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The TRELLYS project has produced several designs for practical depydgped languages. These
languages are broken into two fragmentsdegical fragment where every term normalizes and
which is consistent when interpreted as a logic, aqmagrammaticfragment with general recur-
sion and other convenient but unsound features. In thisrpasepresent a small example language
in this style. Our design allows the programmer to explaitiention and pass information between
the two fragments. We show that this feature substantialiymicates the metatheory and present
a new technique, combining the traditional Girard—Taithmoetwith step-indexed logical relations,
which we use to show normalization for the logical fragment.

1 Introduction

The TRELLYS project is a collaborative initiative to design a depenljetypped language with simple
support for general recursion and other convenient butcélyi unsound features. To this end, the
present authors and their collaborators have proposedidgeg that are broken into two fragments: a
programmaticfragment with support for all the desired language feafuard alogical fragment which
can reason about programs but is itself restricted for stevsty [6| 31/, 18, 29, 30].

As a simple example, consider the following natural numtbesidn function written in a Haskell-
like syntax:

prog div : Nat -> Nat -> Nat
prog divn m = if n < m then 0 else 1 + (div (n - m) m)

This function computes the integer divisionrdby m unlesan is 0, in which case it loops forever. We label
it “prog” to indicate it must be defined in the programmatic fragmezsatibed above. Disappointingly,
div can not be written directly in popular dependently-typedglzages like Coq [28] or Agda [24]
because it is not total.

There are many sensible properties a programmer might wisterify aboutdiv. For example,
thatdiv 6 3 evaluates t@, or thatdiv n m <= n whenm is not zero. Even thoughiv itself is in
the programmatic fragment, we wish to state these propgeiri¢he consistent logical fragment. For
example:

log div63 : div 6 3 = 2
log div63 = refl

Above, the program (aka prood)iv63 is tagged with 1og” to indicate that it should be typechecked in
the logical fragment. The proof itself is just reflexivityaded on the operational behaviordafy.

To encourage incremental verification, such a languageldtadso include a way for programs
which are not known to be terminating to produce proofs. Eangle, programmers implementing a
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complicated decision procedure might begin by writing ia frogrammatic fragment and come back
to prove termination at a later time. To support passing thefp produced by such a procedure to the
logical fragment, the language may includeiaternalized logicality judgemenrtprograms may assert
that other programs typecheck in a certain fragment. Wehesadw type fornrA@8, wheref isL or P

for the logical or programmatic fragment, to claim that artdras typeA in a particular fragment. For
example, a SAT solver which is not known to be terminatinghmhize given the following type:

prog solver : (f : Formula) -> Maybe ((Satisfiable f) @ L)

Here,solver takes in some representation of a formula and optionallgysres a proof that it is satis-
fiable. The type (Satisfiable f) @ L”indicates that if a proof is produced, it will typecheck het
logical fragment, even though the procedure itself is emitih the programmatic fragment.

For these internalized judgements to be useful, the lareguagst be able to produce them in one
fragment and use them in another. In general, any term whiptoduced in the logical fragment may be
safely used in the programmatic fragment. Additionalljjuea at certain “first-order” types (including
A@B6) may be computed in the programmatic fragment and safely ligé¢he logical fragment.

The metatheory of languages with this collection of featuinas proved challenging. This pa-
per presents a new technique for demonstrating the noratializ (and thus consistency) of the logi-
cal fragment in such a language. As we will show, direct aatégts of the Girard—Tait reducibility
method [15] 26] are insufficient. Since logical terms arempiéed to make use of proofs produced
programmatically, it is necessary to simultaneously yepdrtial correctness properties of the program-
matic fragment. To this end, our technique combines thetimadl method with step-indexed logical
relations [2] 3].

