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We consider a bag (multiset) monad on the category of standard Borel spaces, and show that it

gives a free measurable commutative monoid. Firstly, we show that a recent measurability result for

probabilistic database queries (Grohe and Lindner, ICDT 2020) follows quickly from the fact that

queries can be expressed in monad-based terms. We also extend this measurability result to a fuller

query language. Secondly, we discuss a distributive law between probability and bag monads, and

we illustrate that this is useful for generating probabilistic databases.

1 Introduction

Probabilistic databases cater for uncertainty in data. There may be uncertainty about whether rows should

be in a database, or uncertainty about what values certain attributes should have.

For example, consider a database of movies. We might have a table that assigns the gross amount

to each movie, which may be quite uncertain for older movies. We might have a table that records

which actors appeared in which movies, and there may be uncertainty about whether a particular actor

appeared in a given movie. The uncertainty might come from incorrect text processing, for example if

the information was scraped off internet forums, or just noise in measurement, e.g. if the gross amount

is difficult to calculate precisely. This is a simple example, but probabilistic databases have applications

in other areas of information extraction as well as in scientific data management, medical records, and in

data cleaning. See the textbook [28] for further examples.

In this paper, we argue that the semantics of probabilistic databases lies in combining a probability

monad, P, with a bag monad B (aka multiset). This builds on the long-established tradition of using

monads to structure computational effects in functional programming [30, 4].

A good semantic analysis is important in view of the recent work of Grohe and Lindner [11, 12]

which builds on [18, 5]. This new line of work breaks with the traditional approach of having a fixed

finite support for the probabilistic database, and argues that the support should be infinite, possibly

uncountable. For example, it may be that the gross takings from a movie are approximated as a real

number taken from a normal distribution, and it may be that the number of actors appearing in a movie is

unknown and unbounded. This leads to semantic complications and introduces issues of measurability.

1.1 Two monads

We argue that probabilistic databases are best understood as inhabitants of a set, or space,

P(B(X)) where:

• X is a space of all records (aka rows, tuples) that are allowed according to the schema. For example,

in the movie database above, we put X =MovieFact where

MovieFact =
(

cast : (Actor×Movie) ⊎ gross : (Movie×R)
)
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since we can either record that an actor appeared in a movie, or that a movie had a certain gross.

(Here we are using a standard notation for tagged disjoint unions.)

• B is a monad of bags (aka multisets). So B(X) is the space of bags over X , and these are the

deterministic databases for the given schema.

• P is a probability monad. So P(B(X)) is the space of probability distributions (or measures) over

the space of deterministic databases, and these are the probabilistic databases for the given schema.

In the traditional case, studied in [28], the probability distributions have finite support. In the general

setting proposed by [12], the support of a distribution is uncountable. This is formalized using measure

theory, by placing a σ -algebra on X , by deriving a σ -algebra on B(X) and P(B(X)). We can regard this

as moving from the category of sets to a category of measurable spaces. As we will show (Theorem 3),

the bag monad B extends to a monad on the category of measurable spaces. We can then regard P as the

Giry monad on the category of measurable spaces [8].

We clarify a subtle point. The support of the distributions in P(B(X)) might be infinite, and this

means that the set of records that have a chance of appearing in the database can be infinite. But this is a

different issue from the sizes of the bags under consideration, which will always be finite. For example,

there are infinite possibilities as to what the gross from a movie is, but the number of movies will always

be finite. The number of actors in a movie is unbounded, but there is never an infinite cast list for a

particular movie.

1.2 Measurable queries

In the deterministic setting, a query (aka view) translates a database from one schema to another. For

example, we might ask,

“Which actors appeared in films that grossed at least $200m?” (1)

This is a function q : B(MovieFact)→ B(Actor). For probabilistic databases, the usual approach is to

consider queries on deterministic databases, and then lift them to probabilistic databases. Semantically,

this can regarded as the functorial action of the monad P, which gives a translation between probabilistic

databases:

P(q) : P(B(MovieFact))→ P(B(Actor))

Notice that if there is uncertainty about whether an actor appeared in a movie, or about what the gross of

the movie was, then this will lead to uncertainty about whether that actor should appear in this view.

This functorial action P(q) amounts to pushing forward the probability measure. But this is only

legitimate if the query q is measurable. In Theorem 4, we show that all queries are measurable provided

they are definable in the standard BALG query language for bags [13].

Our proof of measurability is straightforward, because most of the BALG query operations are di-

rectly definable from the monad structure of B (Theorem 3). The remaining operations are easily de-

finable from an fold construction (Theorem 1), which is connected to the fact that B(X) is the free

commutative monoid on X .

Measurability of a fragment of BALG is perhaps the main technical result of [12]. That work was

groundbreaking, but here we have two additional contributions:

1. we show that the full language BALG is measurable, which allows us to also treat aggregation

queries within the same framework, and
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2. we demonstrate that the proof of measurability is almost immediate from the categorical properties

of the monad B.

We give the full details of BALG in Section 4. But for now we note that another way to see that the

particular query (1) is measurable is that it can be written in the monad comprehension syntax as

q(b) = {| a | cast(a,m)← b,gross(m′,r)← b,m = m′,r > 200000000 |}

This comprehension syntax works for any strong monad (Section 2.2.1 and [30]), indeed it is merely a

convenient shorthand for

b >>= λx.b >>= λy.

