
T. Neary and M. Cook (Eds.):
Machines, Computations and Universality (MCU 2013)
EPTCS 128, 2013, pp. 167–189, doi:10.4204/EPTCS.128.21

c© J. Hendricks & M.J. Patitz
This work is licensed under the
Creative Commons Attribution License.

On the Equivalence of Cellular Automata and the Tile
Assembly Model

Jacob Hendricks Matthew J. Patitz
jhendric@uark.edu patitz@uark.edu

Department of Computer Science and Computer Engineering, University of Arkansas ∗

In this paper, we explore relationships between two models of systems which are governed by only
the local interactions of large collections of simple components: cellular automata (CA) and the
abstract Tile Assembly Model (aTAM). While sharing several similarities, the models have funda-
mental differences, most notably the dynamic nature of CA (in which every cell location is allowed
to change state an infinite number of times) versus the static nature of the aTAM (in which tiles are
static components that can never change or be removed once they attach to a growing assembly). We
work with 2-dimensional systems in both models, and for our results we first define what it means
for CA systems to simulate aTAM systems, and then for aTAM systems to simulate CA systems. We
use notions of simulate which are similar to those used in the study of intrinsic universality since
they are in some sense strict, but also intuitively natural notions of simulation. We then demonstrate
a particular nondeterministic CA which can be configured so that it can simulate any arbitrary aTAM
system, and finally an aTAM tile set which can be configured so that it can be used to simulate any
arbitrary nondeterministic CA system which begins with a finite initial configuration.

1 Introduction

Mathematical models of systems composed of large, distributed collections of simple components which
are guided by only local interactions between neighboring elements have demonstrated the rise of emer-
gent complexity, and provided enormous insight into the behaviors of many naturally occurring systems,
while also guiding the modeling and development of complex artificial systems. Two such notable mod-
els are cellular automata (CA) and the astract Tile Assembly Model (aTAM). In this paper, we seek to
explore the relationship between these two models.

Introduced by Stanislaw Ulam and John von Neumann in the 1940’s, CA consist of an infinite grid of
cells which can each sense their immediate neighborhoods and then all independently but synchronously
update their states based on a finite set of rules and the state of their neighborhoods. Since their introduc-
tion, CA have provided a rich theoretical framework for studying the power of systems governed by local
interactions. Much of that study has included classifications of the relative powers of various CA systems
with differing neighborhoods and rules governing their state changes, and a large amount of this classi-
fication has been the result of various demonstrations of the ability of one system to simulate another,
including very importantly the definitions of what it means for one system to simulate another. A key
notion developed during this study was that of intrinsic universality [2, 3, 6, 7, 13, 16, 19, 20], which was
designed to capture a strong notion of simulation, in which one particular automaton is capable of simu-
lating the behavior of any automaton within a class of automata. Furthermore, to simulate the behavior
of another automaton, the simulating automaton must evolve in such a way that a translated rescaling
∗This research was supported in part by National Science Foundation Grant CCF-1117672.

http://dx.doi.org/10.4204/EPTCS.128.21
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

168 On the Equivalence of CA and the TAM

(rescaled not only with respect to rectangular blocks of cells, but also with respect to time) of the sim-
ulator can be mapped to a configuration of the simulated automaton. The specific rescaling depends on
the simulated automaton and gives rise to a global rule such that each step of the simulated automaton’s
evolution is mirrored by the simulating automaton, and vice versa via the inverse of the rule. In this way,
it is said that the simulator captures the dynamics of the simulated system, acting exactly like it, modulo
rescaling. This is in contrast to a computational simulation, for example when a general purpose digital
computer runs a program to simulate a cellular automata while the processor’s components don’t actually
arrange themselves as, and behave like, a grid of cellular automata. Such computational simulations of
computable systems can be performed by systems in any Turing universal model. However, as we will
discuss shortly, Turning universality does not imply the simulation capabilities necessary for intrinsic
universality.

Introduced by Erik Winfree in 1998 [24], the abstract Tile Assembly Model (aTAM) is a mathemat-
ical model in which the individual components are square “tiles”, with “glues” on their edges, which
are able to autonomously bind together to form structures based only on the amount and strengths of
matching glues on edges of adjacent tiles. The aTAM was inspired by Wang tiling [23], but provides a
model for the dynamic growth of tilings. Like various CA, the aTAM has been proven to be computa-
tionally universal and capable of quite powerful behavior. Recently, taking example from the work on
CA, much work has been done to classify the power of the aTAM and derivative tile assembly models
based on their powers of simulation [4, 8, 9, 11, 14]. In fact, [10] showed that the aTAM is intrinsically
universal, which means that there is a single tile set U such that, for any aTAM tile assembly system T
(of any temperature), the tiles of U can be arranged into a seed structure dependent upon T so that the
resulting system (at temperature 2), using only the tiles from U , will faithfully simulate the behaviors of
T . In contrast, in [9] it was shown that no such tile set exists for the 2HAM since, for every temperature,
there is a 2HAM system which cannot be simulated by any system operating at a lower temperature.
Thus no tile set is sufficient to simulate 2HAM systems of arbitrary temperature, despite the fact that the
2HAM is computationally universal, and can also simulate any arbitrary aTAM system as shown in [4].
Furthermore, it was shown in [18] that although the aTAM in 3 dimensions is computationally universal
at temperature 1 (see [5]), it is unable to simulate the behavior of the majority of temperature 2 aTAM
systems. These results from [18] and [5] prove that Turing universality does not imply the simulation
power necessary for intrinsic universality.

As early as the aTAM’s initial introduction, its power to simulate CA was explored. Winfree et
al. showed that the 2-D aTAM can be used to simulate 1-D CA [25], and Winfree [24] showed that
the 3-D aTAM can simulate 2-D CA. Furthermore, the aTAM is commonly colloquially referred to
as an asynchronous, nondeterministic CA in which quiescent states that change to “tile” states never
change again (analogous to write-once memory). These comparisons led naturally to our exploration of
simulations between the two models using the same dimensions for each, namely 2-D. However, even
between systems within the same model, defining a satisfactory notion of simulation, namely one which
captures the essence of one system “behaving” like the other while also generating analogous results, or
output, can be difficult. While the definition of a CA system simulating an aTAM system may be in some
sense rather natural, the definition of an aTAM system simulating a CA system must take into account
the write-once nature of tile assembly systems. To account for this, we modify the standard notions
of simulation used in intrinsic universality to allow for an increasing scale factor during simulation.
Essentially, such simulation definitions typically make use of a standard block replacement scheme in
which, throughout the simulation, each constant sized block of the simulator can be directly mapped to
an element of the simulated system. To allow a static model such as the aTAM to simulate a dynamic
model such as CA, we allow the scale factor of the simulation to increase after each time step of the

J. Hendricks & M.J. Patitz 169

simulated system is completed.
For our main results, we present the following. First, a single nondeterministic, synchronous CA

which, for any arbitrary aTAM system T , can be given an initial configuration dependent upon T so
that it will exactly simulate T , producing the same output patterns (modulo rescaling) and preserving the
dynamics of T . Second, we exhibit a single aTAM tile set which, for any nondeterministic, synchronous
CA C which begins with a finite initial configuration (i.e. all but a finite number of cells begin in a
quiescent state), can be given an initial seed configuration dependent upon C so that it will exactly
simulate C , producing the same output patterns (modulo rescaling) and preserving the dynamics of C .

2 Preliminaries

Here we define the terms and models used throughout the rest of the paper.
We work in the 2-dimensional discrete space Z2. Define the set U2 = {(0,1),(1,0),(0,−1),(−1,0)}

to be the set of all unit vectors in Z2. We also sometimes refer to these vectors by their cardinal directions
N, E, S, W , respectively. All graphs in this paper are undirected. A grid graph is a graph G = (V,E) in
which V ⊆ Z2 and every edge {~a,~b} ∈ E has the property that~a−~b ∈U2.

In the subsequent definitions, given two partial functions f ,g, we write f (x) = g(x) if f and g are
both defined and equal on x, or if f and g are both undefined on x.