Concretely, our contributions are:

e A small language with an internalized logicality judgemesum types and recursive types (Sec-
tion[2). While the language is insufficient for our exampliésetains enough features to exhibit
the difficulties we have encountered with traditional pso(8ection 3.2).

e Anew, hybrid technique for proving normalization of thedaage’s logical fragment (Sectibn B.3).
This technique combines the Girard—Tait reducibility noethvith a step-indexed logical relation
for simultaneously verifying partial correctness prosrtof the programmatic fragment. This
combination seems to be essential to handle the interddlizgcality judgement.

e A formalization of the language’s metatheory in Coq, indhgdtype safety and normalization
(Sectior 3.b).

e A comparison to related work on dependently-typed langsiagéh general recursion and tech-
niques for reasoning about them (Secfion 4).

The language we consider in this paper is simply-typed amlitisufficient to represent the examples
we have presented so far. However, this smaller languagj#t cosnplex enough to exhibit the difficulties
we have encountered in proving normalization, and we aliendgiic that our technique will scale up.

2 Language Definition

The language that we consider in this paper is a variant cfithply-typed call-by-value lambda calculus
with recursive types and general recursion. Its syntaxusrgin Figure[ll. The chief novelty is the
presence otonsistency classifiel8. These classifiers are used by the typing judgement (writtef

a: A) to divide the language into two fragments. Tibgical fragment denoted by, is a simply-typed
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Types AB:= Unit| A° - B|A+B|A@O |a|ua.A
Terms a,b::= x|recfxa|ab|boxa|unboxx=ainb
| () |inla]inra|case aof {inl x=-as;inr x=-ay} | rolla| unrolla
Language Classifiers 6:= L|P
Environments M= -|rx:A
Values vi= X|()]inlv]inrv|recfxa|boxv|rollv

Syntactic Abbreviatian
Axa = recfxa whenf ¢ FV(a)

Figure 1. Syntax

lambda calculus with unit and sums. As we will show, all teimghis fragment are normalizing. The
programmatic fragmentdenoted byP, adds general recursion and recursive types. The progrémma
fragment is a strict superset of the logical fragmentE: if- a: A, thenl P a: A as well.

Terms in the language may include subexpressions from bagmients. Théoxa term form and
correspondindh@86 type form mark such transitions. Intuitively, the judgemEh-® boxa: A@6’ holds
when fragmen® can safely observe thathas typeA in the fragmen®’'.

2.1 The typing judgement

We now describe the typing rules, given in Figlie 2. As showrule TVAR, variables in the typing
context are tagged with a fragment. When a value is substitir a variable, the value must check in
the corresponding fragment.

The fragments of the language may interact in several ways\ctions have arguments that are
tagged with consistency classifiers, asAii— B. The 8 here specifies whether the function must be
applied to a logical or programmatic term. This classifieesloot indicate in which fragment the func-
tion itself typechecks, and functions in each fragment amnjited to take arguments from the other.
Intuitively, the type may be read a®\@0 — B”, except that users need not explicitly box up argu-
ments to functions. The rules for application (which inehhe box form) ensure this does not cause
non-termination in the logical fragment, as we will discebsrtly.

There are two rules for type-checking functions. The firétali, checks non-recursive functions in
the logical fragment. Her@ x.b is syntax sugar forecf x.b whenf does not occur free ib. The second
rule, TREC, checks (potentially) recursive functions in the prograatimfragment. Observe that, in both
cases, the consistency classifier for the argument is darnie the context when checking the body, but
does not directly influence the classifier of the functioelftsThe rules are otherwise standard.

Theboxaform effectively internalizes the typing judgement. It leecked by the three rules, describ-
ing the circumstances in which the fragments may safelydhthut each other. The first rule, DRP,
says that the programmatic fragment may internalize anpdyjodgement—ifa has typeA in fragment
0, then the programmatic fragment can observe libat has typeA@0.