{

return(a) if x = cast(a,m), y = gross(m,r) and r > 200000000

∅ otherwise

where >>= is the monad bind (Kleisli composition) and return is the monad unit. The predicates (>, =)

are well-known to be measurable on the domains where they are used here, and so the query must be

measurable.

As an aside, we remark that much work in the database literature is on computing the results of

queries efficiently. In the probabilistic setting, this is even more of a problem. But in this paper (as

in [12]) we are focusing on the semantic aspects.

1.3 Generating probabilistic databases

Having established the measurability of the query language, in Section 5 we turn to investigate languages

for generating probabilistic databases. For this we turn to the composite of the monads, P◦B, which we

have already shown to be a monad in [6] (see also [16, 19]). As we demonstrate, the language for

the monad P ◦B appears to be ideal for generating probabilistic databases, at least as an intermediate

language.

The paradigm for using infinite support probabilistic databases is still under debate, but typically

one would begin from a deterministic database, and then add some randomness. Very simple kinds of

randomness include

• adding noise to certain attributes, such as the movie gross, or blood pressure in a medical database;

• adding or deleting records at random, if there was uncertainty in the accuracy of those records.

We demonstrate how this can be done easily in the monad P ◦B. We also investigate a more elaborate

model based on a GDatalog program, which translates very cleanly into the language of the P◦B monad.

1.4 Connection with other work on programming semantics

Our work discusses probabilistic databases in the context of monads and functional programming, and

so we bring the general ideas of probabilistic databases to the language of functional probabilistic pro-

gramming languages. We have already prototyped our examples simply by implementing a bag monad in

Haskell and using a standard Haskell library for probabilistic inference. The idea of applying ideas from

probabilistic programming to databases already has some momentum on the practical side, through lan-

guages such as BayesDB [27] and PClean [20]. Slightly further afield are probabilistic logic languages

such as Blog [31] and ProbLog [7].

Probabilistic programming is a general approach for statistics. Within statistics, inhabitants of

P(B(X)) are well-known and important, and called ‘point processes’.
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Further over to the semantic side, we note that the relevance of bags for probability has recently been

emphasised by Jacobs [16, 17]. Bags are a form of non-determinism, and the problem for combining non-

determinism and probability is notoriously subtle, although there has been plenty of recent progress [9,

19, 22, 23, 14, 29]. The particular combination we use here is trouble-free.

1.5 Summary

In this paper we show the following.

• The Bag monad extends to a strong monad on standard Borel spaces (Thm. 3).

• The Bag monad gives a free commutative monoid, and has a ‘fold’ construction (Thm. 2, Thm. 1).

• The BALG language for database queries always yields functions that are measurable (Thm. 4).

• The composite monad P◦B combines probability and bags and is useful for generating probabilis-

tic databases.

Acknowledgements. We are grateful to Peter Lindner for discussions. It has also been helpful to dis-

cuss this work with Martin Grohe, Bart Jacobs, Sean Moss, and Philip Saville. We acknowledge funding

from Royal Society University Research Fellowship, the ERC BLAST grant, and the Air Force Office of

Scientific Research under award number FA9550-21-1-0038. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily reflect the

views of the United States Air Force.

2 Mathematical preliminaries

2.1 Measure theory

Definition 1. The Borel sets form the least collection ΣR of subsets of R containing intervals (a,b) ⊆ R

which is closed under complementation and countable unions.

Definition 2. A σ -algebra on a set X is a nonempty family ΣX of subsets of X that is closed under

complements and countable unions. The pair (X ,ΣX) is called a measurable space (we just write X

when ΣX can be inferred from context).

Given (X ,ΣX), a measure is a function ν : ΣX →R
∞
+ such that for all countable collections of disjoint

sets Ai ∈ ΣX , ν (
⋃

i Ai) = ∑i ν(Ai). In particular, ν(∅) = 0. It is a probability measure if ν(X) = 1.

Definition 3. Let (X ,ΣX) and (Y,ΣY ) be measurable spaces. A measurable function f : X → Y is a

function such that f−1(U) ∈ ΣX when U ∈ ΣY .

Definition 4. A measurable space (X ,ΣX) is a standard Borel space if it is either measurably isomorphic

to (R,ΣR) or it is countable and discrete.

(This is equivalent to the usual definition of standard Borel spaces, which involves Polish spaces.)

Standard Borel spaces include the measurable spaces of real numbers and the integers, as well as

all finite discrete spaces such as the booleans. So all the measurable spaces that arise in probabilistic

databases are standard Borel, and indeed the restriction to standard Borel spaces is also made in Grohe

and Lindner (see [12, Section 3.1]). Standard Borel spaces are closed under countable products and

countable coproducts. Moreover, the equality predicate X×X→Bool is measurable when X is a standard

Borel space.
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2.2 Monads

Definition 5. A monad on a category is given by an object T X for each object X , a morphism X → T X

for each object X , and for objects X and Y and morphism f : X → TY a morphism f =<<: T X → TY is

given, satisfying identity and associativity laws (see e.g. [24]).

A strong monad on a category with products is equipped with a morphism X ×TY → T (X ×Y) that

respects the structure (see e.g. [24]).

The construction =<< is sometimes called bind or Kleisli composition.

2.2.1 Monad comprehension notation

For any strong monad we can use a comprehension notation, which is just syntactic sugar for chaining to-

gether compositions of =<<. The name comes from the fact that this notation resembles set comprehension

notation, and when T is the powerset monad on the category of sets, this is exactly set comprehension.