2.1 The abstract Tile Assembly Model

In this section we give an informal description of the abstract Tile Assembly Model (aTAM), which is the
theoretical version of the TAM which does not model the kinetics of physical self-assembling systems.
The reader is encouraged to see [17, 22, 24] for a formal development of the model.

Intuitively, a tile type t is a unit square that can be translated, but not rotated, having a well-defined
“side ~u” for each ~u ∈U2. Each side ~u of t has a “glue” with “label” labelt(~u)–a string over some fixed
alphabet–and “strength” strt(~u)–a nonnegative integer–specified by its type t. Two tiles t and t ′ that are
placed at the points~a and~a+~u respectively, bind with strength strt (~u) if and only if (labelt (~u) ,strt (~u)) =
(labelt ′ (−~u) ,strt ′ (−~u)). Here the glue function is assumed to be the usual diagonal glue function. In
other words, only glues with matching labels are allowed to interact.

Fix a finite set T of tile types. A T -assembly, sometimes denoted simply as an assembly when T is
clear from the context, is a partial function α : Z2 99K T defined on at least one input, with points~x ∈ Z2

at which α(~x) is undefined interpreted to be empty space, so that dom α is the set of points with tiles.
We write |α| to denote |dom α|, and we say α is finite if |α| is finite. For assemblies α and α ′, we say
that α is a subassembly of α ′, and write α v α ′, if dom α ⊆ dom α ′ and α(~x) = α ′(~x) for all x ∈ dom α .

For τ ∈ N, an assembly is τ-stable if every cut of its binding graph has strength at least τ , where
the weight of an edge is the strength of the glue it represents. That is, the assembly is stable if at
least energy τ is required to separate the assembly into two parts. In the aTAM, self-assembly begins
with a seed assembly σ (typically assumed to be finite and τ-stable) and proceeds asynchronously and
nondeterministically, with tiles adsorbing one at a time to the existing assembly in any manner that
preserves stability at all times.

An aTAM tile assembly system (TAS) is an ordered triple T = (T,σ ,τ), where T is a finite set of
tile types, σ is a seed assembly with finite domain, and τ is the temperature. An assembly sequence
in a TAS T = (T,σ ,τ) is a (possibly infinite) sequence ~α = (αi | 0 ≤ i < k) of assemblies in which

170 On the Equivalence of CA and the TAM

α0 = σ and each αi+1 is obtained from αi by the “τ-stable” addition of a single tile. The result of an
assembly sequence ~α is the unique assembly res(~α) satisfying dom res(~α) =

⋃
0≤i<k dom αi and, for

each 0≤ i < k, αi v res(~α).
We write A [T] for the set of all producible assemblies of T . An assembly α is terminal, and

we write α ∈ A�[T], if no tile can be stably added to it. We write A�[T] for the set of all terminal
assemblies of T . The set A [T] is partially ordered by the relation −→ defined by

α −→ α
′ iff there is an assembly sequence ~α = (α0,α1, . . .)

such that α0 = α and α
′ = res(~α).

A TAS T is directed, or produces a unique assembly, if it has exactly one terminal assembly i.e.,
|A�[T]| = 1. The reader is cautioned that the term “directed” has also been used for a different, more
specialized notion in self-assembly [1]. We interpret “directed” to mean “deterministic”, though there
are multiple senses in which a TAS may be deterministic or nondeterministic.

2.2 Cellular Automata

In our discussion about cellular automata, we will use the following definitions. Most of the conventions
used in these definitions come from [6].
Definition 2.1. A 2-dimensional nondeterministic cellular automata A is a 4-tuple (Z2,S,N,δ) where

1. S is a finite set of states.

2. N ⊂ Z2 is a finite set defining the neighborhood of A .

3. δ : S|N|→ 2S is the local rule of A . δ maps a neighborhood defined by N and a point in Z2, usually
referred to as a cell, to a set of states.

Note that a deterministic cellular automata is simply a special case of a nondeterministic CA in
which δ : S|N|→ S, i.e. it maps each neighborhood to a single state.

A configuration c is a mapping from Z2 to S. Let C be the set of configurations in A . The global rule
G is obtained as follows. For p ∈ Z2, G : C→ 2C such that c′ ∈ G(c) ⇐⇒ c′(p) ∈ δ (cp+v1 , . . . ,cp+vk)
where {v1, . . . ,vk}= N.

We assume that S contains a unique quiescent state where a quiescent state q is a state such that δ

maps a neighborhood of cells in this state to a singleton set containing only the quiescent state. In this
paper, we only consider finite initial configurations (which we will typically denote by c0) where all but
finitely many cells are quiescent. In this paper we are concerned with the CA-initial configuration pair
(A ,c0) and refer to such pairs as CA systems.

There are many interesting examples of cellular automata. One of particular interest here is John
Conway’s Game of Life. (See [15].) This is a 2D cellular automata where each cell is in one of two
states alive or dead. Local rules are given for a 3×3 squares for cells according to the following.

1. An alive cell with less than two neighbors becomes dead.

2. An alive cell with two or three neighbors stays alive.

3. An alive cell with more than three neighbors becomes dead.

4. A dead cell with three alive neighbors becomes alive.
These simple rules give rise to an amazing amount of complexity and structure. In fact, in [21] a universal
Turing machine built in Conway’s Game of Life is presented that starts from a finite configuration that
encodes another Turing machine and its tape and simulates the execution of the encoded Turing machine
with the encoded tape as input.

J. Hendricks & M.J. Patitz 171

2.3 CA simulation of a TAS

For S as in Definition 2.1 and k a vector of Z2, let ψk : SZ
2→ SZ

2
be the bijection mapping a configuration

c to the configuration c′ such that for each cell i, c′i+k = ci. ψk is called the shift operator. Now let
m = (m1,m2) be a pair of strictly positive integers. om : SZ

2 → (S[0,m1]×[0,m2])Z
2

is the bijection such
that for all c ∈ SZ

2
, z ∈ Z2 and p ∈ [0,m1]× [0,m2], om(c)(z)(p) = c(mz+ p). om is called the packing

map. Let A = (Z2,S,N,δ) be a cellular automaton. An 〈m,n,k〉-rescaling of A is a cellular automaton
A 〈m,n,k〉 with states set S[0,m1]×[0,m2] and global transition function om ◦ψk ◦Gn

A ◦o−m, where Gn
A is the

composition of the global function for A n times.
We now define what it means to say that a synchronous nondeterministic 2D cellular automata with

an initial configuration simulates an aTAM system. First we let R be the partial function that maps
individual cells in some state to single tiles with some tile type. R is the representation function. In the
following definitions, A = (Z2,S,N,δ) is a synchronous nondeterministic CA with C denoting the set
of configurations and T = (T,σ ,τ) is an aTAM system. We denote by c0 a finite initial configuration in
C and let C̃ = ∪∞

n=0Gn(c0). In other words, C̃ is all of the configurations obtained by applying the global
rule some number of times to c0. Let R∗ : C̃→ A [T] be the canonical extension of R. Finally, we let
(A ,c0) be the pair consisting of the CA A and the initial configuration c0.

Definition 2.2. We say that T follows (A ,c0) iff for all c ∈ C̃, α,β ∈ A [T] and n ≥ 0, if R∗(c) = α

and β ∈ R∗[Gn(c)] then α −→ β .

Note that R∗[Gn(c)] denotes the image of the set Gn(c) under R∗. Informally, Definition 2.2 means
that if a configuration represents an assembly α , then anything this configuration maps to under applica-
tions of the global rule represents some assembly that α can grow into. The following definition captures
the idea that for an assembly α represented by a configuration c, any assembly that α grows into is
represented by a configuration obtained from c by applications of the global rule.

Definition 2.3. We say that (A ,c0) models T if ∀α ∈ A [T],∃c ∈ C̃ such that R∗(c) = α and ∀β ∈
A [T], if α −→ β then ∃n≥ 0 such that β ∈ R∗[Gn(c)].

Note that a configuration representing some terminal assembly α must transition to configurations
that still represent α . Finally, we give the definition of simulation.