Rules TBoxL and TBoxLV checkbox in the logical fragment and are restricted to ensure termina
tion. The former says that & itself has typéA in the logical fragment, theboxa may also be formed in
the logical fragment (and checks at typ@86 for any 8, since logical terms are also programmatic). The
latter permits the logical fragment to observe that a tereckl programmatically. In that case, the term
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xPAel TVAR rx:®Artb:B TLAM ry?®AfPA°5BrPa:B TREC
Fr-9x:A Fr-LAxb:A9— B FPrecfya:A®— B
ra:A TBoxP rra:A TBoxL rov:A TBoxLV
P boxa: A@O I L boxa: A@0O I L boxv: A@P
r-%a: A@0 r-a:A%-B
rx:9Areb:B TUNBOX [ -9 boxb : A@O’ TApp TUNIT
[+ unboxx=ainb: B r-9ab:B [+ (): Unit
rta:A TS FrEPv:A FO(A) TEOVAL rFea:A TINL
r-Pa:A FELv:A F-%inla: A+B
I - boxa: (AL + Ax) @6
r-p:B Fx:9 A :B Mx:¥ A -9by:B
. TINR - . TCASE
F-9inrb:A+B I +9 case aof {inl x=>by;inrx=b,} : B
r-FPa:[ua.Al/alA TROLL r-Pa:pa.A TUNROLL
=Prolla: pa.A I =P unrolla: [ua.A/alA
FO(A)
FOUNIT FO(A) FO(B) FOSum FOAT
FO (Unit) FO(A+B) FO (A@0)

Figure 2: Typing Rules
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must be a value to ensure normalization. This restrictidhpstrmits the logical fragment to consider
programmatic terms (for example, recursive functions afaes).

Rule TUNBOX checks the elimination form for boxed terms, which resesbilelet”. The term
unboxx = ainb typechecks whem has typeA@6’ and b is parameterized by a value of tygein
fragment@’. Intuitively, a will be evaluated first, eventually yielding a valbexv, andv is substituted
into b. The operational semantics are discussed in more detalvbelote that no additional safety
restrictions occur in this rule—thigox introduction rules handle everything required to ensuat the
logical fragment terminates.

The rule for function application, TApr, makes use of the infrastructure for internalizing therigpi
judgement. Recall that function typd¥ — B demand arguments from a particular fragment. Bbe
and A@6 constructs already give us a way to safely check a term ierdifft fragments, so we reuse
them here. To check the applicatiarb in the fragmentd, we check that has some function type
A9 — B, then check thatoxb can be given the typa@8' in the current fragment. This has the effect of
restricting some applications to programmatic terms inldlgical fragment—in general, programmatic
arguments to logical functions must be values, ensuringitetion.

Rules TWNIT, TINL and TINR deal with the introduction forms for the unit and sum basess$yp
These terms may be used in either fragment and the typing arke standard. Rule TASE checks
the pattern matching elimination form for sums. Notablynsuthat typecheck in one fragment may
be eliminated in another—again we use the infrastructure to ensure that this does not introduce
non-termination into the logical fragment.

Two rules describe the relationship between the fragmek¢salready discussed, any logical term
can be used programmatically—this is the content of rul&@.SRule TFOWL is more surprising.
It allows potentially dangerous programmatic terms to bedus the logical fragment under certain
circumstances. In particular, the term must be a value @orentermination) and its type must be “first
order”. The first-order restriction, formalized by th® (A) judgement in the same figure, intuitively
means that we move can modatabut notcomputationgrom the programmatic fragment to the logical
one. For example, moving a natural number computditmL is safe, but moving a function froif to
L could cause non-termination when the function is applied.

Importantly, A@S9 is a first-order type for anjA. The programmatic fragment is permitted to com-
pute logical values, including logical function valuesdagrass them back to the logical fragment. In a
language extended with dependent types, we believe thitdvibeuuseful for working with proofs. For
example, a partial decision procedure could be written éngftogrammatic fragment and the resulting
proofs could be used in the logical fragment if the procederminates.

Finally, the language includes iso-recursive types [2%]eSe are checked by the two rulesdiR
and TUNROLL. Recursive types are restricted to the programmatic fragivecause they can introduce
non-termination.

