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In constructive mathematics, several nonequivalent notions of finiteness exist. In this paper, we
continue the study of Noetherian sets in the dependently typed setting of the Agda programming
language. We want to say that a set is Noetherian, if, when we are shown elements from it one after
another, we will sooner or later have seen some element twice. This idea can be made precise in
a number of ways. We explore the properties and connections of some of the possible encodings.
In particular, we show that certain implementations imply decidable equality while others do not,
and we construct counterexamples in the latter case. Additionally, we explore the relation between
Noetherianness and other notions of finiteness.

1 Introduction

To work with finite sets in the constructive setting of proof assistants like Agda [1], which is the language
we use in this paper, we need to be able to say what a finite set is. The straightforward way of saying that
a set is finite is to ask for an enumeration of its elements together with the proof that the enumeration is
complete [7]. This idea can be formalized as follows:
Listable X = Σ[ xs ∈ List X ] ((x : X) → x ∈ xs)

(In Agda, Σ[ a ∈ A ] B a is the type of dependent pairs of an element a of type A and an element of
type B a. Note the unfortunate and confusing use of ∈ instead of : for typing the bound variable in this
notation.)

An alternative notion of finiteness found in the literature is Noetherianness. Intuitively, a set X is
Noetherian if, whenever we are shown enough elements of X, eventually we will have seen some element
twice. Following Coquand and Spiwack [4], this idea can be formalized as follows:
data NoethAcc’ (X : Set) (acc : List X) : Set where

stop : Dup acc → NoethAcc’ X acc

ask : ((x : X) → NoethAcc’ X (x :: acc)) → NoethAcc’ X acc

The auxiliary definition NoethAcc’ is parametrized by a set and an accumulator list over this set. It has
two constructors. The constructor ask says that, by constructing a proof of NoethAcc’ X (x :: acc)

for all x : X, one has constructed a proof of NoethAcc’ X acc. The constructor stop says that, if acc
already contains a duplicate, then one gets a proof of NoethAcc’ X acc. Therefore, to construct a proof
of NoethAcc’ X acc, we must show that, if we ask for elements long enough, then, independently of
which elements we are presented, we can eventually stop. Finally, we say that the set is Noetherian, if
we can prove NoethAcc’ starting with the empty accumulator:
NoethAcc X = NoethAcc’ X []

Let us prove that the set of Booleans is Noetherian. The proof is done by case analysis and pattern
matching under lambdas. Every time we ask for an element, the proof tree branches according to whether
the element provided is true or false. Clearly, after asking for elements at least three times, all branches
can stop.
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BoolNoetherian : NoethAcc Bool

BoolNoetherian =

ask (λ { true → ask (λ { true → stop dup0

; false → ask (λ { true → stop dup1

; false → stop dup2 }) })
; false → ask (λ { true → ask (λ { true → stop dup2

; false → stop dup1 })
; false → stop dup0 }) })

where

-- the implementation of dup* is left out for brevity

dup0 : {x : Bool} → Dup (x :: x :: [])

dup1 : {x y : Bool} → Dup (x :: y :: x :: [])

dup2 : {x y : Bool} → Dup (x :: x :: y :: [])

The proof corresponds to the tree of the following shape:

[]

[F]

[F,F][F,T]

[F,T,F][F,T,T]

[T]

[T,F]

[T,F,F][T,F,T]

[T,T]

NoethAcc Bool

Note that the definition of NoethAcc does not require us to terminate immediately after discovering the
first duplicate in the accumulator. Therefore, all branches could be continued for some finite number of
iterations.

We can already observe that Noetherianness has a number of interesting properties in comparison
with listability. A proof that a certain set is Noetherian does not provide an access to elements of the
set. This also implies that there is no information about the size of the set, or even about inhabitedness
of the set. Moreover, the proof objects of Noetherianness are lightweight and do not induce excessive
computations. For example, consider the finite set Factors n, which contains all the factors of a natural
number n. It is straightforward to prove that this set is both listable and Noetherian. However, the proof
of listability can cause the search of factors of n, if pattern matching is performed on the witness list.
This causes problems for big values of n.