Definition 2.4. (A ,c0) simulates T iff there is an 〈m,n,k〉-rescaling A ′ of A such that T follows A ′

and A ′ models T .

2.4 TAS simulation of a CA

As in the previous section, A = (Z2,S,N,δ) denotes a synchronous nondeterministic CA with a finite
initial configuration c0, C denotes the set of configuration and T = (T,σ ,τ) denotes an aTAM system.
Again, let C̃ = ∪∞

n=0Gn(c0) where c0 is the finite initial configuration of A and let (A ,c0) be the pair
consisting of the CA A and the initial configuration c0.

Because any aTAM system produces static assemblies and the state of a cell of a CA may change
multiple times, it would be impossible to represent a cell of a configuration in C̃ with fixed block assem-
blies over T . Therefore, we introduce the notion of a scalable representation function.

For n ∈ Z+, an n-block supertile over T is a partial function α : Z2
n 99K T , where Zn = {0,1, . . . ,n−

1}. Let BT
n be the set of all n-block supertiles over T . The n-block with no domain is said to be empty.

For a general assembly α : Z2 99K T , define αn
x,y to be the n-block supertile defined by αn

x,y(i, j) =
α(nx+ i,ny+ j) for 0≤ i, j < n.

172 On the Equivalence of CA and the TAM

Let Rn for n ∈ N be a partial function that maps assemblies over T to configurations in C with the
following property. If α ∈A [T] and Rn(α) = c, then for some n, α can be broken into n-block supertiles
such that Rn maps these supertiles to cells of c. In other words, for a given assembly α , the partial
function Rn either is not defined on α or maps α to c ∈C by mapping n-block supertiles of α to cells of
c. Then the scalable representation function is defined as R : N×A [T] 99K C̃ where R(n,β) = Rn(β).
Finally, we define simulation of a CA with initial configuration c0 by an aTAM system.

Definition 2.5. T simulates (A ,c0) (under scalable representation function R) iff there exists a com-
putable function f : N→ N such that the following hold.

1. ∀n ∈ N, R f (n)[A [T]] = Gn(c0).

2. ∀α ∈A [T] such that R f (n)(α) = cn ∈ Gn(c0), for any β ∈A [T] in the domain of R f (n+1) such
that α −→ β it must be the case that R f (n+1)(β) ∈ Gn+1(c0).

3. ∀cn ∈ Gn(c0) such that R f (n)(α) = cn for some α ∈A [T], if α −→ β where β is in the domain
of R f (n+1) then R f (n+1)(β) ∈ Gn+1(c0).

In Definition 2.5, f can be thought of as taking a time step n and determines a block size for the
representation. Then R takes f (n) and an assembly and either returns a configuration in Gn(c0) or nothing
if the assembly has not fully simulated the nth time step. This is necessary to simulate the dynamics
of a synchronous CA, in which all cells simultaneously update their states. Basically statement 1 of
Definition 2.5 says that starting with an initial configuration, every configuration obtained by applying
the global rule is represented by some assembly over T and that any step-assembly pair (n,α) in the
domain of R represents some configuration. Moreover, statements 2 and 3 of Definition 2.5 implies that
these representations follow the action of the global rule.

3 A Nondeterministic CA Which Can Simulate Any aTAM System

In Theorem 3.1, we show that for any aTAM system, there is a synchronous nondeterministic CA such
that for an appropriate choice of finite initial configuration, this CA simulates the aTAM system. This
gives some sense of a synchronous nondeterministic CA being intrinsically universal for the aTAM.

Theorem 3.1. There exists a synchronous nondeterministic CA A = (Z2,S,N,δ) such that for any
aTAM system T = (T,σ ,τ) there exists a finite initial configuration c0 of A so that (A ,c0) simulates
T .

To show this Theorem, we appeal to the following Lemma. The construction in Section 3.1, proves
this Lemma.

Lemma 3.1. For any aTAM system T = (T,σ ,τ), there exists a synchronous nondeterministic CA
A = (Z2,S,N,δ) and an initial configuration c0 such that (A ,c0) simulates T .

Then Theorem 3.1 is proven as follows. First, there is a tile set U which is intrinsically universal for
the aTAM and can be used at temperature τ = 2 to simulate any aTAM system. Therefore we let U be an
aTAM system that uses U at τ = 2. By Lemma 3.1, we can then give a CA that suffices for Theorem 3.1
by constructing a CA that simulates an arbitrary U (i.e. one with an arbitrary seed). See Section 4.2 for
more details.

J. Hendricks & M.J. Patitz 173

3.1 CA Construction

The goal of this construction is to give a synchronous nondeterministic CA B = (Z2,S,N,δ) and initial
configuration that simulates an arbitrary aTAM system T = (T,σ ,τ). The neighborhood of B is the
Moore neighborhood and the states and local rules for B are obtained as follows. First, we add a state
to S for each tile type of T we call these states tile states. We also add states token state up,
token state left, token state down and token state right and we use token states to refer
to any of these 4 states. We refer to any cell in a token state as the token. This token moves one
cell counterclockwise at each time step and only one cell is in a token state at any given time. At
each time step, the cell in a token state moves one cell either up, left, down or right in an effort to
traverse the surfaces of an existing configuration, where a surface of a configuration is the connected set
of quiescent cells that neighbor (using the Moore neighborhood) at least one non-quiescent state. (See
Figure 1.) Note that a configuration may have many disjoint surfaces.

T

Figure 1: A token traversing the surface of a configuration. The surface of the configuration is denoted
by light grey tiles. The cell labeled T is in token state left as indicated by the arrow depicted on the
cell.

At each time step, a cell in a token state can nondeterministically transition to a tile state if
and only if the tile corresponding to this state could bind in the simulated aTAM system. This ensures
that at any given time step, at most one cell transitions from a quiescent state to a tile state. Figure 2
shows an example of a local rule obtained from a tile set.

T
a

a

a

T2a

a

T1a

b

b
c cS

X

Y

X

YS

T1 T2{ {, ,

(a) (b)

Figure 2: (a) A tile set consisting of 5 tile types. Glues b and c have strength 2 and a glues have strength
1. (b) A local rule corresponding to the tile set in (a). Cells in the Moore neighborhood that are in
tile states are labeled with the label of the corresponding tile type in (a). The cell labeled T is in a
token state. Blank cells are quiescent.

The idea is that the token can put cells in a tile state on the surface of a configuration. How-
ever a configuration may have many disjoint surfaces. Non-quiescent states of a configuration can break
the Z2 lattice into disjoint regions of cells in quiescent states. For example, this can occur when the
CA is simulating a tile set that assembles a frame, i.e. tiles around some square of empty tiles. This
leads to disjoint surfaces that the token must traverse. Therefore, care must be taken in order to al-

174 On the Equivalence of CA and the TAM

low the token to traverse surfaces separated by non-quiescent states. This is accomplished by adding
a bridge tile state to S for each tile type of the simulated aTAM system. The token is allowed
to “pass over” these bridge tile states. Passing over a cell in bridge tile state is done by
adding a bridge tile token state to S for each tile type in T and each direction up, left, down and
right. Figure 3 shows the token and its path as it traverses two surfaces of the configuration by crossing
bridge tile states . When transitioning to a tile state or bridge tile state, we can determine
which state to transition to by using Moore neighborhoods. For more details on how token states or
bridge tile states work, see Section 4.1.

B

B

T

Figure 3: Traversing two disjoint surfaces using a single token and bridge tile states

4 Construction details CA simulation of aTAM system

4.1 Local rules involving the token and bridge tile states

Here we describe the local rules that allow the token to traverse the surface of a configuration and how
cells may transition to a bridge tile state. The direction of each token state determines its future
direction of “movement” so that a Moore neighborhood can be used to determine the direction of travel.
Specifically, the direction of the state refers to the relative position of a quiescent cell that will change to
the a token state. Figure 4 shows a local rule for a neighborhood with a token.

T

T {{
Figure 4: In the Moore neighborhood, we can determine the direction of the next token state.

