1. Let ∆ϕ ′(s′) be orthogonal w.r.t. to ∆ϕ(s) and λ . If ∆ϕ ′(s′) pass the test suites T (s,λ ) and
S (ϕ,λ ), then ∆ϕ ′(s′) passes the test suite T (s,ϕ).

Proof. Let X0 be the initial state of the test suite T (s,ϕ). We will prove this theorem by contradiction.
Let ∆ϕ ′(s′) pass the test suites T (s,λ ) and S (ϕ,λ ). Suppose ∆ϕ ′(s′) fails in passing the test suite
T (s,ϕ). Then, there exists the following sequences of transitions X0

σ−→→ fail and ∆ϕ ′(s′)
σ−→→ ∆ϕ ′(s′1) (for

some σ ,s′1) in the test suite T (s,ϕ) and the feature specification ∆ϕ ′(s′). Now there are two possibilities:

1. Either, σ ∈ Straces(∆λ (s)). Then, the feature specification ∆ϕ ′(s′) fails to pass the test suite
T (s,λ ). Hence, a contradiction.

2. Or, σ 6∈ Straces(∆λ (s)). Then, the sequence of transitions X0
σ−→→ fail can be decomposed in the

following way: X0
σ1aσ2−−−→→ fail with σ = σ1aσ2 and news,λ (σ1,a).

Since the feature specification ∆ϕ ′(s′) is orthogonal w.r.t. ∆ϕ(s) and λ , we have

∃s′2,σ
′
1

∆ϕ ′(s′)
σ ′1aσ2−−−→→ ∆ϕ ′(s′2)∧σ

′
1†σ1.

Then, by applying Lemma 1 we get the following path in the spinal test suite: X0
σ ′1aσ2−−−→→ fail. Thus,

∆ϕ ′(s′) fails to pass the spinal test suite S (ϕ,λ ); hence, a contradiction.
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5 Related work

Various attempts have been made regarding formal and informal modeling of SPLs, on which [20, 6, 21,
9, 23] provide comprehensive surveys. By and large, the literature can be classified into two categories:
structural modeling and behavioral modeling techniques.

Structural models specify variability in terms of presence and absence of features (assets, artifacts)
in various products and their mutual inter-relations. Behavioral models, however, concern the working
of features and their possible interactions, mostly based on some form of finite state machines or labeled
transition systems. The main focus in behavioral modeling of SPLs (cf. [2, 1, 7, 8, 11, 12, 16]) has
been on formal specification of SPLs and adaptation of formal verification (mostly model checking)
techniques to this new setting.

In addition, several testing techniques have been adapted to SPLs, of which [19, 14, 18, 10] provide
recent overviews. Hitherto, most fundamental approaches to formal conformance testing [4] have not
been adapted sufficiently to the SPL setting. The only exception that we are aware of is [17], which
presents an LTS-based incremental derivation of test suites by applying principles of regression testing
and delta-oriented modeling [5].

Although our work is based on input-output conformance testing, we envisage that the ideas pursued
in this paper can be adapted to other fundamental theories of conformance testing, e.g., those based on
finite state machines [4, 25].

6 Conclusions

In this paper, we introduced the notion of spinal test suites, which can be used in order to incrementally
test different products of a software product line. A spinal test suite only tests the behavior induced by
the “new” features and dispenses with re-testing the already-tested behavior, unless this is necessary in
order to reach the behavior of the new features.

As future work, we intend to exploit this notion and establish a methodology of testing software
product lines, by automatically detecting the optimal order of testing products, which leads to a minimal
size of residual test suites (with respect to a given notion of model coverage). In order to effectively use
the notion of spinal test suites, we would like to define syntactic criteria that guarantee orthogonality of
features.
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