In this paper, we continue the study of Noetherian sets and make the following main contributions:

• In Section 2, we provide a number of implementations of the idea of Noetherianness and compare
them to each other.

• In Section 3, we show that the original definition of Noetherian sets by Coquand and Spiwack [4]
(NoethAcc) implies decidable equality on the set.

• In Section 3.1, we construct a class of finite sets with generally undecidable equality and prove
that they are Noetherian for a particular variation of Noetherianness (NoethAccS). This implies
that some encodings are logically weaker than others.

• In Section 4, we prove that the variations of Noetherianness introduced are nonequivalent by pro-
viding counterexamples. In addition, we establish connections with notions of listability, stream-
lessness, and almost-fullness. The relation between all the notions of finiteness presented in the
paper is summarized in Figure 1.
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Section 5 is devoted to related work, conclusions, and further work. In Appendix A, we give a de-
tailed explanation of the basic Agda definitions we use (e.g., membership in a list, duplicates, decidable
equality, propositional types, etc).

We used Agda 2.4.2.2 and Agda Standard Library 0.9 for this development. The full Agda code of
this paper can be found at http://cs.ioc.ee/~denis/noeth/.

2 Different Encodings of Noetherianness

In the introduction, we have presented an encoding of Noetherianness, called NoethAcc. In order to
construct a proof of NoethAcc X, we repeatedly ask for elements of X until we end up with an element
that we have seen twice. A couple of notes on this encoding:

1. When we ask for an element of X, we are given an arbitrary one. In particular, we may receive
an element that we have already seen and conclude using the constructor stop. This may happen
before having seen all the elements of X.

2. A proof of NoethAcc X does not necessarily detect the first element that appears twice. We can
keep asking for elements of X after we have already seen an element twice.

The above observations expose the fact that there are some degrees of freedom in the encoding of Noethe-
rianness. This section is devoted to the description of implementations of Noetherianness alternative to
NoethAcc.

The first variation we present is called NoethAccS. The extra “S” stands for “strict”. In this imple-
mentation, we do not ask for arbitrary elements, but only for fresh ones. The idea can be formalized as
follows:

data NoethAccS’ (X : Set) (acc : List X) : Set where

ask : ((x : X) → ¬ x ∈ acc → NoethAccS’ X (x :: acc)) → NoethAccS’ X acc

The auxiliary definition NoethAccS’ has only one constructor ask. It says that, by constructing a proof
of NoethAccS’ X (x :: acc) for all x : X that are not in the accumulator acc, one has constructed
a proof of NoethAccS’ X acc. Then we say that the set is Noetherian, if we can prove NoethAccS’

starting with empty accumulator:

NoethAccS X = NoethAccS’ X []

The base case is reached when, for all x : X, we have that ¬ x ∈ acc is false, i.e., can produce a proof
of ¬ ¬ x ∈ acc. Therefore, in order to construct a proof of NoethAccS, we repeatedly ask for fresh
elements of X until no element can fail to be in the accumulator.

The predicate NoethAcc is stronger than NoethAccS, since every set that satisfies NoethAcc also
satisfies NoethAccS. More generally, given a duplicate-free accumulator acc : List X, we have that
NoethAcc’ X acc implies NoethAccS’ X acc. This fact is proved as follows:

NoethAcc’→NoethAccS’ : {X : Set} → (acc : List X) → ¬ Dup acc

→ NoethAcc’ X acc → NoethAccS’ X acc

NoethAcc’→NoethAccS’ acc ¬d (stop d) = ⊥-elim (¬d d)

NoethAcc’→NoethAccS’ acc ¬d (ask n) =

ask (λ x ¬m → NoethAcc’→NoethAccS’ (x :: acc) (¬DupCons ¬d ¬m) (n x))

where⊥-elim is the elimination principle of⊥ and¬DupCons constructs a proof of¬ Dup (x :: acc)

from a proof of ¬ Dup acc and a proof of ¬ x ∈ acc. The proof proceeds by induction on the proof

http://cs.ioc.ee/~denis/noeth/
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of NoethAcc’ X acc: if acc contains a duplicate, then we can derive ⊥, since by hypothesis acc is
duplicate-free; otherwise, we have a proof n of (x : X) → NoethAcc’ X (x :: acc). We ask for a
fresh element x. This element can be added to the accumulator, which remains duplicate-free, and we
can invoke the induction hypothesis on n x : NoethAcc’ X (x :: acc).