To understand the need for bridge tile states, notice that with our CA, all points in Z2 that
map to non-quiescent states are neighbors in the lattice. This follows from the fact that only the token
can transition to a tile state. In this case, we say that the configurations of the CA are connected.
Figure 5 shows a Moore neighborhood of a cell in a token state. Under the condition that the con-
figuration is connected we examine the 8 cells of the Moore neighborhood around the center cell. If
transitioning to a tile state results in dividing the quiescent points of the lattice restricted to the
neighborhood into two disjoint subsets, the center cell transitions to a bridge tile state, otherwise

J. Hendricks & M.J. Patitz 175

T

Figure 5: Transitioning the center cell to a tile state would divide the neighborhood’s quiescent
states. Therefore the center cell transitions to a bridge tile state

it transitions to a tile state. The algorithm to do this treats a cell already in bridge tile state

like one in the quiescent state. Figure 6 depicts a time step where a cell in a token state transitions
to a cell in a bridge tile state. Note that transitioning to a tile state would “trap” the token,
but transitioning to a bridge tile state allows the token to traverse multiple surfaces. If and when

B

(a) (b)

T

T

Figure 6: (a) A token state prior to transitioning to a bridge tile state (b) The surface is split
into two surface. The token must pass over a cell in bridge tile state to completely traverse both
surfaces.

a path of cells in a bridge tile state no longer leads to quiescent states and the final quiescent state
transitions to a tile state, the token traverses the cells in bridge tile states as it continues its
counterclockwise traversal of a configuration. Since the path of cells in bridge tile states no longer
leads to any quiescent states, as the token traverses cells in bridge tile states, these cells transition
to tile states that correspond to their bridge tile state counterparts. As a result, the token no
longer unnecessarily traverses a path of cells in bridge tile states that would only lead to other cells
in bridge tile states.

An example of a CA simulating an aTAM system can be found at http://self-assembly.net/
CASimTAS. There are also instructions for creating a CA based on an aTAM system.

http://self-assembly.net/CASimTAS
http://self-assembly.net/CASimTAS

176 On the Equivalence of CA and the TAM

B

B

B

B

(a) (b) (c)

T

T

T

Figure 7: (a)The token prior to transitioning to a tile state. (b) Two time steps later we see a
cell in bridge tile state has transitioned to just a tile state. (c) The entire path of cells in
bridge tile states have transitioned to corresponding tile states.

4.2 Proof of Correctness

Let T = (T,σ ,τ) be an aTAM system. First we show that given an aTAM system, the construction in
Section 3.1 can be used to give a CA that simulates T . Let A be the cellular automaton obtained by
the construction. In other words, let A is the CA with states tile states, bridge tile states and
bridge tile token states corresponding to tile types of T as well as 4 token state. We can take
the rescaling A ′ to be the trivial rescaling of A . In other words, we take A ′ to just be A . Then we
take the representation function R to be the partial function that maps a cell with state tile states,
bridge tile states or bridge tile token states to a tile with tile type that corresponds to the
state representing this particular tile type. The initial configuration c0 of A can be obtained from σ by
first mapping each point in dom σ to a the corresponding tile states. Then, since in general non-
quiescent cells must be connected, but could divide quiescent cells into disjoint regions of the lattice,
we connect any disjoint regions of connected quiescent cells by paths of non-quiescent cells. Diagonal
quiescent cells are not considered connected. Then we change the states of the cells along this path
to corresponding bridge tile states. Figure 8 gives an example of changing changing states along
paths connecting disjoint regions of quiescent cells to bridge tile states. Finally, we put a cell just
above a cell in a tile state in token state left.

Now, to see that (A ,c0) simulates T , notice that the token enforces that at most a single cell of
a configuration of A transitions to tile state, bridge tile state or bridge tile token state.
Therefore applying the global rule to a configuration of A results in a configuration where either the
token has moved, or the token has moved and a quiescent state transitions to a state representing a tile.
In the former case, the configuration before and after application of the global rule represent the same
assembly. In the latter case, letting α be the assembly represented by the configuration c prior to applying
the global rule we see that any configuration in G(c) represents an assembly obtained by adding a single
tile to α of the necessary type. In other words, single state changes from the quiescent state to a state
representing a tile type correspond to additions of single tiles in the aTAM system. Hence, T follows
(A ,c0). Likewise, any possible single tile binding in T corresponds to some possible transition of a
quiescent state to a state that represents the tile type of the binding tile in the corresponding location
(with perhaps several transitions which only move the token into the correctly corresponding location).
Therefore, (A ,c0) models T . This shows Lemma 3.1.

To show Theorem 3.1, let T be an arbitrary aTAM system and let U = (U,σT ,2) be the aTAM
system that uses the tile set of [10], which is intrinsically universal for the aTAM, to simulate T under
Rt . Now let A be the CA which simulates U under Ra as in the proof of Lemma 3.1. Then note that

J. Hendricks & M.J. Patitz 177

(a) (b)

B

BB

B

T

Figure 8: An initial configuration obtained from an initial assembly before (a) and after (b) changing
states along paths connecting disjoint regions of quiescent cells to bridge tile states. Grey cells
denote cells in any tile state while cells labeled B denote cells in bridge tile states. The cell
labeled T is in token state left.

σT gives rise to an initial configuration c0 of A . With this initial configuration, R∗a followed by R∗t maps
configurations of A with initial configuration c0 to assemblies of T . This composition of maps gives a
representation function that shows that (A ,c0) simulates T .

5 An aTAM Tile Set Which Can Simulate Any Nondeterministic CA

Theorem 5.1. There exists an aTAM tile set U which is able to simulate the entire class of nondetermin-
istic CA systems with finite initial configurations.

Theorem 5.1 states that there is a single tile set U in the aTAM which can be used to form a TAS
U = (U,σC ,2) which is dependent upon a given CA C , for any arbitrary nondeterministic CA C and a
finite initial configuration for C , where the seed to the aTAM system encodes information about C and
its initial configuration, so that U simulates C . In order to prove Theorem 5.1, we will progress in two
steps, first proving the following Lemma.

Lemma 5.1. Let CA A be Conway’s Game of Life. There exists an aTAM tile set U and a scalable
representation function R such that, given c0 as an arbitrary but finite initial configuration of A , there
exists an aTAM TAS T = (U,σc0 ,2) such that T simulates (A ,c0).

Lemma 5.1 states that there exists a single tile set U in the aTAM which can be used to simulate the
Game of Life CA given any finite initial configuration. We now present a construction to prove this.

5.1 Overview of construction to prove Lemma 5.1

The system T = (U,σc0 ,2) will be designed so that the seed is a single line of tiles which encodes the
initial configuration, c0, of A . Assume that all non-quiescent cells within c0 can fit into an n×n square.
(Throughout this discussion, we will refer to a cell as exactly one of the cells of A and the grid as the
full set of cells being simulated at a given time. A step refers to a single time step of A and a stage refers
to the assembly representing the entire grid at a particular step.) The encoding of the initial configuration

178 On the Equivalence of CA and the TAM

consists of a listing of the states of each of the n2 cells within that box. Since it is possible that, at each
time step 0 < t < ∞, a cell which was previously quiescent and which was just outside the boundary of
the currently simulated grid switches its state to a non-quiescent value, to accurately simulate the full
behavior of A we must simulate an increasingly larger grid at each time step. In order to assure that
no (non-quiescent) behavior of A could occur beyond the bounds of our simulation, at each stage we
increase the dimensions of the grid by 2, adding a row of cells to each of the top and bottom, and a
column to each of the left and right. We say that we perform a recursive, “in-place” simulation of A ,
namely one in which every subassembly which maps to a single cell at some time step t contains within
it, at smaller scale factors, the entire configuration of C at every time step t ′ < t (recursive), and also that
the subassembly mapping to any single cell at any time step t is contained within an infinite hierarchy of
subassemblies which each map to a unique cell at some time step t ′ where t < t ′ < ∞, i.e. each simulated
cell and grid is fully encapsulated within the simulation of a single cell at the next greater time step
(in-place).