2.2 Operational Semantics

The language’s operational semantics are given in Figun&/@.use standard call-by-value evaluation
contexts and a small-step reduction relation. Note thaiagtoh occurs insidéoxa terms, motivating
some of the restrictions from the previous section. The irstd{p reduction relation is indexed by a
natural number—this will be useful in the step-indexed dagjrelation defined in Sectidn 3.
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Evaluation contexts & ::= [-] | [-]b| V[-] | inl[-] | inr[-] | case [] of {inl x=-ay;inr x=ap}
| box[-] | unboxx = [-]ina| roll[-] | unroll[-]
a~b
(rectxav— Vxrectxafila ~oo™  Gnboxx=boxvinbw /b~ oNEOX
SCASEL SUNROLL
case inlvof {inl x=-as;inr Xx=az} ~ [v/X|aq unroll (rollv) ~ v
scaseR 2 gorx
case inrvof {inl x=-ayg;inr x=ax} ~ [v/X|az &la ~ &b
a~"b a~*Db
MSR b bl e a'b s
P EFL PO (TE I~ EP — < ASANY

Figure 3: Operational Semantics

3 Metatheory

We now consider the metatheory of the small language predéntSectio 2. Of particular interest is
the normalization result for the logical fragment, for whige employ a novel combination of traditional
and step-indexed logical relations. We motivate and erplas technique in Sectidn 3.3. The system
also enjoys standard type-safety properties, as we shoecitio®3.1. All the results presented here have
been mechanized using the Cog theorem prover, and we briftyribe the formalization in Sectibn B.5.
For this reason, we focus on a high-level description of ¢loniques and elide most proofs.

3.1 Type Safety

We prove type safety via syntactic progress and preservieorems.[32]. The progress result is direct
by induction on typing derivations, using appropriate cacal forms lemmas.

Theoreml (Progress) If - -2 a: Athen either is a value om~ & for somea'.

For preservation, a substitution lemma is required. Bexaasiables are values and our language
includes a value restriction (in the T&LV rule), we prove the substitution lemma only for values.

Lemma2 (Substitution) If I, x:® B-¢ a: Aandr -9 v: B, thenl -9 [v/xa: A.

Since we employ a call-by-value operational semantics, ghbstitution lemma is enough to prove
preservation.

TheorenB (Preservation)If I -9 a: Aanda~ d, thenl 9 & : A.
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3.2 Adapting the Girard-Tait Reducibility Method

To motivate the use of step-indexed logical relations inraumalization proof, we will first revisit the
standard Girard—Tait reducibility methad [15,/ 26] and eismwhy more direct adaptations of it fail.
Traditional techniques for proving strong normalizatigpitally begin by defining the “interpretation”
of each type. That is, for each ty@e a set of termgA] is defined approximating the typ& and
where each term in the set is known to be strongly normaliZifigen a “soundness” theorem is proved,
demonstrating that & has typeA thena € [A]. This impliesais strongly normalizing.

3.2.1 First attempt: ignoring the programmatic fragment

We begin by modify this technique in two ways to fit our settirkdrst, since we have a deterministic
call-by-value operational semantics, the interpretatibaach type will be a set of values (not arbitrary
terms). Second, since the terms at a given type differ in tbogrammatic and logical fragments, we
index the interpretation bg, writing [A]°.

It is tempting to think that, because we do not care aboutdnenalization behavior of the program-
matic fragment, the programmatic interpretation of types lse very simple. Perhaps, for example, just
the well-typed values of the appropriate type will do. Cdesithe following interpretation:

[ATP = {v|-FPv:A}

[Unit]- = {0}

[A+B]t = {inlv|ve[A]'}U{inrv|ve [B]'}

[A— B[t = {Axa]|-+'Axa:A%— Band foranyw e [A]%,[v/Xla~*V € [B]'}
[A@O]- = {boxv|ve[A]%}

[ua AL = 0

[a]* =0

Here, the logical interpretation &fnit contains only(). The logical interpretation of a sum tyge+ B
containsinlv for everyvin the interpretatio, andinrv for everyv in the interpretation oB. The logical
interpretation of functions types is standard, exceptHeraddition of the consistency classifi&® — B
contains the term x.a if, for any v in the interpretation of the domaify/x|a reduces to a value in the
interpretation of the range (“related functions take eflahrguments to related results”). The logical
interpretation ofA@6 comprises the valuesoxv wherev is in [A]®. Finally, the logical interpretations
of recursive types and type variables are empty, since #resesed only in the programmatic fragment.

