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We define a traced pseudomonoid as a pseudomonoid in a monoidal bicategory equipped with extra
structure, giving a new characterisation of Cauchy complete traced monoidal categories as algebraic
structures in Prof, the monoidal bicategory of profunctors. This enables reasoning about the trace
using the graphical calculus for monoidal bicategories, which we illustrate in detail. We apply our
techniques to study traced ∗-autonomous categories, proving a new equivalence result between the
left ⊗-trace and the right `-trace, and describing a new condition under which traced ∗-autonomous
categories become autonomous.

1 Introduction
One way to interpret category theory is as a theory of systems and processes, whereby monoidal structure
naturally lends itself to enable processes to be juxtaposed in parallel. Following this analogy, the presence
of a trace structure embodies the notion of feedback: some output of a process is directly fed back in
to one of its inputs. For instance, if we think of processes as programs, then feedback is some kind
of recursion [11]. This becomes clearer still when we consider how tracing is depicted in the standard
graphical calculus [16, § 5], as follows:
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Many important algebraic structures which are typically defined as sets-with-structure, like monoids,
groups, or rings, may be described abstractly as algebraic structure, which when interpreted in Set yield
the original definition. We call this process externalisation. The external version of a definition can then
be reinterpreted in a setting other than Set to expose meaningful connections between known structures,
or to generate new ones. For instance, a monoid in Set is a standard monoid, but a monoid in Vect is
a unital algebra, and in Cat it is a strict monoidal category. Externalisation formalises the relationship
between these structures.

In this article, we externalise the 1-categorical notion of traced monoidal category, giving a new
external definition of traced pseudomonoid. We show that, when interpreted in Prof, the monoidal bic-
ategory of categories and profunctors, this is equivalent to the standard definition of traced monoidal
category. While the traditional definition of traced monoidal category has five separate axiom families,
our traced pseudomonoid only has three, because two of the axioms become subsumed into the techno-
logy of Prof. In this sense our externalised theory is a simpler than the traditional approach.

We make substantial use of the graphical calculus for compact closed bicategories, categorifying the
way one might use a PROP when working in a symmetric monoidal theory [13]. Prof additionally admits
a special string diagram calculus of internal string diagrams — string diagrams ‘inside’ string diagrams
— which we use extensively to prove our results.
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We apply our framework to derive new proofs of known facts about traced monoidal categories in
an entirely diagrammatic and synthetic way. For instance, every braided autonomous category admits a
trace, which we reduce to the presence of a certain isomorphism. Following this, we proceed to analyse
the interaction between tracing and ∗-autonomous structure. We show that on a ∗-autonomous category,
a right ⊗-trace and a left `-trace are equivalent. We also derive an interesting sufficient condition for a
traced ∗-autonomous category to be compact closed, extending previous work of Hajgató & Hasegawa
[10] which handled the symmetric case.

1.1 Related work
Our traced pseudomonoid is a sort of categorification of the standard categorical notion of trace, as
described by Joyal, Street & Verity [12]. The idea of bicategories [5] as a formal arena for the study of
categories comes from Gray [9], however an issue which arises is that the obvious arena Cat preserves
too little information to study certain phenomena. Profunctors are one way to resolve this [19], and
furthermore they also naturally allow for the diagrammatic methods we wish to employ. Prof is to Cat
what Rel is to Set Loregian [14, Example 5.1.5].

Within the same framework, certain Frobenius pseudomonoids categorify the notion of ∗-
autonomous categories [1], as first studied by Street [18]. We use the term ‘∗-autonomous’ for the
non-symmetric version, as described by Barr [2]. In a symmetric monoidal category, the notions of trace
and ∗-autonomous interact: a traced symmetric ∗-autonomous monoidal category is compact closed [10].
An obvious conjecture is that a traced ∗-autonomous category is autonomous (with left and right duals for
all objects), and in the last section of our paper we give an analysis of this problem, deriving a sufficient
condition for this result to hold.