The main statement follows by instantiating acc with the empty list and noting that the empty list is
duplicate-free.

NoethAcc→NoethAccS : {X : Set} → NoethAcc X → NoethAccS X

NoethAcc→NoethAccS n = NoethAcc’→NoethAccS’ [] (λ ()) n

The converse implication does not generally hold, as we will demonstrate in Section 3.1.
Alternatively, we can implement the idea behind NoethAccS without an explicit accumulator. In

this variation, which we call NoethSet, we also ask for fresh elements of a given type X, but instead
of storing the already seen elements in a list, we directly remove them from the set X. The predicate
NoethSet can be formalized as follows:

data NoethSet (X : Set) : Set where

ask : ((x : X) → NoethSet (X \ x)) → NoethSet X

where the type X \ x of elements of X different from x can be defined as follows:

_\_ : (X : Set) → X → Set

X \ x = Σ[ x’ ∈ X ] ¬ x’ ≡ x

The type NoethSet has only one constructor ask. It says that, to construct a proof of NoethSet X,
one has to construct a proof of NoethSet (X \ x) for all x : X. This encoding of Noetherianness
was mentioned by Bezem et al.[3]. Here the base case is reached when the type X becomes empty, i.e.,
from an inhabitant x : X, we can derive ⊥. Therefore, in order to construct a proof of NoethSet, we
repeatedly ask for fresh elements of X and remove from X the elements presented to us, until the set X
becomes empty.

The encodings NoethAccS and NoethSet are logically equivalent (NoethAccS→NoethSet requires
the assumption of the principle of function extensionality).

NoethAccS→NoethSet : {X : Set} → NoethAccS X → NoethSet X

NoethSet→NoethAccS : {X : Set} → NoethSet X → NoethAccS X

So NoethSet does not utilize an accumulator, but it still remembers what elements of X have already
been seen. These elements correspond exactly to the ones that have been removed from the set X.

2.1 The Noetherianness Game

In this subsection, we give a game-theoretic description of Noetherianness. This will help us develop
other different variations on the theme. The Noetherianness game, based on the encoding NoethAccS,
works as follows. Let X be a set. Two players participate in the game, the prover and the opponent. The
prover cannot see what is inside X and repeatedly asks the opponent for fresh elements of X. The opponent
knows exactly which elements are in X and answers the prover’s queries by supplying a fresh element.
The game terminates, when the opponent cannot provide any fresh element to the prover. The prover
wins, if the game terminates in a finite number of steps, no matter what the strategy of the opponent is.
The opponent wins, if she can come up with a strategy that makes the game non-terminating.

We present another variant on Noetherianness, also explainable along the lines of the game-theoretical
presentation given above. We call it NoethGame. At each turn the prover can not only ask for a fresh
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element of X but also provide an element of X. Whenever the prover asks for a fresh element, the oppo-
nent provides one. The game terminates only when the opponent cannot satisfy the prover’s request. The
winning conditions are the same as in the Noetherianness game. This idea can be formalized as follows:

data NoethGame’ (X : Set) (acc : List X) : Set where

tell : (x : X) → NoethGame’ X (x :: acc) → NoethGame’ X acc

ask : ((x : X) → ¬ x ∈ acc → NoethGame’ X (x :: acc)) → NoethGame’ X acc

The constructor tell says that having an inhabitant x : X and a proof of NoethGame’ X (x :: acc)

makes a proof of NoethGame’ X acc. Finally, we define NoethGame X as NoethGame’ X [].