Before we can state a soundness theorem, we must accounintexts. We us@ for mappings of
variables to terms, and writel= p if x:® Ac T impliespx € [A]°. We letpa stand for the simultaneous
replacement of the variables &by the corresponding terms m

In this setting, we would hope to be able to prove the follapsoundness theorem:

Soundnesgtake 1): SupposE - a: Aandll = p. Thenpa~*v ¢ [A]".

In a proof by induction on the typing derivation, most of tteses offer little resistance (the interested
reader is encouraged to write out the case for themMland TAPPrules). However, the proof gets stuck
at the case for the first order rule:

r=Pv:A FO(A)

TFOVAL
Mr-Lv:A
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Here, we must show thaitv € [A]" (substituting values into a value produces a valugpsdoes not
step). However, since the premise is in the programmatgient, we have no induction hypothesis for
v. If A= Unit, we can complete the case using a canonical forms lemma (si@&now by a substitution
lemma that F- pv : Unit). However, ifA is B@L we are stuck. We could use a canonical forms lemma
to observe thapv must have the shagmxV, but no induction hypothesis fof is available.

3.2.2 Second attempt: partial correctness for the programratic fragment

Our previous attempt failed because the language pernlitesaf first-order types to move from the
programmatic fragment to the logical fragment, but the tbeowe were trying to prove didn’t capture
any information about the programmatic fragment. To fix,thie might try making two changes. First,
the programmatic and logical interpretations should agtdiest-order types. Second, the programmatic
interpretation and the soundness theorem should be motlifigave a partial correctness result for the
programmatic fragment—we’ll need to know thkt programmatic term normalizethenit is in the
appropriate interpretation.

These changes should allow us to handle the previously gmadiic TFOWL case. Consider the
following modified interpretation, ignoring recursive ggfor the moment:

[Unit]® = {0}
[A+B]® = {inlv|ve [A]?}uU{inrv|ve [B]%}
[A°=B]t = {Axa]| -+'Axa:A?— Band foranw e [A]? [v/xa~*V € [B]'}
[A°—=BJP = {recfxal| -FPrecfxa:A’—~B

and for any € [A]?, if [v/X|[recf x.a/f]a~* V thenV ¢ [B]F}
[A@0']° = {boxv|ve[A]?}

Here, the logical interpretation is unchanged. The prognatit interpretation of the first-order types is
now the same as the logical interpretation. Finally, we lhmaedified the programmatic interpretation of
function types to state a partial correctness propéfty:function terminates when passed a value in the
interpretation of its domairthenthe result must be in the interpretation of its range. We restate the
soundness theorem similarly.

Soundnesgtake 2): SupposE % a: Aandrl = p.
e If BisL, thenpa~*ve [A]-.
e If 6isP andpa~*v, thenv e [A]".

With the modified interpretation and soundness theoreml F@VAL case now goes through. Because

the rule only applies to values, the theorem now yields auigafiuction hypothesis for the premise.
Unfortunately, this style of definition introduces a newlgem: the programmatic interpretation of

recursive types. The previous definition (from Sectiony.& insufficient to handle the TUROLL case

of the new soundness theorem. To extend our partial cogsstproperty, we might demand that when

unrolling results in a value, that value is in the interptietaof the unrolled type:

[ua.Al® = {rollv|-FProllv: pa.Aandve [[ua.A/alA]P}

However, this is not a valid definition. If the interpretatics a function defined by recursion on the
structure of types, the substitution iju a.A/a]A]" ruins its well-foundedness.
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3.3 A step-indexed interpretation

Happily, a technique exists in the literature to cope withdhcularity introduced by iso-recursive types.
Step-indexed logical relations![2, 3] add an index to therjprtetation, indicating the number of available
future execution steps. Terms in the relation are guardnieeespect the property in question only
for the number of steps indicated. The interpretation isnéefirecursively on this additional index,
circumventing the circularity problem we encountered @&ov

Step-indexed logical relations intuitively describe @ftorrectness properties—terms are certified
to be well behaved for a finite number of steps. For this readmy have typically been used to prove
safety and program equivalence properties, not normadizatVe will adopt a hybrid approach, where
the indices track execution of subterms in the programniedgment (where we need a partial correct-
ness result) but not in the logical fragment (for which we@m@ving normalization).