1.2 Outline
In Section 2, we establish our technical background, utilising the language of presentations [15, § 2.10]
to graphically represent different types of monoidal categories. Presentations extending a pseudomonoid
with right adjoints represent Cauchy complete monoidal categories when interpreted in Prof, and internal
string diagrams [4, § 4] are also recalled from existing literature. Section 3 contains our main definition:
the traced pseudomonoid presentation. We show that its representations correspond exactly to Cauchy
complete traced monoidal categories [12], using internal string diagrams as our main proof technique.
Section 4 illustrates using this framework that all Cauchy complete braided autonomous categories are
Cauchy complete traced. Section 5 concludes with a study on ∗-autonomous categories, defined by
the right-adjoint Frobenius pseudomonoid presentation [8, § 2.7], and their interaction with tracing.
We conjecture that every traced ∗-autonomous category is autonomous, which is the non-symmetric
generalisation of the result of Hajgató & Hasegawa [10], and use our techniques to give evidence for this
conjecture.

1.3 Acknowledgements
The authors are grateful to Masahito Hasegawa for useful comments, and the authors of Bartlett et al. [4]
for their TikZ code for drawing internal string diagrams. The first author acknowledges funding from the
EPSRC [grant number EP/R513295/1].

2 String diagrams and the bicategory of profunctors
2.1 Introduction
In this section, we establish the definition of Prof, and recall some of its important properties. We also
assume familiarity with string diagrams for compact closed categories, of the type described by Selinger
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[16, § 4.8]. There are two main differences with our string diagrams:
1. our string diagram convention is from bottom to top, rather than left to right;

2. our setting is bicategorical, which we view in projection. This means that, as usual, 0-morphisms
are represented by wire colourings, and 1-morphisms are represented by 2-dimensional tiles with
some number of incoming wires and some number of outgoing wires, but in addition there are
2-morphisms which are represented by wire-boundary-preserving (globular) rewrites which act
locally. In this context, the equational theory states that certain sequences of rewrites agree, and
for each tile there is a ‘do nothing’ rewrite corresponding to the identity 2-morphism.

This is the diagrammatic calculus of Bartlett [3] enhanced with compact structure, which means that
1-morphisms may be rotated, changing the orientation of their wires appropriately:

 

Sometimes we will use colour-coded boxes to signal the local site at which a 2-morphism is being
applied to aid the reader (for an example, see Definition 2.) Additionally, we often use the same symbol to
denote a 2-morphism, its inverse, or its adjoint mate; context will disambiguate, but e.g. any 2-morphism
labelled α is morally the associator move which type-checks, without significant additional nuance.
Definition 1 (Bicategory of Profunctors [6, Proposition 7.8.2]). Prof is the bicategory of categories,
profunctors, and natural transformations.
Additionally, Prof is compact closed in the sense of Stay [17, § 2], with the dual of C given by C op;
the structural information of this bicategory (the identity profunctor, the symmetry, the co/unit of the
compact structure, etc.) is given by variations on the Hom-profunctor C (−,=) : C op×C → Set.

There exists an embedding theorem for Cat→ Prof.
Lemma 1. For each functor F : C → D , there are associated profunctors F∗ : C op ×D → Set and
F∗ : Dop×C → Set given by right and left actions on the Hom-functor D(−,=):

F∗(d,c) = D(Fd,c), F∗(c,d) = D(c,Fd).

Either mapping extends to an injective fully faithful pseudofunctor [6, Proposition 7.8.5]. Furthermore,
F∗ a F∗ in Prof [6, Proposition 7.9.1].

F∗ is called the covariant embedding of F , or also its representation, and F∗ is called the contravariant
embedding, or alternatively its corepresentation.

Lemma 1 justifies the following condition, which we shall make heavy use of throughout.
Theorem 1 ([6, Theorem 7.9.3]). Given a small category C , the following conditions are equivalent:

1. C is Cauchy complete;

2. for every small category D , a profunctor C op×D → Set has a right adjoint if and only if it is
isomorphic to the covariant embedding of a functor.