NoethGame X = NoethGame’ X []

The predicate NoethGame is different in flavor from the Noetherianness predicates introduced before.
When constructing a proof of NoethGame X, we can not only ask for elements of X, but also choose
to provide elements of X, if we happen to know some. The predicate NoethGame is particularly useful,
when we have some kind of partial knowledge of the set X. Clearly, NoethAccS X implies NoethGame X

by construction.

NoethAccS→NoethGame : {X : Set} → NoethAccS X → NoethGame X

We present another variant of Noetherianness, also based on the game-theoretic intuition. We modify
the rules of NoethGame. At each step, the prover can either ask for any element of X, provide an element
of X, or win the game by giving a proof that the accumulator is exhaustive. Putting it formally:

data NoethExpose’ (X : Set) (acc : List X) : Set where

stop : ((x : X) → x ∈ acc) → NoethExpose’ X acc

tell : (x : X) → NoethExpose’ X (x :: acc) → NoethExpose’ X acc

ask : ((x : X) → NoethExpose’ X (x :: acc)) → NoethExpose’ X acc

NoethExpose X = NoethExpose’ X []

A set satisfying NoethExpose has an interesting property. Once we know an inhabitant of it, we know
that the set is listable.

NoethExpose→Listable : {X : Set} → X → NoethExpose X → Listable X

Given an element x : X. A proof of NoethExpose X is a tree that we can walk up to a leaf by choosing
the x-th branch at each ask node. The tell nodes construct a list and the leaf node of the path contains
a proof that the accumulator has all the elements of X.

It is easy to see that every listable set satisfies NoethExpose. Moreover, NoethExpose X implies
NoethAcc X. In fact, just ask for an element of X. At this point, the set X becomes listable. Hence we
are done, since listable sets satisfy NoethAcc. The converse implication does not generally hold, as we
will demonstrate in Section 4.1.

3 Decidable Equality

It has been shown [5] that every listable set has decidable equality. In this section, we prove that the
same holds for Noetherian sets in the sense of NoethAcc.

NoethAcc→DecEq : {X : Set} → NoethAcc X → DecEq X

We give an informal account of the proof of NoethAcc→DecEq. To decide whether two elements x and
y are equal, we proceed as follows.
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• First, we repeatedly feed x into the Noetherianness proof, until we get some list xs with the proof
that it contains duplicates, say d : Dup xs. By construction, all elements of xs are equal to x.
The proof d points to two different positions p1 and p2 in xs.

• Next, we repeat the procedure described above, this time feeding y instead of x at the p1-th itera-
tion. The procedure returns a proof d’ : Dup xs’. The list xs’ contains x at all positions except
for the p1-th, where y has been inserted. The proof d’ points to two different positions p1’ and
p2’ in xs’.

• If p1 is equal to p1’, then clearly x is equal to y. In the other case, if p1 is different from p1’,
then also x differs from y.

Notice that the same procedure cannot be replayed for NoethAccS, since we cannot feed the same
element twice into a proof of NoethAccS X.

As a corollary we obtain that, if a set satisfies NoethExpose, then it has decidable equality, since
NoethExpose is stronger than NoethAcc.

3.1 A Counterexample to Decidable Equality for NoethAccS

In this subsection, we assume the principle of function extensionality.

funext : {X Y : Set} {f g : X → Y} → (∀ x → f x ≡ g x) → f ≡ g

The principle says that two functions are propositionally equal, if they deliver the same result for all argu-
ments. Assuming funext, we show that it is not the case that every set X such that NoethAccS X has de-
cidable equality. Note that this proves that not every set X satisfying NoethAccS X satisfies NoethAcc X.
Let us define a family NotNotIn of sets parametrized by a type X and a list over X.