Following Ahmed [2], our interpretation is split into two gt& Thevalue interpretation [A]|¢
resembles the interpretations shown in the previous sectiorhek index here indicates that when
a value appears in a larger term, its programmatic compsngitit be “well-behaved” for at leask
steps of computation. Theomputationalinterpretation® [[A]]E contains closed terms, not just values.
Its definition resembles the statement of the soundnessetimefsom the previous section, with steps
counted explicitly. Terms if¢’ [A]L are guaranteed to normalize to value/iffA]. On the other hand,
we have a partial correctness property for termei[fA]]E—if they reach a value i steps for some
j <k, thenthe value is in/ [A]E ;.

¥ [Unit]lg = {0}
Y[A+B]! = {inlv|ve "I/[[A]]E}/U {inrv|ve 7[B]¢}
V[A@O'T; = {boxv|ve V[AY}
V[AY = B]L = {recfxa|-F-recfxa:A? B

andvj <k, if ve 7 [A]? then[v/xa € ¥[B]}}
¥V [AY — Blf = {recfxa| FPrecfxa: AY B

andvj <k, if ve 7 [A]° then[v/X[rect xa/flac [B]"}
VuaAl, = 0
VuaAly = {rollv|-+Prollv: pa.Aandvj <kve ¥ [[ua.A/alA]’}
A = {a|-FPa:Aandvj<k, if a~I vthenve V[AJ} ;}
¢ A = {a|-Fla:Aanda~*ve 7[Alk}

The value interpretation is similar to the proposed intetgiron in the previous section, with two
changes. First, the function type cases now refer to the atatipn interpretation rather than explic-
itly mentioning the reduction behavior. Second, the stefices track reductions in the programmatic
fragment. In particular, note that the programmatic intetation of function types demands that related
functions take related arguments to related results atradkly smallerindices, effectively counting the
one beta reduction step that this definition unfolds. The Is&p in the logical interpretation is not
counted, since we are tracking only the reduction of prognatic components.

Unlike the proposed definition from the previous sectiors thterpretation is well defined. We can
formalize its descending well-founded metric as a lexiapbically ordered triplék, A, .#): herek is
the indexAis the type and¢ is one of% or ¥ with ¥ < ¥. The third element of the triple tracks which
interpretation is being called—the computational intetation may call the value interpretation at the
same index and type, but not vice-versa.



34 Step-Indexed Normalization

3.4 Normalization

The step-indexed interpretation from the previous seatpairs the problems encountered in the first
two proposed interpretations and can be used to prove nizatiah for the logical fragment. Since
our results are formalized in Coq, we give only a high-lewatrgiew of the proof here. To begin, we
must update th€ |= p judgement to account for steps. We now wiite=, p whenx:® A € I' implies
pxe V[A]g.

Three key lemmas are needed in the main soundness theoreafir§ilis a standard “downward
closure” property that often accompanies step-indexettdbgelations. This lemma captures the idea
that we build a more precise interpretation of a type by aeréng terms that must be valid for more
steps.

Lemma (Downward Closure): Foranfand®, if j <kthen” [A]¢ C 7 [A]? and%'[A]? C

CA]7.
We have two lemmas relating the programmatic and logicakpmetations, corresponding to the TFO-
VAL and TSUB typing rules. The first says that the two interpretationgeagm first-order types:

Lemma: If FO (A), then¥ [Alk = 7 [A]R.
The second captures the idea that the logical fragment ibsystem of the programmatic fragment:
Lemma: For anyA andk, ¥ [A]k C ¥ [A]f and €Ak C €[A]F.

The content of the soundness theorem is essentially the aarimeour second failed attempt, but
we can now state it more directly, using the computationtrpretation. The theorem is proved by
induction on the typing derivation, using the lemmas oetlimbove.

Theorem (Soundness): IF -9 a: Aandl = p, thenpa c €[A]¢.

The normalization of the logical fragment is a direct consagre of this theorem and the definition of
the interpretation.