See Figures 9 and 10 for high-level depictions of the simulation of time steps 0 (the initial configu-
ration of A) and 1 (the first transition of A). Details of the construction can be found in Section 6.

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

a d g b e h f ic

a d g b e h f ic

-
- -

-

-

-
-

-
-
-

Figure 9: Completed formation of the representation of time step 0.

6 Construction details for aTAM simulation of CA

To show how our construction works, we will break it down into a series of modules, describing how
each works independently, and then describe how they are all combined for the full construction. (Note
that these modules consist mainly of tiles which assemble to perform well-known primitives, such as
counting and rotating values, used in various aTAM constructions. Therefore, many of the details of
these modules are omitted except where relevant modifications are made to the commonly used versions.

J. Hendricks & M.J. Patitz 179

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

co
un
te
r+
2

sp
ac
er

counter+2spacer

-
- -

-

-

-
-

-
-
-

a d g b e h f ic

a d g b e h f ic

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

a d g b e h f ic

a d g b e h f ic

a'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

b'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

c'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

e'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

f'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

h'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

i'

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

d

g h

e f

i

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a b c

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

a d g b e h f ic

a d g b e h f ic

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

a d g b e h f ic

a d g b e h f ic

a d g b e h f ic

d

g h

e f

i

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

a d g b e h f ic

a d g b e h f ic

Figure 10: Completed growth of the second stage. Blue squares depict the representations of the cells of
that stage.

The reader is encouraged to see [10] for additional details about many such primitives.)
Note that A = (Z2,S,N,δ) uses the Moore neighborhood, i.e. {(x,y)|x,y ∈ {−1,0,1}}, and that

S = {0,1}. Let n ∈ N be the dimensions of a square bounding box which completely encircles all cells
in c0 which are not quiescent, along with at least one ring of quiescent cells around the perimeter, then
let c′0 be the n×n square of cells contained within that box. From here onward, we will refer to c′0 as the
initial configuration for the CA system being simulated.

6.1 Seed configuration

We construct σc0 , the seed assembly for T , as a single column of tiles. Let n be the dimensions of c′0, and
note that it requires n2 tiles to encode c′0. The eastern glues of σc0 , starting from the bottom and moving
up, encode c′0 by encoding the states of the bottom row of cells in c′0 from left to right, followed by the
row in c′0 directly above that, etc., fully encoding the n×n block of cells in c′0 in a line. For each position
representing a cell which is the leftmost cell in its row of c′0, a special ‘∗’ marker is added, and for each

180 On the Equivalence of CA and the TAM

border of the n×n block which the cell is on, a corresponding arrow marker is added. An example can
be seen in Figure 11.

a b c
d e f
g h i

e

a*

b

c

d*

f

g*

h

i

counter
spacer

n2

n+2+λ

Figure 11: (Left) An example 3× 3, or n = 3, initial configuration c′0 with each cell given a uniquely
identifying letter for identification purposes, (Right) The row of tiles encoding c′0, showing the ordering
of the representation of cells in relation to c′0.

Below the encoding of c′0 are the portions of the seed assembly labeled “counter” and “spacer” in
Figure 11. The “counter” portion contains the number n− 1 encoded in binary which will be used as
the maximum value for assembling counters, and the “spacer” portion simply contains some spacer tiles
which are used to ensure that the full height of the “counter” + “spacer” portions is equal to n+ 2+λ ,
where λ is equal to 2 for this version of the construction.

6.2 Initial seed growth

The growth from the seed column σc0 occurs in three ways (which are all represented in Figure 12a).
The portion which grows to the east along the bottom (beginning from the “counter” section) contains
a set of 3 nested binary counters, ctr0, ctr1, and ctr2, which each start at 0 and count to a maximum
value of n− 1 as follows: ctr0 increments at every column, ctr1 increments every time ctr0 reaches the
value n−1 (at which point ctr0 resets to 0 and continues counting), and ctr2 increments every time ctr1
reaches the value n− 1. In this way, once ctr1 has counted to n− 1, the full length traveled is n2. This
type of growth is possible since the counter grows in a standard zig-zag manner, and it passes forward the
encoded value of n−1 which it uses to compare against current counter values. Additionally, while this
segment is growing to the east, it also rotates downward the information encoded in its initial row (i.e. the
maximum counter value and spacing). The north surface of the counter provides a base across which the
representation of c′0 grows, to the east. The west side of the seed column initiates growth which rotates
the counter and spacer values clockwise, while forming a square with a specially marked corner (shown
as grey in Figure 12a) for reasons to be discussed later. The north facing counter then grows in the same
way as the east facing counter. The southern counter grow at a width of n+ 2+ λ , and the western

J. Hendricks & M.J. Patitz 181

counter’s width is n+ 1+ λ , which are both much wider than necessary for the counters themselves,
for reasons which will be discussed later. Once they have reached the distance n2, the counters “pause”
counting while a square of dimension n+2+λ form.

e

a*

b

c

d*

f

g*

h

i
co
un
te
r

sp
ac
er

counterspacer

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

(a) Counters grow along the south and west, while
the values of c′0 move east.

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

a

e*

a

b*

c

d

f

g

h

id g

*

(b) Subsequent growth which “selects” the values
from the first column of c′0.

Figure 12: The initial growth of the seed assembly shown in Figure 11.

6.3 Completion of initial stage

The box on the bottom right of Figure 12a initiates the growth of a series of zig-zag, upward and down-
ward growing columns which 1) propagate the encoding of c′0 to the right while shifting the “∗” marks
up by one position (thus marking the locations of the cells in the second column), and 2) copy all values
with “∗” marks (before the shift) to the top row. Note that these are guaranteed to fit with no more than
one value per column since the width of the rectangle is that of the outer counters which is n+ 2+λ

and there are only a total of n values for any row. The square on top of the western counter initiates the
growth of a rectangle which reaches the location where the remaining values for the first column of c′0
(i.e. d and g in the example) are located. This allows a square to form which selects the first value (in
the example, a) as the value representing this simulated cell.

At this point, the southern and western counters are both able to continue growing, with their ctr0
and ctr1 values reset to 0 while their ctr2 values are both incremented to 1. Further growth similar to
the pattern of growth up to this point continues until the ctr2 counters have each reached their maximum
value, resulting in the full formation of the assembly representing the initial configuration of A , as shown
in Figure 9. It can be seen how, at this point, the values for each of the grid locations in c′0 have been
selected in regions corresponding to their locations in c′0 (highlighted in green) by performing simple
shifting of markers across the values propagated through the fibers.

We refer to the rectangular portions and the smaller squares as fiber. The fibers on the western and
southern sides of the assembly of any given stage are called boundary fibers, while the rest are called
stage fibers. The bottom row of upward growing stage fibers perform the column selection and shifting
of the “∗” marks as previously discussed. The upper rows simply select the leftmost marked values which
are passed to them and propagate all remaining values upward while shifting the mark by one position.

182 On the Equivalence of CA and the TAM

Each horizontal fiber collects all values for its row, picking them up one at a time from left to right,
getting one from each square where it crosses with a vertical fiber. See Figure 13 for an example. It does
this by designating each of its rows to carry the value of one cell in that row, with the top and bottom
hardcoded to each represent a cell in the quiescent state (and note that when these are added they are
initialized to contain the necessary markers denoting whether they are at the left or right side of the grid
- see Figure 11 for an example of the arrow markers). Since it will gather the n cell values for the current
stage, the addition of a quiescent value to the bottom and top simulates the addition of an extra cell on
the left and right side of this row in the grid for the next stage (since this listing of cell values will be
used to compute the values for the next stage), and the height of this fiber is n+2+λ , ensuring that all
values will fit with one per row. The horizontal fiber grows in a zig-zag manner, using the square below
it to guide it until it reaches an intersection with a vertical fiber. Through the square of the intersection,
the columns grow just in the upward direction, propagating all of the information about the cell values
for that column upward while using cooperation from the west to propagate the “∗” marker one position
to the right, and to also collect that value all the way to the top right of the square. After leaving the
intersection, it resumes its zig-zag growth, which allows it to shift all collected cell values for that row
down by one (other than the top and bottom values, which stay in fixed positions).