But it makes sense for any monad, and is often used with the list monad [30]. As we will see (Section 4),

for the bag monad, it gives an alternative notation for queries based on products, projection and selection

(see also [4]).

Given f1 : A→ T X1, f2 : A×X1→ T X2, f3 : A×X1×X2→ T X3, fn : A×X1×·· ·×Xn−1→ T Xn, and

given g : A×X1×X2×·· ·×Xn→ Y , we write

a 7→ {| g(a,x1, . . .xn) | x1← f1(a),x2← f2(a,x1), . . . ,xn← fn(a,x1, . . . ,xn−1) |}

for the composite morphism

A
f̄1
−→ T (A×X1)

f̄2=<<
−−−→ T (A×X1×X2)→ . . .

f̄n=<<
−−−→ T (A×X1×X2×·· ·×Xn)

T (g)
−−→ T (Y )

where

f̄i = A×X1× . . .Xi−1
(id, fi)
−−−→ A×X1× . . .Xi−1×TXi

str
−→ T (A×X1×·· ·×Xi).

2.3 The Giry monad

The Giry monad [8] is a first key monad on measurable spaces. It also restricts to standard Borel spaces.

If X is a measurable space, then P(X) is the set of probability measures on X equipped with the σ -algebra

generated by AU
r = {p ∈ P(X) | p(U) ≤ r}. The unit is given by the Dirac measures (η(x)(U) = 1 if

x ∈U , otherwise 0). The bind is given by Lebesgue integration: if f : X → P(Y ) then ( f =<< p)(U) =
∫

f (x)(U) p(dx). The strength s : X ×PY → P(X ×Y ) is given by s(x, p)(U) = p({y | (x,y) ∈U}).

3 The bag monoid and monad on measurable spaces

Let X be a set. A bag, aka multiset, is a finite unordered list of elements of X , or more formally an

equivalence class of lists under permutation. Equivalently, a bag is a function b : X → N such that

{x | b(x) 6= 0} is finite, or more formally it is an integer valued finite measure.

In this section we will focus on bags in the category of standard Borel spaces. We will show that the

bags form a free commutative monoid, and support a ‘fold’ operation. We will also show that the bag

construction forms a strong monad.

We begin by defining the measurable space of bags on some measurable space.
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Definition 6. Let X be a measurable space. Let BX be the set of bags on the set underlying X . Equip

BX with the least σ -algebra ΣBX containing the generating sets AU
k = {b ∈ BX | b contains exactly

k elements in U}.

ΣBX = σ({AU
k |U ∈ ΣX ,k ∈N})

Then (BX ,ΣBX) is the measurable space of bags of X .

Some observations about the space of bags BX are helpful in what follows. First we note that for any

measurable space X we can decompose the set BX of bags of X into a disjoint union of the set of bags

BnX of size n for all n ∈N. We can equip each BnX with the sub-σ -algebra. Then,

BX =
⊎

n∈N

BnX .

Second we record the following lemma.

Lemma 1. Let X be a non-empty standard Borel space. The quotient function Xn→ BnX, which takes a

tuple (x1, . . . ,xn) to the bag {| x1 . . .xn |}, is measurable, and has a measurable section BnX → Xn.

Proof. The idea is that we can regard BnX as a space of sorted lists in Xn, as is common in practice in

databases. Any standard Borel space is either isomorphic to the reals or countable and discrete. All of

these spaces have a measurable total order (<) ⊆ X ×X . There may or may not be a canonical choice

for a particular X , but it doesn’t matter for the sake of this proof.

We can then use this within the language of measurable functions to write a measurable sorting

function i : Xn → Xn that takes a list and returns the sorted version of it. (For example, if n = 2, let

i(x,y) = (x,y) if x < y and otherwise (y,x).)

As a set-theoretic function, this sorting function i : Xn→ Xn factors through the quotient map,

i = Xn q
−→ BnX

s
−→ Xn.

It remains to show that these two functions are measurable. That q is measurable is well-known, and in

fact the σ -algebra on BnX can be characterized as ΣBnX = {U | q−1(U)∈ΣXn} [21, 25]. Finally, to see that

s is measurable, suppose U ∈ ΣXn , then we must show that s−1(U) ∈ ΣBnX , i.e. that q−1(s−1(U)) ∈ ΣXn .

Since sq = i, and i is measurable, we are done.

Proposition 1. The space (BX ,ΣBX) is standard Borel when X is standard Borel.

Proof. If X is standard Borel, then so is Xn, since any countable product of standard Borel spaces is

standard Borel. So each Bn(X) is standard Borel, since any retract of a standard Borel space is standard

Borel. So B(X) is a countable union of standard Borel spaces, hence also standard Borel.

Note. Since all the spaces involved in probabilistic databases are standard Borel, in the remainder of this

paper we only consider standard Borel spaces.

3.1 Measurable structural recursion on bags

All the computations we were interested in relied on a form of structural recursion over bags, which we

now introduce. This is reminiscent of the fold construction from functional programming. For example,

given a list of integers, it is possible to compute the sum of its elements by extracting elements starting

at the head and calculating a running sum until we reach the tail. In this way the function sum can be



40 Monads for Measurable Queries in Probabilistic Databases

defined as fold(plus,0) where plus : N×N→ N plays the role of the accumulating function and 0 is the

initial argument provided to plus along with the head of the list. If the list being considered is empty,

the result of the fold is simply the initial argument provided, which in this case is 0. The same approach

works for bags too, provided that our accumulating function will need to be such that the order in which

it receives its arguments does not matter. This leads us to the definition of commutative functions. In the

rest of this Section we define what it means to measurably fold a bag.