Informally, this describes when a profunctor is ‘the same’ as a functor. More precisely, it allows us
to capture the conditions where we can treat functors as profunctors (and conversely) — when some
profunctor P is (isomorphic to) the representation of some functor F — i.e. it justifies the move from
doing formal category theory in Cat to Prof. Thus we must qualify that throughout this article, our object
of study is Cauchy complete categories. Note that every category admits a universal embedding into its
Cauchy completion via the Karoubi envelope construction [7].
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2.2 Planar monoidal categories
We recall the definitions of the pseudomonoid presentation and its right-adjoint analogue [8].

Definition 2. The pseudomonoid presentation of M = (·, , )1 is given by

• a generating 0-morphism: ·2;

• generating 1-morphisms: and ;

• invertible generating 2-morphisms expressing associativity and unitality respectively:

α∼=
λ∼=

ρ∼=

• equations witnessing that these inverses are coherent (pentagon3 and triangle equations):

α

αα

α α

α

ρ λ

We actually use oriented string diagrams, in the sense of [16, § 4], as the dual of ·, is given by the
duality of C versus C op in Prof and is represented diagrammatically by downwards-oriented strings. For
cleanliness, we omit decorations for upwards-oriented strings.

Presentations can be interpreted in a target symmetric monoidal bicategory, as follows.

Definition 3. An interpretation of a presentation P in a symmetric monoidal bicategory C is given by
a strict symmetric monoidal 2-functor from the free symmetric monoidal bicategory on P to C .

As discussed in Bartlett et al. [4, § 2.1], such an interpretation corresponds exactly to choosing for each k-
dimensional generator of P a corresponding k-morphism of C , satisfying the corresponding equations.
So interpretations of presentations are easy to work with. The following then follows.

Lemma 2. Interpretations of M in Prof correspond to Cauchy complete promonoidal categories.

A promonoidal category is ‘nearly’ a monoidal category: it captures only when Hom-sets have the form
C (X ,Y ⊗Z) — that is, ⊗ may only appear as a right action on the Hom. To overcome this limitation,
we must restrict our attention to representable profunctors (equivalently, profunctors which admit right
adjoints).

1M is not a bicategory, rather it is data from which a free symmetric monoidal bicategory can be generated à la generators-
and-relations.

2The point · represents a 0-dimensional aspect of our graphical calculus, i.e. the ‘colour’ of the wires at the boundaries
of 2-dimensional tiles. Graphically, this ‘colour’ is depicted by (implicitly) upwards flowing wires, contrasting with its dual
colour, the downwards flowing wires.

3Due to the weak interchange structure of Prof, this pentagon should technically be a hexagon where along the bottom,
the right monoid and the left monoid are interchanged between the two associator moves, however for clarity we elide trivial
interchange steps throughout.
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Definition 4 (Free right-adjoint extension). For a presentation P , we denote PRA as the presentation
with all of the data of P , and in addition, for each generating 1-morphism of P: a freely-added right-
adjoint 1-morphism, unit and counit 2-morphisms, and equational structure witnessing that the triangle
equations for this adjunction hold.

The procedure (−)RA which freely adds right adjoints is well-behaved in the sense of Bartlett et al.
[4, § 2.3], and in general, given the data of P , it is unambiguous to discuss a presentation PRA with
freely-added right adjoints without giving an explicit description as we do in Example 1.

Example 1. The right-adjoint pseudomonoid presentation M RA is given by the data of M , and addi-
tionally:

• 1-morphisms: and ;

• unit and counit 2-morphisms witnessing adjunctions a and a :

η⊗⇒ ε⊗⇒ ϕI⇒ ψI⇒

• equations witnessing that the adjunction is coherent (triangle equations):

ε⊗η⊗
ψI

ϕI η⊗
ε⊗

ϕI ψI

Lemma 3. In the free monoidal bicategory on M RA, (·, , ) can be given a canonical pseudocomonoid
structure, by transporting the pseudomonoid (·, , ) across the adjunctions.

Lemma 4. Interpretations of M RA in Prof correspond to Cauchy complete monoidal categories.