The horizontal fiber provides for a portion of the addition of a ring of quiescent cells for the next
stage. To handle the addition of the new bottom row, the boundary fiber creates a similar list of values,
with all set to quiescent and containing the necessary markings for the edges of the grid that they are
on. To handle the addition of another row on the top, the next stage will insert quiescent values during
the distribution of cell values. The squares at the intersections of stage fibers all grow using cooperation
between the two fibers, in order to preserve the information from both fibers and position it appropriately.
The result of the growth of all of the stage fiber is that each simulated cell has the representation of the
correct value, plus the horizontal fibers at their eastern edges contain a complete representation of all
cell values at this stage of the simulation. Note that the shaded grey squares are simply filled by generic
“filler tiles” which carry no specific information.

d* e*

a d* g b e* h

a d g* b e h*

-

-

-

-

-d

d

-

-

-

-

d

-

-

-

-e

e

d

-

-

-

-

-

-

-

-

-

-

-

-

-

d

-

-

-

-

Figure 13: Growth of a horizontal fiber, beginning from its initiation and growing through two intersec-
tions with vertical fibers.

The entire top row of fiber of a stage is specially designated and grows to a height of 1 less than

J. Hendricks & M.J. Patitz 183

the others as it grows from left to right. The completion of the first stage occurs when the top rightmost
square (that representing cell i in Figure 9) has its top rightmost corner completed. Once this tile is
placed, it allows for the attachment of the tile shown in black, which initiates a row of tiles which grow
to the left edge of the assembly, and then down the entire left side. Note that since both the top and
left fibers were narrower than the other fibers by a single tile, they are now the same widths, creating a
perfectly square assembly for the representation of the initial stage.

6.4 Growth of subsequent stages

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

e

a*

b

c

d*

f

g*

h

i

co
un
te
r

sp
ac
er

counterspacer

a d g b e h f ic

d e f

a
-

a
-

b

a
-

b
c
-

d
-

e
f
-

g
-

h
i
-

g
-

h

d
-

e

g
-

d
-

a b c

co
un
te
r+
2

sp
ac
er

counter+2spacer

-
- -

-

-

-
-

-
-
-

transition
computation

g h i

a d g b e h f ic

a d g b e h f ic

Figure 14: Beginning growth of the second stage.

To begin growth of the next stage, upon reaching the southwest corner of the assembly representing
the first stage, growth is initiated along both the south and west sides which copies the counter and
spacer information from the counters there, and then adds 2 to the maximum counter value (since the
dimensions of the cells simulated by this stage will increase by 2 to add a new perimeter of quiescent
cells to handle any growth of the active configuration). This results in the new boundary fiber for the next
stage, and these counters increment each time they reach a square representing the maximum length of
the boundary fiber for the previous stage. Upon reaching that distance, the bottom boundary fiber creates
a square which initiates upward growth of a special stage fiber. While quite similar to the corresponding
stage fiber of the previous stage fiber, rather than just extracting the necessary values for the first column
of this stage, this fiber embeds the functionality of the “transition computation gadget.” This functionality
is described in detail in Section 6.5, but essentially it is used to compute the new values of the cells in
the current column. Other than the fact that the first row of vertical stage fibers for each stage use the
transition computation gadget rather than just cell value selection as for the first stage, the rest of the
information propagation through the fibers is the same.

The vertical stage fiber is able to use the cell values exposed by the horizontal fibers of the last

184 On the Equivalence of CA and the TAM

stage to compute the new cell values, with each such horizontal fiber exposing the values of one row
of cells. The leftmost vertical stage fiber places the “∗” marker on the bottom value of each, which
represents the rightmost cell of each row. It then performs the computation of new values and passes
them upward by rotating them up and right, with the “∗” remaining on the leftmost. Note that there is
room to accommodate all n values after performing the computation because the computation requires
two columns and the width of the fiber is n+ 2. While doing this, the vertical fiber also passes all of
the values from the horizontal fibers of the previous stage through from left to right, while moving the
“∗” marker for each up by one position. This makes the values available for the computation of the next
column’s values by the next vertical fiber, with the “∗” markers in the correct positions. When a vertical
fiber reaches the topmost row of simulated cells for the current stage, it will insert a new quiescent value
row of newly added cells at the top of the grid during this step, and mark them as the top cells of the
grid. The fact that the values of these cells were not included in the computation of cell values for this
stage cannot result in incorrect computation due to the fact that the initial configuration c′0 was created
with a perimeter of quiescent cells, and growth at every step has ensured that there is always a buffer of
quiescent cells which can be assumed during the computation.

The vertical fiber is able to determine how high to grow by detecting the marker from the top right
corner of the previous stage. It is able to determine which information is from the immediately previous
stage (in the case of advanced stages where there are stage fibers from multiple previous stages available)
because, as a vertical fiber for one stage copies across the values for the fibers of previous stages, if it is
the last vertical fiber for its stage (which can easily be determined by the boundary fiber which initiates
its growth) it marks the information it is copying across from all other fibers as “copy-only”, meaning
that that information no longer participates in the computation of new cell values. The vertical fibers
within the square representing the computation of values for a given stage copy all information from
previous fibers upward and to the right. As the next stage forms, all such information is copied into and
through the neighboring cells. If it is received from below, it is copied up and to the right, and if it is
received from the right it is only copied to the right.

This system allows fibers of each stage to pass along the fibers and values from all previous stages,
and only when they are vertical fibers of the initial formation of a stage do they perform computation
of new cell values. Otherwise, fibers are simply nested copies carrying the initial computation of the
cell values of their stage, which are passed around through the cells of later stages. This ensures that
the value for each cell at a particular time step is only computed once (which is necessary in the case
of the simulation of a nondeterministic CA, to be discussed), even though it is represented (for that cell
and time step) in an eventually infinite number of cells (as recursive copies of all previous configurations
leading up to each cell). Thus, each cell of the computation at time step n contains the full configuration
history of A for steps 0 through n−1.

6.5 Transition computation gadget

We now define the transition computation gadget, which is used to execute the transition function which
computes the new value of a column of cells given the current values of all cells in the grid. This
consists of a pair of vertical columns which grow up then down along the length of a column of tiles
which expose the values of the simulated cells from the previous stage. These will be contained in the
ends of the fibers of the immediately previous stage, with each fiber containing the values of exactly
one row, in row order of left to right. Further, the values of any cells which are on the boundary of the
grid will be marked accordingly. For the first (leftmost) transition computation gadget of each stage,
the bottom values of each row will be assumed to implicitly have a “∗” mark, and this mark will be

J. Hendricks & M.J. Patitz 185

shifted upward by one position for use by each subsequent transition computation gadget. The purpose
of the first, upward growing column is to gather the values of the following cells of the neighborhood
of each cell marked with a “∗”: {(−1,−1),(0,−1),(1,−1),(−1,0)}. (Recall that the locations marked
with a “∗” represent the values for the cells in the current column.) For clarity, we will now explain
how it does this for a single “double marked” location (i.e. just for the case of this explanation, one
of the locations marked with a “∗” is also given another mark, say “+”) , as the process can easily be
extended to simultaneously handle all of the “∗” marked tiles but the explanation is a bit clearer when
focusing on one of them. Computation for the single position is accomplished by the upward growing
row “remembering” the values of the last cell encountered until it encounters a ‘∗’, then remembering
the last cell, the cell with the ‘∗’, and the next cell. It then continues by remembering those three and
the last encountered cell until it either encounters another ‘∗’, at which point it forgets the last group of
3 and starts over, or it encounters the specially “double marked” cell. Once it reaches that cell, following
the scheme outlined it will have arrived carrying the necessary information for the four neighbors. (Note
that when tiles record the fact that a cell is on the border of the grid, then the quiescent value can be
substituted for the missing neighbor cell or cells.) The upward growing column completes, then initiates
the downward growing column which similarly gathers the value of the remaining four neighbors. The
correct location of the ‘∗’ markings is crucial for this to occur correctly. All neighborhood information
can be gathered since only a constant amount of information must be contained in any given tile. See
Figure 15 for two examples of the values for a cell’s neighborhood being gathered. Again, note that the
process can be easily extended so that all cells marked with “∗” are computed in the same two rows by
just gathering and “dropping off” the information at all relevant locations, while still retaining the need
for only a bounded number of cell states to be remembered by any single tile, regardless of the size of
the grid and thus the number of marked tiles at any time.