Definition 7. A function f : X×Y →Y is commutative if

∀x1,x2 ∈ X ,y ∈ Y. f (x1, f (x2,y)) = f (x2, f (x1,y)).

Definition 8. Let f : X×Y →Y be a measurable commutative function. Then define fold f : Y ×BX→Y

to be the function which applies the accumulating function f with initial value y ∈ Y to each element of

b ∈ BX one-by-one. Note that the order of selection of elements does not matter as f is commutative.

We first define foldn
f for bags of size n. When n = 0, fold0

f (y,∅) = y. For non-zero n,

foldn
f : Y ×BnX →Y

foldn
f (y,{| x1, . . . ,xn |}) = f (x1, f (x2, . . . f (xn,y) . . . )).

From this, we obtain fold as the unique function coming out of the coproduct of each of the foldn
f ’s above,

giving us

fold f : Y ×BX →Y.

Theorem 1. fold f is measurable for commutative measurable f : X×Y → Y .

Proof. We use Lemma 1. First we define fold on lists:

ofoldn
f : Y ×Xn→Y

ofoldn
f (y,(x1, . . . ,xn)) = f (x1, f (x2, . . . f (xn,y) . . . )).

This is clearly measurable, because it is just built from composition of measurable functions and product

operations. Next we note that for any section BnX → Xn of the quotient map,

foldn
f = Y ×BnX

Y×s
−−→Y ×Xn ofoldnf−−−→Y

The commutativity of f means that the choice of section s does not matter. This again is a composition

of measurable functions and so foldn
f is measurable. The full function fold f : Y ×BX → Y is a copairing

of measurable functions, and so it is measurable too.

3.2 The space of bags as the free commutative monoid

In order to define a monoidal structure on the space of bags we first consider the function

add : X×BX → BX which adds a single element to a bag, incrementing its multiplicity by one. It is

clear that add is commutative.

Proposition 2. add : X ×BX → BX is measurable.

Proof. Consider a measurable set AU
k ∈ ΣBX . This is the set of bags with exactly k elements belonging

to U . Then add−1(AU
k ) is the set of pairs (x,b) such that add(x,b) ∈ AU

k . In other words, each bag in

AU
k is decomposed into a set of pairs consisting of an element from the bag and the remaining bag. We

consider the cases when k = 0 and when k > 0. In both these cases the inverse image map is in ΣX×BX .
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• k = 0: Here we consider the set of bags such that no element belongs to U . Then it is guaranteed

that any element removed from the bag will be in U and the remaining bag still in AU
0 , resulting in

the inverse map being U ×AU
0 , which is in ΣX×BX .

• k > 0: Here each bag in the set has a non-zero number of elements in U and as a result we have

two further cases depending on whether or not the element extracted from the bag is in U . If it is

not in U , the pair consisting of the element and the remaining bag belongs to U×AU
k . If it belongs

to U , the pair is an element of U ×AU
k−1. And so the inverse image of AU

k under add is the union

of these two sets. Each of these sets is an element of ΣX×BX ; consequently so too is their union.

With add as an accumulating function we can define the disjoint union of two bags as a measurable

function by considering the fold of add where one bag provides all the new elements to be added to the

other bag, which acts as the base case.

⊎ : BX ×BX → BX

⊎ (b1,b2) = foldadd(b1,b2)

Theorem 2. For any standard Borel space X, (BX ,⊎,∅) is a free commutative monoid.

Proof. First note that (BX ,⊎,∅) is a commutative monoid. Given any commutative monoid (Y,+Y ,eY )
and a map f : X →Y we can define g = foldmonAcc : Y ×BX →Y where monAcc is the composite

monAcc = X×Y
f×Y
−−→Y ×Y

+Y−→Y.

From this we obtain the unique commutative monoid homomorphism f ∗(b) = g(eY ,b) : BX →Y .

As an aside, we remark that a fold-like operation is sometimes regarded as immediate from the free

(commutative) monoid property. For example, in a cartesian closed category with list objects X∗, the

space Y →Y is a monoid (under composition), and hence any map X → (Y → Y ) induces a canonical

monoid homomorphism X∗ → (Y → Y ), which is a curried form of fold. However, the category of

measurable spaces is not cartesian closed [1, 15], and so we have recorded the existence of fold as a

separate fact to the free commutative monoid property.

3.3 The bag monad

We now use this universal property to describe the structure of the bag monad on standard Borel spaces.

• The unit η : X → B(X) is given by the singleton bag: η(x) = {| x |}. This is measurable because

η−1(AU
k ) is U if k = 0, U if k = 1, and ∅ otherwise.

• The bind is given as follows. Informally, for f : X → B(Y ), let f =<<: B(X)→ B(Y ),

f =<< {| x1 . . .xn |}=
n
⊎

i=1

f (xi)

Formally, we apply fold to the composite measurable function

X ×B(Y )
f×B(Y )
−−−−→ B(Y )×B(Y )

⊎
−→ B(Y )
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to get a measurable function B(X)×B(Y)→ B(Y ), and then pass in the empty set as the initial

argument. Equivalently, the monad multiplication can be given by applying fold to the function

⊎ : B(X)×B(X)→ B(X)

to get a measurable function µ : B(B(X))→ B(X), by passing in ∅ as the initial argument.