2.3 Braiding and symmetry
Definition 5. The braided pseudomonoid presentation B is given by the data of M , and an additional
2-morphism specifying that the pseudomonoid is commutative:

σ∼=

and coherence equation (hexagon):

σ

αα

σ

α

σ
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Lemma 5. Interpretations of BRA in Prof correspond to Cauchy complete braided monoidal categories.
Likewise, ‘braided’ can be promoted to ‘balanced’ by adding a compatible twist in the presentation.

Definition 6. The balanced pseudomonoid presentation L is given by the data of B, and additionally a
2-endomorphism specifying a compatible twist:

θ∼=

and equations:

θσ2

θ

θ

θ

Remark 1. The coherence equation of Definition 5 is redundant in the presence of a twist. Conversely,
the symmetric pseudomonoid presentation is equivalent to the balanced pseudomonoid presentation with
a trivial twist.

Subsequently, we shall examine a variety of presentations, representing different types of monoidal
categories, which extend M : in each case, their braided (resp. balanced) variant is obtained by consid-
ering the corresponding extension with respect to B (resp. L ) instead.

2.4 Autonomous categories
A monoidal category is autonomous when every object has a left and a right dual. Here we recall how
they can be defined via a presentation following Bartlett et al. [4].
Definition 7. The autonomous pseudomonoid presentation A is given by the data of M RA, and addi-
tionally inverses for the following composite 2-morphisms:

γL :=
η⊗
==⇒

α∼= ε⊗
=⇒ γR :=

η⊗
==⇒

α−1

∼= ε⊗
=⇒

Lemma 6 ([4, Proposition 4.8]). Interpretations of A in Prof correspond to Cauchy complete autonom-
ous categories.
2.5 Internal string diagrams
One special aspect of Prof is that it admits a calculus called the internal string diagram construction,
when we consider presentations which extend M RA. Informally speaking, the strings we use can be
inflated into tubes, containing a volume in which the standard graphical calculus for monoidal categories
operates, and 2-morphisms in Prof correspond to rewrites of these tubes which act on the internal strings.

Some examples of the formalism are shown in Figure 1. A feature of the formalism is that the
internal strings must be read in the opposite direction to the ambient profunctors. Since our profunctor
convention is bottom-to-top, the convention for internal strings is top-to-bottom.
Example 2. Figure 1(a) illustrates the action of

η⊗
==⇒ on internal strings. As a function of sets it maps

C (A,C)×C (B,D)→ C (A⊗B,C⊗D), which sends ( f ,g) 7→ f ⊗g.

In Figure 1(b) we show the action of the associator
α∼= . As a function of sets, this natural trans-

formation of profunctors has type C (A,(B⊗C)⊗D)→C (A,B⊗(C⊗D)), and acts by post-composition
of (B⊗C)⊗D

αB,C,D−−−→ B⊗ (C⊗D).
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Figure 1: Examples of the internal string diagram formalism.

The definition of profunctor composition for two profunctors F : Bop×A → Set and G : C op×B→
Set is G �F :=

∫ b G(−,b)×F(b,=), where
∫

denotes a coend [14, Equation 5.1]. This is interpreted
in Set as a disjoint union quotiented by the least equivalence relation generated by ( f ·g,h) ∼ ( f ,g ·h).
From an internal string diagram perspective, this precisely says that morphisms can ‘move freely’ through
boundary circles. We illustrate this in Figure 1(c).

A formal treatment of internal string diagrams is given in Bartlett et al. [4, § 4], which establishes
that it is a sound calculus for reasoning about M RA.

3 The traced pseudomonoid presentation

In this section, we introduce our main contribution: the algebraic gadget in Prof which admits traced
monoidal (Cauchy complete) categories as interpretations. This offers an external perspective on traced
monoidal categories, akin to how monoidal categories can be viewed externally as pseudomonoids in-
ternal to Cat, versus a category equipped with internal structure.

3.1 Traced monoidal categories

In our framework, we seek to capture the standard notion of traced monoidal category in terms of a
presentation.