Once the downward growing column reaches the height of the cell to transition, the glues adjacent
to that location contain the information about the entire neighborhood. By having one tile type for
each possible set of neighborhood values, namely all 29 combinations of 0’s and 1’s for the 9 cells in a
neighborhood, the tile set is designed to allow for the placement of exactly one tile type, which correctly
represents the value of that cell if it executed its transition function.

6.6 Correct simulation

The scalable representation function R which testifies to the simulation of (A ,c0) by T works as fol-
lows. Given a time step t ∈ N, it is able to find the scale factor at which the configuration c ∈ Gt(c0)
is represented by first finding the scale factor of the first stage (t = 0), which is n3 +(n+1)(n+2+λ)
where n is the dimensions of c′0. Let wt = n+(2+λ)(t+1) be the width of the fiber at step t, and we can
recursively define the dimensions at step t as dt = (n+1)wt +ndt−1. After computing dt , Rdt can simply
inspect the given assembly α to determine if the completed square of the necessary dimensions exists.
If so, it can use the computed dimensions to find the locations of the square intersections of stage fibers
where the cell values for each simulated cell are marked to determine the states of all cells in the grid
being simulated for step t. All other cells of A must be in the quiescent state. If not, Rdt is undefined,
which ensures that the representation of the CA proceeds in a synchronous manner, with each time step
being defined only once all cells states have been computed. For t in N, scalable representation function
R and function f (t) = dt , we can see that the conditions of simulation given in Definition 2.5 hold. As
an interesting side effect, all simulated cells for time step t contain the entire computational history of A
for time steps 0 through t−1.

186 On the Equivalence of CA and the TAM

b

c

d

e*

f

g

h

i*+
j

k

l

m*

n

o

a*

b*

c

d

e

f*

g

h

i

j*+
k

l

m

n*

o

a

efgi

onmk

j'

-ef-

mn-j

i'

a b c d
e f g h
i j k l
m n o p

Figure 15: The functioning of the transition computation gadget. (Left) The example grid being con-
sidered, (Middle-left) The neighborhood surrounding a cell and for each neighbor, an arrow indicating
whether the upward or downward growing column is used to collect its value. (Middle-right) Gathering
the neighborhood values for cell i. Note that since i’s column is on the left side of the grid, the markings
on the cells of that column (previously discussed but not shown here) allow the quiescent value to be
used for the cells currently off of the simulated grid. (Right) Gathering neighborhood values for cell j.

6.7 Overview of construction to prove Theorem 5.1

Now that we have defined the above construction for a tile set which can simulate the Game of Life
CA given an arbitrary finite initial configuration, we sketch the necessary extensions to provide a tile set
which can simulate any synchronous nondeterministic CA.

Let C = (Z2,S,N,δ) be an arbitrary synchronous nondeterministic CA, d be the maximum unit
distance of any element of N from the center position (i.e. the distance of a cell’s furthest neighbor in its
neighborhood), b be the number of bits required to represent S, and c0 be the initial configuration of C .
Now, define M as a nondeterministic Turing machine which takes as input the encoding of a synchronous
nondeterministic CA (in some standard encoding) and the representation of a grid of cells in the same
format they are represented in the previous construction (i.e. as they appear in the seed assembly or along
the western edges of the stage fibers of a given stage), with the only difference being that the states are
not now restricted to only single bits, but instead may be series of bits (with delimiters between the bits
representing the states of different cells), and outputs the new cell state for the one cell marked with “∗”
and “+”. Note that M must be nondeterministic to simulate C , and in order to randomly select from a set
of s possible states it simply chooses the bits of a binary number i between 0 and s−1 (the random choice
of bits will be performed by the nondeterministic attachment of one of two tiles in each bit position) and
then selects the ith of the possible states. For details on how to approach uniform distribution across
the selection of possible choices, various gadgets of increasing but bounded space complexity can be
used (see [12]). Define r to be the longest running time of M when given any single neighborhood S|N|

for C , and let m be the maximum amount of tape space used. Note that both r and m can be easily (if
exhaustively) determined by simply running M for each of the S|N| possible neighborhoods.

Now we adjust the previous construction as follows. To create c′0 from c0, we do as before, but
we add an additional d rings of quiescent cells around c′0 to account for the fact that C may have an
arbitrarily large neighborhood and we want to simulate enough quiescent cells around the border of our
grid at all times to ensure that we are simulating all non-quiescent cells. In the seed assembly, in place of
the “spacer”, encode the definition of C (in the encoding used by M) plus r+m spacer tiles to provide

J. Hendricks & M.J. Patitz 187

enough space for M’s tape and running time (the space provided here will ensure that rotations of these
values provide the necessary space throughout the assembly). In place of the transition computation
gadget, M will be run. In order to do this, whenever the boundary fiber reaches a point at which it would
have formerly grown a square which initiates the transition computation gadget, instead of growing the
square, M is simulated in a standard zig-zag manner. Additionally, M only computes the transition for
a single cell (beginning with the bottom one marked with “∗”) and then passes the newly computed cell
value along with the rest of the (unchanged) cell values for that column upward. As before, all needed
information is also passed through the simulation of M to the right. Now, rather than just receiving the
new cell values and passing them along, the squares at the intersections of vertical and horizontal stage
fibers also execute M, whose definition is passed in from the west via the western boundary fiber. This
allows all of the same information flow, but splits up the computations of new cell values in such a way
that each simulated cell computes at most a single new cell value, which can be done within the time
and space bounds, r and m. In order to provide consistency of scale, a counter is embedded within the
running of M so that, in the case of computations which require variable amounts of time relative to
each other, the counter ensures that r+m space is always used. Again, as in the previous construction,
once the value for a cell at a particular time step is computed, it is continually passed along into all other
representations of the same cell within other larger cells, but never recomputed.

Finally, the representation function R now must be adjusted to take into account the fact that cell states
are now binary strings, and also take into account the new scaling factor due to the padding provided to
run M. Nonetheless, this construction retains the same properties such as the previous, in terms of
completing each stage before beginning the next.

Acknowledgements

The authors would like to especially thank Damien Woods and Pierre-Etienne Meunier for valuable
discussions, guidance, and suggestions.

References

[1] Leonard M. Adleman, Jarkko Kari, Lila Kari, Dustin Reishus & Petr Sosı́k (2009): The Undecidability of the
Infinite Ribbon Problem: Implications for Computing by Self-Assembly. SIAM Journal on Computing 38(6),
pp. 2356–2381, doi:10.1137/080723971.

[2] J. Albert & K. Čulik II (1987): A Simple Universal Cellular Automaton and its One-Way and Totalistic
Version. Complex Systems 1(1), pp. 1–16.

[3] Pablo Arrighi, Nicolas Schabanel & Guillaume Theyssier (2013): Stochastic Cellular Automata: Correla-
tions, Decidability and Simulations. CoRR abs/1304.7185. Available at http://arxiv.org/abs/1304.
7185.

[4] Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz, Robert T. Schweller,
Scott M Summers & Andrew Winslow (2013): Two Hands Are Better Than One (up to constant factors):
Self-Assembly In The 2HAM vs. aTAM. In Natacha Portier & Thomas Wilke, editors: 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), Leibniz International Proceedings
in Informatics (LIPIcs) 20, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 172–
184, doi:10.4230/LIPIcs.STACS.2013.172. Available at http://drops.dagstuhl.de/opus/volltexte/
2013/3932.

http://dx.doi.org/10.1137/080723971
http://arxiv.org/abs/1304.7185
http://arxiv.org/abs/1304.7185
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.172
http://drops.dagstuhl.de/opus/volltexte/2013/3932
http://drops.dagstuhl.de/opus/volltexte/2013/3932

188 On the Equivalence of CA and the TAM

[5] Matthew Cook, Yunhui Fu & Robert T. Schweller (2011): Temperature 1 Self-Assembly: Deterministic As-
sembly in 3D and Probabilistic Assembly in 2D. In: SODA 2011: Proceedings of the 22nd Annual ACM-
SIAM Symposium on Discrete Algorithms, SIAM.