• The strength X ×B(Y )→ B(X ×Y) is given by applying fold to the function

(add,π2) : B(X×Y )×X×Y → B(X ×Y )×X

to get a measurable function B(X ×Y )×X×B(Y )→ B(X ×Y )×X , and passing in the empty set

as the initial argument and projecting the first result.

As an aside we note that in the statistics literature, it is quite common to regard B(X) as a space of

integer valued measures on X . With this perspective, regarding B as a monad of measures, the strong

monad structure on B is entirely analogous to the monad structure of the Giry monad P.

Theorem 3. (B,η ,µ) is a strong monad on the category of standard Borel spaces.

4 Measurable query operations on bags

In the standard theory of database modelling, relations are assumed to be sets, disallowing the existence

of duplicates. Most database software, however, relax this restriction, often to save the cost of duplicate

elimination. BALG (“bag algebra”), an algebra for manipulating bags, was first introduced in [13]. In

that paper BALG was presented as an extension of the nested relation algebra (RALG), with a focus on

the study of its expressive power and relative complexity to RALG. The authors showed that BALG as a

query language was more expressive than RALG.

In this Section we will consider the entire BALG query language and show that it extends to measur-

able functions on bags.

For now we briefly review the query language BALG; we discuss these queries and their semantics in

more detail later in this Section. The SINGLETON operation returns a singleton bag consisting of the in-

put. Restructuring rows of tables is possible using the MAP f query, which applies the function f to every

row in the table. The queries PRODUCT, DUNION, DIFFERENCE, UNION, and INTERSECT compute the

product, disjoint union, difference, union, and intersection of the input tables respectively. The PROJECT

query projects out user-specified columns. FLATTEN transforms a bag of bags to a bag consisting of the

disjoint unions of all the internal bags. Duplicate elimination, or deduplication, is possible using the

DEDUP query. Finally, we can compute the bag of sub-bags of any bag using POWERBAG, and the bag of

subsets of any bag using POWERSET.

Given the expressiveness of the BALG query language it comes as no surprise that many operations

can be defined in terms of each other. For example, the powerset of a bag is simply the deduplicated

version of the powerbag. It is also known that the union and intersection of bags can be defined using the

disjoint union and difference operators. To this end we will only consider the following minimal subset

of BALG queries, in terms of which all other queries can be defined: {SINGLETON, FLATTEN, MAP,

PRODUCT, PROJECT, SELECT, DUNION, DIFFERENCE, POWERBAG, DEDUP}.
Previous work: In their work, Grohe and Lindner [11] considered BALG11, a subset of BALG

restricted to bags of nesting level 1. That is, the queries of BALG1 are defined on bags of type BX where

1It is called BALG1, with superscript 1.
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X cannot have another type BY in its definition. The minimal set of queries for BALG1 is the same set

we consider here minus FLATTEN and POWERBAG since they operate on bags of bags. In their work

Grohe and Lindner showed that BALG1 queries extend to measurable functions on bags. We generalise

their results and show, using our monadic and monoidal structure on bags, that all of BALG extends

to measurable functions on bags, and give a clearer picture of how it comes together. Furthermore, we

discuss the actions of grouping and aggregation as measurable queries in BALG.

4.1 Measurability of BALG queries

We provide a semantics to BALG queries by mapping each query to a measurable function on bags. The

measurability of the semantics of the SINGLETON, FLATTEN, MAP, PRODUCT, PROJECT, and SELECT

queries is guaranteed by defining their semantics as monad comprehensions. The measurability of the

semantics of the remaining queries, DUNION, DIFFERENCE, POWERBAG, and DEDUP, is obtained by

defining their semantics using our fold construction introduced in Section 3. Note that commutativity

holds for all the measurable accumulating functions in the fold-based definitions to follow. The condition

of commutativity is easy to check.

Bagging and flattening The semantics for the SINGLETON and FLATTEN queries are given by the unit

ηB and multiplication µB maps for the bag monad B. The measurability of these maps is proved in

Theorem 3.

JSINGLETONK : X → BX JFLATTENK : B2X → BX

JSINGLETONK(x) = ηB
X (x) = {| x |} JFLATTENK(b) = µB

X (b)

Restructuring The MAP f query comes parametrized with a measurable function f : X → Y and its

semantics is simply the functorial action of B on f , which yields yet another measurable map. This can

equivalently be written using monad comprehension notation.

JMAP f K : BX → BY JMAP f K(b) = B( f )(b)

This can be neatly written using monad comprehension notation: JMAP f K(b) = {| f (x) | x← b |}.

Product and projection Monad comprehensions make it straightforward to define the PRODUCT of

two bags where the arity of the resultant schema is the sum of the arities of the input schemas.

JPRODUCTK : B(X1×·· ·×Xm)×B(Y1×·· ·×Yn)→ B(X1×·· ·×Xm×Y1×·· ·×Yn)

JPRODUCTK(b1,b2) = {| (x1, . . . ,xm,y1, . . . ,yn) | (x1, . . . ,xm)← b1, (y1, . . . ,yn)← b2 |}

A similar treatment can be given to the PROJECTi1 ,...,ik query which projects out the i1, . . . , ik indices of

the input schema.