Definition 8. The traced pseudomonoid presentation T is given by the data of M RA, and additionally:

• a generating 2-morphism:

Tr
=⇒ (Tr)

• equations:
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Tr

η⊗

η⊗

α

α

Tr

(Tr-sup)

⇒

ρ

ρ

ψI Tr

(Tr-van-I)

Tr

α

α

Tr

ε⊗
Tr

(Tr-van-⊗)

The following theorem records the fact that our presentation T correctly encodes traced monoidal
categories, up to Cauchy completeness. A nice detail of the proof is certain traced monoidal category
axioms arise ‘for free’, simply because the 2-morphism Tr is a natural transformation of profunctors.

Theorem 2. Interpretations of T in Prof correspond to Cauchy complete traced monoidal categories.

An additional consideration is that a balanced traced monoidal category has additional equations it
must satisfy, and these are small deviations from straightforwardly replacing T with its balanced version
(the presentation obtained by substituting L for M in Definition 8).

Definition 9. The balanced traced pseudomonoid presentation T ′ is given by the balanced version of
T , and additionally the equation:

σ

Tr

η⊗

θ

(T ′-yank)

Theorem 3. Interpretations of T ′ in Prof correspond to Cauchy complete balanced traced monoidal
categories.
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The symmetric version is a special case of this where θ is given by the identity 2-morphism, as per
Remark 1.

4 Braided autonomous categories are traced
It is known that every tortile (autonomous + pivotal + balanced) category admits a canonical trace [12,
§ 3]. This result is known to generalise to any braided autonomous category, which we replicate in our
framework. Furthermore, we justify that such a trace is not necessarily unique.

The key observation comes from the fact that in the braided autonomous pseudomonoid presentation,
we have a chain of isomorphisms:

∼= ∼= ∼=
σ∼= (Tr-NTr)

The first isomorphism utilises the duality generated by ( , ) in the autonomous pseudomonoid present-
ation, the second is an isotopy, the third utilises the compact structure of Prof, and the fourth utilises
braiding.

Secondly, in any monoidal category, we have the following 2-morphism.

Definition 10. For a monoidal category, its nearly tracing is the following 2-morphism:

η⊗
==⇒

α∼=
α

ε⊗∼=
ε⊗

λ∼=
λ

(NTr)

It is then reasonable to come up with analogues to the tracing axioms, and ask if Equation (NTr)
satisfies them.

Proposition 1. NTr satisfies the nearly-tracing axioms for any Cauchy complete monoidal category.

Corollary 1. Any Cauchy complete category for which the following isomorphism exists, can be
equipped with a trace:

∼=

Thanks to Equation (Tr-NTr), this implies the standard result that a braided monoidal category is traced.

Remark 2. This trace is not necessarily unique, because we can arbitrarily apply a twist 2-morphism θ

for any available twisting. By fixing a chosen twist (in the sense of a balanced monoidal category), the
trace becomes canonical as in Joyal, Street & Verity [12, § 3].
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5 On traced ∗-autonomous categories
In this section we apply our traced pseudomonoid technology to study phenomena related to ∗-
autonomous categories. Firstly, we show that for a Cauchy complete ∗-autonomous category, a right
⊗-trace is equivalent to a left `-trace. Secondly, inspired by the result of Hajgató & Hasegawa [10]
that every traced symmetric ∗-autonomous category is compact closed, we seek to investigate the non-
symmetric version of this statement. We use our traced pseudomonoid approach to derive a sufficient
condition for a traced ∗-autonomous category to be autonomous.

5.1 ∗-Autonomous categories
Definition 11. The Frobenius pseudomonoid presentation F is obtained by combining the pseudomon-
oid presentation (·, , ) with the pseudocomonoid presentation (·, , ) on the same object, and addition-
ally:

• invertible generating 2-morphisms:

∼= ∼= (Frob)

• equational structure making these 2-morphisms coherent.

Dunn & Vicary [8, Definition 1.2] give an explicit presentation which they prove to be coherent, with
equational structure given by the so-called ‘swallowtail equations’, which we omit here for brevity, using
coherence directly to derive our results. In this case, the coherence result states that, given two parallel
2-morphisms P,Q, whose common source 1-morphism is connected and acyclic as a string diagram, then
P = Q.