NotNotIn : {X : Set} → List X → Set

NotNotIn {X} xs = Σ[ x ∈ X ] ¬ ¬ x ∈ xs

Since propositional equality is not decidable for a general type X and the functions of type ¬ ¬ x ∈ xs

are all equal thanks to function extensionality, we have that equality is not generally decidable for
NotNotIn xs. Moreover, from the general decidable equality on the type NotNotIn xs, we can derive
decidable equality for every type.

EqNotNotIn→Eq : ({X : Set} (xs : List X) → DecEq (NotNotIn xs))

→ {X : Set} → DecEq X

The last step is to show that NotNotIn xs satisfies NoethAccS.

NoethAccSNotNotIn : {X : Set} → (xs : List X) → NoethAccS (NotNotIn xs)

The proof proceeds as follows. Apply length xs + 1 times the constructor ask. By doing so, we
arrive at a list acc containing length xs + 1 different elements. However, the type NotNotIn xs has
at most as many elements as there are positions in the list xs. From the two previous observations, we
get a contradiction, which corresponds to the base case of NoethAccS.

If we could derive NoethAcc from NoethAccS, then NotNotIn xs would have decidable equality
by NoethAcc→DecEq. However, then EqNotNotIn→Eq would allow us to derive the decidable equality
for every type, which is not plausible in a constructive setting.



82 Variations on Noetherianness

4 Connections between Noetherianness and Other Notions of Finiteness

In the previous section, we have shown that the notions NoethAcc and NoethAccS are different by con-
structing a “separating” class of sets, i.e., a class whose every member satisfies NoethAccS, but not
NoethAcc in general. Given two notions of finiteness F and F’, we say that F is separated from F’ by a
class of sets, if F’ X holds for all of its members, while F X holding for all members implies some non-
constructive principle. In this section, we show which other variations of Noetherianness are separated.
We also discuss the connection of Noetherian sets with streamless sets and almost-full relations.

4.1 Separating Listability from NoethExpose

There exists a class of sets whose every member satisfies NoethExpose but is not listable. Consider any
set X such that every two elements of X are equal, i.e., a proposition. Then NoethExpose X holds, just
ask for one element of X and the element presented has already made the accumulator complete.

NoethExposeProp : (X : Set) → isProp X → NoethExpose X

On the other hand, if we could construct a proof that any proposition X is listable, then, by checking
whether the given list is empty or not, we could decide the inhabitedness of X (i.e., we could prove the
law of excluded middle for propositions).

ListableProp→LEM : ((X : Set) → isProp X → Listable X)

→ (X : Set) → isProp X → X + ¬ X

4.2 Separation from Bounded Sets

A set X is called bounded, if there exists a natural number (bound) n such that every list over X with more
than n elements contains duplicates.

Bounded X = Σ[ n ∈ N ] (xs : List X) → n ≤ length xs → Dup xs

Coquand and Spiwack [4] showed that Listable X implies Bounded X, and also Bounded X im-
plies NoethAcc X. Moreover, they proved that Listable is separated from Bounded and most notably
Bounded is separated from NoethAcc. In fact, they proved that, if every Noetherian set were bounded,
then one could derive the limited principle of omniscience (LPO). The same class of sets separating
Bounded from NoethAcc also separates Bounded from NoethExpose.

We present a class of sets that separates NoethExpose from Bounded. Consider a proposition X. The
set > + X (where > is the unit type) is bounded, since it contains at most two elements.

MaybePropBounded : (X : Set) → isProp X → Bounded (> + X)

On the other hand, if we could construct a proof that> + X satisfies NoethExpose for every proposition
X, then we could derive the law of excluded middle for propositions.

MaybePropNoethExpose→LEM : (∀ X → isProp X → NoethExpose (> + X))

→ ∀ X → isProp X → X + ¬ X

In fact, from the theorem NoethExpose→Listable, we have that NoethExpose (> + X) implies
that the set > + X is listable, since > + X is inhabited for all X. In turn, this implies that X is listable.
But we already showed that, if every proposition is listable, then we can derive the law of excluded
middle for propositions (ListableProp→LEM).