[6] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger & Guillaume Theyssier (2011): Bulking I: An ab-
stract theory of bulking. Theor. Comput. Sci. 412(30), pp. 3866–3880, doi:10.1016/j.tcs.2011.02.023.

[7] Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger & Guillaume Theyssier (2011): Bulking II: Classifi-
cations of cellular automata. Theor. Comput. Sci. 412(30), pp. 3881–3905, doi:10.1016/j.tcs.2011.02.024.

[8] Erik D. Demaine, Martin L. Demaine, Sándor P. Fekete, Matthew J. Patitz, Robert T. Schweller, Andrew
Winslow & Damien Woods (2012): One Tile to Rule Them All: Simulating Any Turing Machine, Tile Assem-
bly System, or Tiling System with a Single Puzzle Piece. Technical Report, Computing Research Repository.
Available at http://arxiv.org/abs/.

[9] Erik D. Demaine, Matthew J. Patitz, Trent A. Rogers, Robert T. Schweller, Scott M. Summers & Damien
Woods (2013): The two-handed assembly model is not intrinsically universal. In: 40th International Col-
loquium on Automata, Languages and Programming, ICALP 2013, Riga, Latvia, July 8-12, 2013, Lecture
Notes in Computer Science, Springer. doi:10.1007/978-3-642-39206-1 34 To appear.

[10] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers & Damien Woods
(2012): The tile assembly model is intrinsically universal. In: Proceedings of the 53rd Annual IEEE Sympo-
sium on Foundations of Computer Science, FOCS 2012, pp. 302–310, doi:10.1109/FOCS.2012.76.

[11] David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers & Damien Woods (2009): Intrinsic Uni-
versality in Self-Assembly. In: Proceedings of the 27th International Symposium on Theoretical Aspects of
Computer Science, pp. 275–286, doi:10.1.1.155.3232.

[12] David Doty, Jack H. Lutz, Matthew J. Patitz, Scott M. Summers & Damien Woods (2009): Random Number
Selection in Self-assembly. In: Proceedings of the 8th International Conference on Unconventional Compu-
tation, UC ’09, Springer-Verlag, Berlin, Heidelberg, pp. 143–157, doi:10.1007/978-3-642-03745-0 19.

[13] B. Durand & Zs. Róka (1998): The game of life: universality revisited. Technical Report 98-01, Laboratoire
de l’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon, doi:10.1.1.39.7839.

[14] Bin Fu, Matthew J. Patitz, Robert T. Schweller & Robert Sheline (2012): Self-assembly with geometric tiles.
In: Proceedings of the 39th international colloquium conference on Automata, Languages, and Program-
ming - Volume Part I, ICALP’12, Springer-Verlag, Berlin, Heidelberg, pp. 714–725, doi:10.1007/978-3-642-
31594-7 60.

[15] Martin Gardner (1970): Mathematical Games - The fantastic combinations of John Conway’s new solitaire
game “life” (223), pp. 120–123. doi:10.1038/scientificamerican1070-120.

[16] E. Goles, P. E. Meunier, I. Rapaport & G. Theyssier (2011): Communication complexity and intrinsic univer-
sality in cellular automata. Theor. Comput. Sci. 412(1-2), pp. 2–21, doi:10.1016/j.tcs.2010.10.005.

[17] James I. Lathrop, Jack H. Lutz & Scott M. Summers (2009): Strict self-assembly of discrete Sierpinski
triangles. Theor. Comput. Sci. 410(4-5), pp. 384–405, doi:10.1016/j.tcs.2008.09.062.

[18] Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew Winslow
& Damien Woods (2013): Intrinsic universality in tile self-assembly requires cooperation. CoRR
abs/1304.1679. Available at http://arxiv.org/abs/1304.1679.

[19] Nicolas Ollinger (2003): The Intrinsic Universality Problem of One-Dimensional Cellular Automata. In
H. Alt & M. Habib, editors: 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS),
LNCS 2607, Springer, pp. 632–641, doi:10.1007/3-540-36494-3 55.

[20] Nicolas Ollinger (2009): Intrinsically Universal Cellular Automata. In T. Neary, D. Woods, A.K. Seda &
N. Murphy, editors: Proceedings International Workshop on The Complexity of Simple Programs, Cork,
Ireland, 6-7th December 2008, EPTCS 1, pp. 199–204, doi:10.1.1.248.9665. ArXiv:0906.3213v1 [cs.CC].

[21] Paul Rendell (2011): A Universal Turing Machine in Conway’s Game of Life. In: HPCS, pp. 764–772,
doi:10.1109/HPCSim.2011.5999906.

http://dx.doi.org/10.1016/j.tcs.2011.02.023
http://dx.doi.org/10.1016/j.tcs.2011.02.024
http://arxiv.org/abs/
http://dx.doi.org/10.1007/978-3-642-39206-1_34
http://dx.doi.org/10.1109/FOCS.2012.76
http://dx.doi.org/10.1.1.155.3232
http://dx.doi.org/10.1007/978-3-642-03745-0_19
http://dx.doi.org/10.1.1.39.7839
http://dx.doi.org/10.1007/978-3-642-31594-7_60
http://dx.doi.org/10.1007/978-3-642-31594-7_60
http://dx.doi.org/10.1038/scientificamerican1070-120
http://dx.doi.org/10.1016/j.tcs.2010.10.005
http://dx.doi.org/10.1016/j.tcs.2008.09.062
http://arxiv.org/abs/1304.1679
http://dx.doi.org/10.1007/3-540-36494-3_55
http://dx.doi.org/10.1.1.248.9665
http://dx.doi.org/10.1109/HPCSim.2011.5999906

J. Hendricks & M.J. Patitz 189

[22] Paul W. K. Rothemund & Erik Winfree (2000): The Program-size Complexity of Self-Assembled Squares
(extended abstract). In: STOC ’00: Proceedings of the thirty-second annual ACM Symposium on Theory of
Computing, ACM, Portland, Oregon, United States, pp. 459–468, doi:10.1145/335305.335358.

[23] Hao Wang (1961): Proving Theorems by Pattern Recognition – II. The Bell System Technical Journal XL(1),
pp. 1–41, doi:10.1007/978-94-009-2356-0 9.

[24] Erik Winfree (1998): Algorithmic Self-Assembly of DNA. Ph.D. thesis, California Institute of Technology.
[25] Erik Winfree, Xiaoping Yang & Nadrian C. Seeman (1996): Universal Computation via Self-assembly of

DNA: Some Theory and Experiments. In: DNA Based Computers II, volume 44 of DIMACS, American
Mathematical Society, pp. 191–213.

http://dx.doi.org/10.1145/335305.335358
http://dx.doi.org/10.1007/978-94-009-2356-0_9

	1 Introduction
	2 Preliminaries
	2.1 The abstract Tile Assembly Model
	2.2 Cellular Automata
	2.3 CA simulation of a TAS
	2.4 TAS simulation of a CA

	3 A Nondeterministic CA Which Can Simulate Any aTAM System
	3.1 CA Construction

	4 Construction details CA simulation of aTAM system
	4.1 Local rules involving the token and bridge tile states
	4.2 Proof of Correctness

	5 An aTAM Tile Set Which Can Simulate Any Nondeterministic CA
	5.1 Overview of construction to prove Lemma ??

	6 Construction details for aTAM simulation of CA
	6.1 Seed configuration
	6.2 Initial seed growth
	6.3 Completion of initial stage
	6.4 Growth of subsequent stages
	6.5 Transition computation gadget
	6.6 Correct simulation
	6.7 Overview of construction to prove Theorem ??