As above, we are interested in the presentation obtained by freely adding right adjoints to particular
generating 1-morphisms.

Definition 12. The right-adjoint Frobenius pseudomonoid presentation F ∗ is obtained from F by
adding right-adjoint generating 1-morphisms for the pseudomonoid multiplication and unit: a and
a .

This structure corresponds to Cauchy complete ∗-autonomous categories, which we outline next.
Full details can be found in Dunn & Vicary [8, § 2.7].

Theorem 4. Interpretations of F ∗ in Prof correspond to Cauchy complete ∗-autonomous categories,
where the generating 1-morphisms and represent ` and⊥ respectively, and the derived 1-morphisms

and [8, Definition 2.33] represent ⊗ and I respectively.

Definition 13. The traced ∗-autonomous presentation T ∗ is obtained by combining T and F ∗, i.e. the
presentation containing a right-adjoint Frobenius pseudomonoid as in F ∗, where the derived left-adjoint
pseudomonoid representing the tensor product (·, , ) is additionally a traced pseudomonoid.

Its constituent parts are interpreted in Prof by Cauchy complete traced and ∗-autonomous categories
respectively, so the combined presentation is interpreted by a category which is simultaneously traced
and ∗-autonomous.

5.2 Rotations
In this section we show that for a ∗-autonomous category, a left ⊗-trace is equivalent to a right `-trace.
The idea is that ⊗ and ` are related by duality, and that tracing can be transported through this duality.
Furthermore, the dual trace obtained is ‘rotated’. Before proving this, we will first try to simplify T ∗.
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A complication is that T ∗ refers to composites containing the 1-morphism , which with respect
to F ∗ is a derived 1-morphism, as opposed to a generating 1-morphism. To simplify this, we shall
progressively rewrite the data of T ∗ in terms of generating 1-morphisms. First, we dispense with the
compact closed assumption in the ambient bicategory (Prof).

Remark 3. We utilise the Frobenius duality generated by ( , ), similarly to Equation (Tr-NTr), obtain-
ing the isomorphism:

∼= ∼= ∼=
(Frob)∼=

Notice that such a 1-morphism may be interpreted in any monoidal bicategory with duals, as opposed to
the stronger requirement of compactness. Henceforth, we will derive a tracing presentation with respect
to this 1-morphism.

Definition 14. The rotational right ⊗-traced ∗-autonomous pseudomonoid presentation is given by the
data of F ∗, and additionally:

• a generating 2-morphism:

⊗TrR===⇒ (⊗TrR)

• equations witnessing the axioms of traced monoidal categories:

η⊗

⊗TrR η⊗

(Frob)
α

⊗TrR

(⊗TrR-sup)

ρ

ρ

ψI ⊗TrR

(⊗TrR-van-I)
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⊗TrR

α

α

⊗TrR

ε⊗

⊗TrR (⊗TrR-van-⊗)

Proposition 2. Interpretations of the rotational right ⊗-traced ∗-autonomous pseudomonoid presenta-
tion are Cauchy complete traced ∗-autonomous categories, where ⊗ is traced on the right.

Proof. From Theorem 2, it suffices to show that we can recover all the data of T from this presentation.
This holds by transporting along the isomorphism defined in Remark 3.

We have weakened our setting to a symmetric monoidal bicategory with duals, rather than a compact
closed bicategory (notice the lack of cups and caps in our string diagrams). However, they still mention

, as we would like to discuss a traced monoidal category where the trace is with respect to ⊗ (as
opposed to the other tensor product `).

Definition 15. The rotational left `-traced ∗-autonomous pseudomonoid presentation is given by the
data of F ∗, and additionally:

• a generating 2-morphism:

`TrL===⇒ (`TrL)

• equations witnessing the axioms of traced monoidal categories, analogous to ⊗TrR.