Lemma (Normalization): If- - a: A then there exists a valuesuch thag~* v.

3.5 Formalization

The proof outline above has been formalized with the Coqfpassistant[[28]. The proof scripts are
written in a heavily automated style, inspired by Chlipala/ork on practical dependently typed pro-
gramming [8|_¥]. They are available for download at the fitghar's website:

http://wuw.seas.upenn.edu/~ccasin/papers/step_normalization.tar.gz.
The language formalized differs in several minor ways froeane presented in this paper. Namely,
e de Bruijn indices are used for binding instead of explicitnes.
e Rather than being syntactic sugak.a is a separate form in the grammar of expressions.
e The reduction relation is formalized with explicit congnae rules rather than evaluation contexts.
e The formalized language includes natural numbers, but mitt u

Additionally, to prove certain facts about the interprigtat we found it necessary to add a standard
axiom of functional extensionality to Coqg. This axiom is kmoto be consistent with Coq’s logic [27].
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4 Related Work

4.1 Step-indexed logical relations

Our proof technique draws heavily from previous work on stefexed logical relations. The idea to
approximate models of programming languages up to a nunilvenining execution steps originated
in the work of Appel and McAllester on foundational proofigeng code [[3]. They observed that the
step indices allowed a natural interpretation of recursyyes. Subsequently, Ahmed extended this
technique to languages involving impredicative polymdasph mutable state and other featuiies |2, 1].

Hobor, Dockins and Appel have proposed a genliedry of indirectionwhich captures many of the
common use-cases for step-indexed models [16]. They mavigeneral framework for applying these
approximation techniques to resolve certain types of agyarircularity (similar to the problems with
recursive types described above). In a recent draft [14¢kibg and Hobor have used this framework
to provide a Hoare logic of total correctness for a small leagge with function pointers and semantic
assertions. This work is closely related to the presentldpugent, but with different goals: they prove
the soundness of a logic which can reason about terminatrbite we prove that every term in the
logical fragment of our language terminates. We have noinyestigated whether their framework can
be adapted to our setting, but this connection is a promesiegue for future work.

4.2 Other approaches to recursion and partiality

Many authors have considered language features to modallipand recursion in a consistent depen-
dent type theory. The language described in the present fgameich simpler, but our goal is to provide

a foundation from which we may scale up to full dependentsype we compare with some of the most
closely related approaches.

Partiality monad Capretta proposed representing potentially non-ternmga&omputations via a coin-
ductivepartiality monad[5]. This technique can be used in existing languages likg &wl Agda, which
already support coinduction [10]. For example, Agda’siphty monad has been used to present sub-
typing for recursive types [13] and represent potentiaifynite parsing trees [12].

There are several differences between these approachéiseamide outlined in this paper. Coinduc-
tion is a very general method for representing infinite dataich we do not consider. Our approach
has the advantage that terminating and potentially pduiettions are defined and reasoned about in the
same way. By contrast, the reasoning principles for coitidely defined functions in Coq and Agda
require the user to consider so-caligdgardedness conditiorthat are not present for terminating func-
tions. More, we are optimistic that splitting the languagt itwo fragments will allow us to include
various other potential sources of logical unsoundnes®umiy, restricting them to the programmatic
fragment. Admittedly, it remains to be seen how well thisl wibrk in practice and whether our proof
technique will scale.

Partial Types Constable and Smithl[9] proposed adding partiality to theiNiype theory through the
addition of a typeA of potentially nonterminating computations of typeThe general fixpoint operator,
for defining recursive computations then has type

(A=A — A
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However, to preserve the consistency of the logic in deparigipe theories, the typ&must be restricted
to admissible types. Craryl[[1l] provides an expressive axiomatizatibmadmissible types, but the
resulting conditions lead to significant proof obligatipmsparticular when using types. Although we
have not yet formally proven the soundness of the system aviilirary dependent types (includirag
types), we do not believe that there will be any restrictionsthe programmaticlanguage, similar to
admissibility.