JPROJECTi1,...,ikK : B(X1×·· ·×Xn)→ B(Xi1×·· ·×Xik)

JPROJECTi1,...,ikK(b) = {| (xi1 , . . . ,xik) | (x1, . . . ,xn)← b |}
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Selection SELECTψ is parametrized by a measurable Boolean predicate ψ : X → Bool and filters out

the rows in the input table satisfying ψ . We can lift ψ to the measurable function ψ̂ : X → B1, where

1 = {⋆} is the singleton space with a unique element. ψ̂ evaluates to {| ⋆ |} (resp. ∅) when ψ evaluates

to True (resp. False). This construction enables us to define the semantics of SELECTψ as a monad

comprehension where rows not satisfying ψ do not get included due to ψ̂ evaluating to the empty bag.

(Define filterψ to be this map.)

JSELECTψK : BX → BX JSELECTψK(b) = filterψ(b) = {| x | x← b, ⋆← ψ̂(x) |}

In monad comprehension syntax, for a monad with a given zero element (e.g. ∅ ∈ BX ), a shorthand

notation {| x | x← b, ψ(x) |} is often used.

Disjoint union DUNION simply computes the disjoint union of its arguments. In Section 3.2 we defined

the measurable disjoint union ⊎ : BX ×BX → BX as foldadd.

JDUNIONK : BX ×BX → BX JDUNIONK(b1,b2) = b1⊎b2 = foldadd(b1,b2)

Bag difference Bag difference is the first operation we consider that is not quite immediate from the

monad and monoid structure. The idea is that, for instance, JDIFFERENCEK({| 1,1,2 |},{| 1,2,3 |}) = {|
1 |}. Defining bag difference as a fold requires a little care. To this end, we first define the measurable

function remove which takes an element and a bag as input and returns either the same bag if that element

did not belong to the bag, or a modified bag with one fewer instance of the given element. remove is

defined as a fold over the accumulating function remAcc, which maintains a triple as an accumulator:

• the value xrem ∈ X to be removed,

• a Boolean value indicating whether or not xrem has already been removed (in order to prevent us

from removing xrem more than once),

• and the resulting bag (which is initially empty) to which elements are added.

Each of the three cases has been defined by combining tupling and add, both of which are measurable

functions. From this it follows that remAcc is measurable.

remAcc : X × ((X ×Bool)×BX)→ (X ×Bool)×BX

remAcc(x,((xrem,c),b)) =











((xrem,True),add(x,b)) if c = True

((xrem,True),b) if x = xrem

((xrem,False),add(x,b)) otherwise

To get the final bag after removal we project out the second element of the pair returned by remAcc.

remove : X×BX → BX remove(xrem,b) = π2 (foldremAcc(((xrem,False),∅),b))

Using remove we define the bag difference of b1 and b2 by letting b1 be the initial input and from

it remove-ing each element in b2 one-by-one. The measurability of bag difference follows from the

commutativity and measurability of remove.

JDIFFERENCEK : BX ×BX → BX JDIFFERENCEK(b1,b2) = foldremove(b1,b2)
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Powerbag For example, the powerbag of the bag {| 1,1 |} is {| ∅,{| 1 |},{| 1 |},{| 1,1 |} |}. The

POWERBAG of a bag is defined by folding over the accumulating function powerAcc where for every new

element x added to the accumulating bag of bags b0 we first add x to every bag in b0 and then take the

disjoint union with the initial b0. We define addx to be the x-section of add (that is, addx(b) = add(x,b)).
Sections of measurable functions are measurable.

powerAcc : X ×B2X → B2X JPOWERBAGK : BX → B2X

powerAcc(x,b0) = b0⊎B(addx)(b0) JPOWERBAGK(b) = foldpowerAcc({|∅ |},b)

Deduplication In order to DEDUPlicate a bag we recurse over its elements and add them to an accu-

mulating bag one-by-one. We avoid multiplicities greater than one in the final bag by first filtering out

the value we want to add from the accumulating bag before adding it, which is reflected in the definition

of dedupAcc.

dedupAcc : X ×BX → BX JDEDUPK : BX → BX

dedupAcc(x,b) = add(x,filter 6=x(b)) JDEDUPK(b) = folddedupAcc(∅,b)

The function 6=x : X → Bool is measurable since 6=x−1({True}) = X \ {x} and 6=x−1({False}) = {x},
both of which are measurable sets (due to X being standard Borel).

Theorem 4. BALG queries yield measurable functions on bags.

4.2 Grouping and aggregation

Consider, for example, the table cast : Actor×Movie from the database MovieFact introduced at the

start of this paper. A natural query that one may want to compute is, “How many movies has each actor

appeared in?” In order to calculate the answer to this we first need to be able to group actors with the

bag of all the movies they appeared in. To this resultant table we can map a size function to the second

column to get the numbers we need. Here we introduce a GROUP query to BALG and show that it is a

measurable operation on bags.

Definition 9. The GROUPp1,p2
query acts on tables of schema X1×·· ·×Xk and is parametrized by two

projection functions p1 : X1× ·· · ×Xk → Xi1 × ·· · ×Xim and p2 : X1× ·· · ×Xk → X j1 × ·· · ×X jn . The

result of this query is a table with schema (Xi1 × . . .Xim)×B(X j1×·· ·×X jn) where the elements of the

first column are paired with the bag of elements they were related to in the input table. In other words,

we group the rows of the table by the elements in the p1-projection of the table.