Proposition 3. Interpretations of the rotational left `-traced ∗-autonomous pseudomonoid presentation
are Cauchy complete traced ∗-autonomous categories, where ` is traced on the left.

Proof. Symmetric to the proof of Theorem 2.

We can now state the main result of this section.

Theorem 5. For a Cauchy complete ∗-autonomous category, a right ⊗-trace and a left `-trace are
equivalent.
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5.3 Invertible linear distributivity
Definition 16. A ∗-autonomous category has distinguished maps called linear distributors; for all objects
A, B, and C:

A⊗ (B`C)
δL−→ (A⊗B)`C, (A`B)⊗C δR−→ A` (B⊗C).

With respect to F ∗, these are corepresented by the composite 2-morphisms:

δL :=
η
=̀=⇒

(Frob)∼= ε
=̀⇒ δR :=

η
=̀=⇒

(Frob)∼= ε
=̀⇒

Definition 17. The invertibly linear distributive presentation D is obtained by adding inverses to the
linear distributor 2-morphisms in F ∗.

This is simpler to work with, and is equivalent to the data of Definition 7 by bending the open leg of
with .

Recall that an autonomous category is precisely a ∗-autonomous category which has invertible linear
distributors. Here we derive a white ‘Frobenius’ 2-morphism, from⊗TrR and `TrR (equivalently,⊗TrL),
and find two equations we would like it to satisfy. For brevity, our aim is to show that δR inverts, but for
δL the symmetric ‘Frobenius’ 2-morphism and associated conditions are required.

Definition 18.

∼= η
=̀=⇒ ⊗TrR===⇒

α∼= η⊗
==⇒ `TrR===⇒

( -Frob)

This is a first step towards a non-symmetric version of the result of Hajgató & Hasegawa [10], that
every traced symmetric ∗-autonomous category is autonomous.

Proposition 4. Any Cauchy complete left and right ⊗-traced ∗-autonomous category for which the fol-
lowing equations, along with their symmetric analogues, hold is autonomous:

ε⊗

η`

η⊗

( -Frob)
(Frob)

ε⊗

(ε⊗-sup)

ε`

η⊗

η`

(Frob)
( -Frob)

ε`

(ε`-sup)
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[10] T. Hajgató & M. Hasegawa (2013): Traced *-Autonomous Categories Are Compact Closed. In:
trans. TAC 28, pp. 206–212.

[11] M. Hasegawa (1997): Recursion from Cyclic Sharing: Traced Monoidal Categories and Models of
Cyclic Lambda Calculi. In: trans. Springer Verlag, pp. 196–213. DOI: 10.1007/3-540-62688-
3_37.

[12] A. Joyal, R. Street & D. Verity (1996): Traced Monoidal Categories. In: trans. Mathematical
Proceedings of the Cambridge Philosophical Society 119.3, pp. 447–468. ISSN: 1469-8064, 0305-
0041. DOI: 10.1017/S0305004100074338.

[13] S. Lack (2004): Composing PROPs. In: trans. Theory and Applications of Categories 13, pp. 147–
163.

[14] F. Loregian (2019): Coend Calculus. arXiv: 1501.02503 [math]. URL: http://arxiv.org/
abs/1501.02503.

[15] C. J. Schommer-Pries (2011): The Classification of Two-Dimensional Extended Topological Field
Theories. arXiv: 1112.1000 [math]. URL: http://arxiv.org/abs/1112.1000.

[16] P. Selinger (2009): A Survey of Graphical Languages for Monoidal Categories. In: trans. DOI:
10.1007/978-3-642-12821-9_4.

[17] M. Stay (2013): Compact Closed Bicategories. arXiv: 1301 . 1053 [math]. URL: http : / /
arxiv.org/abs/1301.1053.

[18] R. Street (2004): Frobenius Monads and Pseudomonoids. In: trans. Journal of Mathematical Phys-
ics 45.10, pp. 3930–3948. ISSN: 0022-2488, 1089-7658. DOI: 10.1063/1.1788852.

[19] R. J. Wood (1982): Abstract pro Arrows I. In: trans. Cahiers de Topologie et Géométrie
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