The “later” modality = Nakano [23] introduced the “later” modality to define a tahguage with
guarded recursive types. Intuitively, a term of tygf (pronounced “lateA”) will be useable as a term
of type A in the future. The recursive tygea.A then unfolds tdeu a.A/a]A rather thafu o.A/alA.
Using this modality, he is able to give the ty(eA — A) — Ato the Y combinator. This type allows pro-
grammers to define a variety of recursive functions whilkestisuring that the language is normalizing.
Nakano uses a step-indexed realizability interpretatioprove the normalization property for his lan-
gauge, suggesting deep connections with the present wark.sGbstantial difference is that Nakano'’s
calculus is not call-by-value.

The later modality has been used by subsequent authorsi¢mdiesgauges for a variety of purposes.
Krishnaswami and Benton use it define a total language fartimmal reactive programming [20, 19].
Birkedal et al.[[4] study the topos of trees, which they obs@an model an extension of Nakano’s calcu-
lus to a full dependent type theory with guarded recursiohil®\these authors do not consider languages
with partiality and their settings have substantial défezes from our own, their success in extending
step-indexing and closely-related techniques to modeirsgan in larger languages is promising.

Other TRELLYS approaches The TRELLYS group has been working simultaneously on an alternative
design, where the logical and programmatic languages anpletely separate at a syntactic levell[18].
This considerably simplifies the metatheory for the loglaalguage, which is no longer a general pro-
gramming language but rather a collection of principleséasoning about the programmatic language.
On the other hand, it can restrict the expressiveness obtfie &nd create duplication between the two
fragments. We are exploring these trade-offs in our ongoésgarch.

4.3 Modal type systems for distributed computation

Modal logics allow one to reason from multiple perspectivesled “possible worlds”. It is tempting
to view the language presented here as such a system, whkgpedsible worlds aré, the logical and
computational fragments of the language.

One way to define a modal logic is to make the world expliciteiample using a judgement-? A,
stating that under the assumptiond irthe propositiorA is true at the worldd. Each assumption in the
context is tagged with the world where it hol(3, A).

(8,A) el
THA
In such as system, thet modality [17], internalizes the typing judgment into a posjtion, with

introduction form

re9A

TFoA@E
and elimination form:

r-a@o r,(0,A+C
r-éc
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Ouir first-order rule is similar to the perspective-shiftinde, calledget, from ML5 [22,/21].

M9 A Amobile
Fr-8A

This rule, shown above, allows a class of propositions toifeetly translated between worlds. The class
of mobile types is very similar to our class of first-orderdgp For example, base types (such as strings
and integers) and th&t modality (A@80) are always mobile, sum#& B) are mobile only when their
componentsA andB) are mobile, but implications are never mobile.

One difference between our system and modal logics is oatmient of implication (i.e. function
types). The functions in our system are annotated with a domagment, but this is not typically
the case in modal logics, where the domain and range of iatfits are in the same world. Such an
approach is incompatible with our subsumption rule:

rta:A

— TSus
r-Pa:A

SupposeéA were a function typd; — B, with no tag on the domain. When we defined such a function
in the logical fragment, the function’s body could make usthe fact that its argument checks logically.
If the subsumption rule were used to transport the functiothé programmatic fragment, it could be
applied to terms that check only programmatically, potdhytiviolating assumptions of its body.

5 Conclusion

In this paper, we have presented a small language with tvwpnmfeats. Therogrammaticfragment
supports general recursion and recursive types, whileydeem in thelogical fragment is normalizing.
Despite these differences, each fragment may explicitiptroe and manipulate terms from the other
using theinternalized logicality typeA@6. We showed that direct adaptations of the Girard—Tait re-
ducibility method fail to yield a normalization proof fordHogical fragment. Finally, we proposed a
new technique involving step-indexed logical relationd ased it to complete the proof, which has been
formalized in Coq.

The language considered here is small and unsuitable fopmegramming tasks. However, it con-
stitutes the core of one of our designs for thRELLYS programming language, and the metatheoretic
difficulties we explained and solved in this paper also appleere. In future work, we plan to add
polymorphism, type-level computation and dependent tygaek to this system. If our proof technique
scales, this will provide the basis for a practical, depetigeyped programming language which can
naturally express and reason about non-terminating catipos.
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