The measurable bag-semantics for GROUPp1,p2
is given by

JGROUPp1,p2
K : B(X1×·· ·×Xk)→ B((Xi1× . . .Xim)×B(X j1×·· ·×X jn))

JGROUPp1,p2
K(b) = {| (i,B(p2)(filterλx.p1(x)≡i(b))) | i← JDEDUPK(B(p1)(b)) |}

= {| (i,{| p2(x) | x← b, p1(x) = i |}) | i← JDEDUPK({| p1(x) | x← b |}) |}

In the monad comprehension we first project out the columns of interest using p1 and deduplicate

the resultant bag. From this bag we extract out the rows indices by which we index the rows of the input

bag. For each index i we return the pair consisting of i along with the p2-projection of the input where
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the p1-projection of the rows is equal to i. We can conclude that this query is measurable by defining it

as a monad comprehension composed of other measurable functions.

Recall the actor grouping example suggested earlier. Given an input bag from B(Actor×Movie) we

can apply GROUPπ1,π2
to create a table of rows relating actors to the bag of movies they appeared in. To

this table we can apply MAPλ(x,y).(x,size(y)) to arrive at the final result. The function size : BMovie→ N

can be measurably defined as a fold, for example.

A second option for defining an group/aggregation query comes from an extension to monad com-

prehensions in Haskell where the syntax has been extended with the keywords group by [26]. This

extension works for any strong monad, but the user needs to provide a grouping function which, in our

case, needs to map a bag on X to a bag of bags on X where each sub-bag contains the same element.

This can be written in BALG as

GROUP’(b) = MAPλ i.SELECTλx.x≡i(b)(DEDUP(b))

So JGROUP’K : BX → B2X , with:

JGROUP’(b)K = {| {| x | x← b,x = i |} | i← DEDUP(b) |}

The entire actor query can now be concisely written in the notation of [26] as

{| (the a,size m) | (a,m)← actorMovieTable, group by a |}.

This modified comprehension syntax of [26] works by implicitly changing the types of a and m from

Actor and Movie in the right half of the comprehension to a ∈ B Actor and m ∈ B Movie on the left

half. This allows us to apply the measurable aggregation function size : BX → N to m. The aggregation

function used on a is the : B Actor→ Actor, which is some measurable function such that the(b) = x

when b is a bag that only contains copies of x. (For example, we could sort b and return the first element.)

5 Generating probabilistic databases

The main focus of this paper has been measurable query languages (Theorem 4). We now turn to the

question of where probabilistic databases come from in the first place, particularly in the setting where

they have infinite support. A good language for generating infinite probabilistic databases remains a

topic of active research, but we now illustrate that the monads for probability P and bags B could be the

basis of a good intermediate language.

5.1 A distributive law

We recall the distributive law distr between the monads P and B that we provided in an earlier paper [6]

(see also [16, 19, 32]):

distr : B(P(X))→ P(B(X))

Using our fold technology (Thm. 1) we can define the distributive law as distr= folddistrAcc, where

distrAcc : P(X)×P(B(X))→ P(B(X))

distrAcc = P(X)×P(B(X))
double strength
−−−−−−−−→ P(X×B(X))

P(add)
−−−−→ P(B(X))

As usual, this distributive law determines a monad structure on P◦B [2].
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5.2 Randomizing attributes

For a first example of a probabilistic database, suppose we are given a deterministic database of

(movie,gross) pairs. We may then decide that the gross figure is inaccurate and should be subject to

a noise from a normal distribution, yielding a probabilistic database. This can be done categorically by

the following map:

B(Movie×R)
B(Movie×normal)
−−−−−−−−−−→ B(Movie×P(R))

strength
−−−−→ B(P(Movie×R))

distr
−−→ P(B(Movie×R))

Since PB is a monad, we can use comprehension notation for it, and equivalently write the above gener-

ation method addNoise : B(Movie×R)→ P(B(Movie×R)) as

addNoise(b) = {| (m,r′) | (m,r)← b,r′← normal(r,100000) |}

Here we are implictly casting b ∈ B(X) to b ∈ P(B(X)) and normal(r,100000) ∈ P(R) to P(B(R)),
implicitly using the units ηPB : B(X)→ P(B(X)) and PηB : P(X)→ P(B(X)).

Another use-case for random attributes, studied in [12], is to deal with null attributes by drawing

them randomly from a vague prior distribution. This would also be easy to express using the PB monad.

5.3 Adding random records

We can also add and remove random records straightforwardly. We note a few helpful facts.

• The disjoint union operation ⊎ : B(X)×B(X)→ B(X) lifts to ⊎ : P(B(X))×P(B(X))→ P(B(X))
by composing with the strength of P. In this way the composite monad PB has a commutative

monoid structure.

• Since B(1) ∼= N, we can regard the Poisson distribution as a map in R→ P(B(1)), parameterized

by rate.

Now supposing we also have reasonably uniform distributions r-actor : P(Actor) and r-movie : P(Movie),
we can delete some credits and generate random additional actors for movies, modelling the fact that

some actors are unlisted:

addRemove(b) = {| (a,m) | (a,m)← b,1← bernoulli(0.9) |}

⊎ {| (a,m) | n← poisson(3),a← r-actor,m← r-movie |}

The first line deletes random rows with probability 0.1, and the second line adds in some extra actors

(on average, 3 extra actors). Of course, a more sophisticated model could take into account other prior

information such as relationships and ages between actors.

5.4 Towards GDatalog

The GDatalog language has recently been proposed as a generative language for probabilistic

databases [3, 10]. The language combines datalog-style features with continuous probability distribu-

tions.

In general, GDatalog is recursive. We have not treated recursion in this paper, so we focus on the

non-recursive fragment. This can easily be translated into the PB monad. For example, consider the
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following GDatalog program taken from [10]. The idea is to simulate possibly faulty burglar alarms

which either go off because of a burglary or because of an earthquake.

earthquake(c,bernoulli(0.1))← crimechance(c,r)

burglary(x,bernoulli(r))← address(x,c),crimechance(c,r)

trigger(x,bernoulli(0.6))← address(x,c),earthquake(c,1)

trigger(x,bernoulli(0.9))← burglary(x,1)

alarm(x)← trigger(x,1)

We will regard this as transforming a deterministic database into a probabilistic one, B(X)→ P(B(X))
where

X = (earthquake : City×2)⊎ (crimechance : City× [0,1])⊎ (address : House×City)
⊎ (burglary : House×2)⊎ (trigger : House×2)⊎ (alarm : House)

The GDatalog program can be translated almost verbatim as a sequence of definitions of a probabilistic

database in PB(X) using monad comprehensions, starting from b ∈ B(X), as follows.

b1 = b ⊎ {| earthquake(c,z) | crimechance(c,r)← b,z← bernoulli(0.1) |}
b2 = b1 ⊎ {| burglary(x,z) | crimechance(c,r)← b1,address(x,c

′)← b1,c = c′,z← bernoulli(r) |}
b3 = b2 ⊎ {| trigger(x,z) | address(x,c)← b2,earthquake(c

′,1)← b2,c = c′,z← bernoulli(0.6) |}
b4 = b3 ⊎ {| trigger(x,z) | burglary(x,1)← b3,z← bernoulli(0.9) |}
b5 = b4 ⊎ {| alarm(x) | trigger(x,1)← b4 |}

One of the main results of [10] is that GDatalog programs yield proper probabilistic databases, that is,

that all the constructions are measurable. For examples such as this, in the non-recursive fragment, this

measurability is immediate from the fact that we are programming in the PB monad, where everything

is measurable.

6 Summary and outlook

We have shown that the bag monad on standard Borel spaces is strong (Thm. 3) and supports a fold

operation (Thm. 1) which is connected to its characterization as the free commutative monoid. We

have used this to show straightforwardly that all the bag query operations of BALG yield measurable

queries (Thm. 4), and so they are all safe to use in defining queries of probabilistic databases. This

affirms the results in [11], generalizing them to the full BALG language and clarifying the measurability

arguments by factoring them through the measurability of the bag monad. Finally, in Section 5 we

have argued by illustrations that the combination of the bag and probability monads gives a powerful

intermediate language for processes that generate probabilistic databases.
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[23] Michael W. Mislove, Joël Ouaknine & James Worrell (2003): Axioms for Probability and Nondeterminism.

In: Proc. EXPRESS 2003, doi:10.1016/j.entcs.2004.04.019.

http://dx.doi.org/10.1017/S1471068409003767
http://dx.doi.org/10.1017/S1471068409003767
http://dx.doi.org/10.1145/153850.153853
http://dx.doi.org/10.1016/j.artint.2021.103474
http://dx.doi.org/10.4204/EPTCS.333.2
http://dx.doi.org/10.4204/EPTCS.333.2
http://dx.doi.org/10.1007/s10994-015-5494-z
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1145/3373718.3394795
http://dx.doi.org/10.1145/3375395.3387659
http://dx.doi.org/10.1145/3294052.3319681
http://dx.doi.org/10.4230/LIPIcs.ICDT.2020.16
http://dx.doi.org/10.4230/LIPIcs.ICDT.2020.16
http://dx.doi.org/10.1145/153850.153853
http://dx.doi.org/10.1145/153850.153853
http://dx.doi.org/10.1007/3-540-45319-9_1
http://dx.doi.org/10.1109/LICS.2017.8005137
http://dx.doi.org/10.1109/LICS52264.2021.9470678
http://dx.doi.org/10.1145/1376616.1376686
http://dx.doi.org/10.1145/1376616.1376686
http://dx.doi.org/10.23638/LMCS-13(1:2)2017
http://dx.doi.org/10.2307/1425855
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2020.28
http://dx.doi.org/10.1016/j.entcs.2004.04.019


50 Monads for Measurable Queries in Probabilistic Databases

[24] Eugenio Moggi (1991): Notions of Computation and Monads. Inf. Comput. 93(1), p. 55–92, doi:10.1016/

0890-5401(91)90052-4.

[25] Jose Enrique Moyal (1962): The General Theory of Stochastic Population Processes. Acta Mathematica 108,

doi:10.1007/BF02545761.

[26] Simon Peyton Jones & Philip Wadler (2007): Comprehensive comprehensions. In Gabriele Keller, editor:

Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell 2007, Freiburg, Germany, September 30,

2007, ACM, pp. 61–72, doi:10.1145/1291201.1291209.

[27] F. Saad & V. Mansinghka (2016): A Probabilistic Programming Approach To Probabilistic Data Analysis.

In: NeurIPS.
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