Therefore NoethExpose and Bounded are separated from each other. As a consequence, we have
that NoethExpose is separated from NoethAcc.
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4.3 Streamless Sets

A notion of finiteness similar to Noetherianness is the that of streamless set. A set X is streamless, if
every stream (infinite list) over X contains duplicates.

Streamless X = (xs : Stream X) → DupS xs

The formal definition of Stream and DupS can be found in Appendix A. Coquand and Spiwack [4]
showed that every Noetherian set (in the sense of NoethAcc) is streamless.

NoethAcc→Streamless : {X : Set} → NoethAcc X → Streamless X

Bezem et al. [2] conjectured that it is unprovable that every streamless set is Noetherian. Parmann [9] also
proved that every streamless set has decidable equality under the hypothesis of function extensionality
(or stream extensionality, depending on the chosen representation of streams).

The encoding of streamless sets admits variations similar to those for Noetherianness introduced
earlier. For example, we can define a set X to be streamless, if all duplicate-free colists (possibly infinite
lists) have finite length.

StreamlessS X = (xs : Colist X) → ¬ DupC xs → xs ⇓
The formal definition of Colist, DupC and _⇓ can be found in Appendix A. Note that this strict variation
is similar to NoethAccS. Moreover, NoethAccS is stronger than StreamlessS.

NoethAccS→StreamlessS : {X : Set} → NoethAccS X → StreamlessS X

As a corollary of NoethAccS→StreamlessS, we have that in general StreamlessS X does not imply
decidability of equality on X. Additionally, this shows that Streamless and StreamlessS are separated
similarly to NoethAcc and NoethAccS.

4.4 Noetherian Sets and Almost-Full Relations

Almost-full relations were introduced by Veldman and Bezem [10] for developing an intuitionistic ver-
sion of Ramsey theory. Vytiniotis et al. [11] analyzed almost-full relations in connection to program
termination and defined this concept as follows:

data AF (X : Set) (R : X → X → Set) : Set where

afzt : ((x y : X) → R x y) → AF X R

afsup : ((x : X) → AF X (λ y z → R y z + R x y)) → AF X R

A proof terminates, if the relation R is total. Otherwise, we ask an element x from the opponent and we
construct a bigger relation R’ such that, for all y z : X, R’ y z if and only if R y z or R x y. Then,
by providing a proof of AF X R’, we conclude the proof of AF X R.

Vytiniotis et al. [11] remarked that the type AF X _≡_ states that X has finitely many inhabitants.
We denote AF X _≡_ by AFEq X, and show that, for our hierarchy of encodings, AFEq is equivalent to
NoethAcc.

AFEq X = AF X _≡_

AFEq→NoethAcc : {X : Set} → AFEq X → NoethAcc X

NoethAcc→AFEq : {X : Set} → NoethAcc X → AFEq X

Notice that the two above results cannot be proved by induction directly, since the second constructor
of AF proceeds by growing the relation. Therefore, we have to introduce a notion of Noetherianness for
binary relations.
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data NoethAccR’ (X : Set)(R : X → X → Set) (acc : List X) : Set where

stop : DupR R acc → NoethAccR’ X R acc

ask : ((x : X) → NoethAccR’ X R (x :: acc)) → NoethAccR’ X R acc

NoethAccR X R = NoethAccR’ X R []

The notion NoethAccR’ is different from NoethAcc’ in the first constructor, where instead of looking
for duplicates in the accumulator we search for related elements. This generalized notion NoethAccR of
Noetherianness for relations is equivalent to AF.

AF→NoethAccR : {X : Set}{R : X → X → Set} → AF X R → NoethAccR X R

NoethAccR→AF : {X : Set}{R : X → X → Set} → NoethAccR X R → AF X R

This equivalence can serve as an explanation of the rather unintuitive notion of almost-fullness.

5 Related Work and Conclusions

Finiteness in constructive mathematics has been studied by various authors recently. Coquand and Spi-
wack [4] introduced four constructively nonequivalent notions of finite sets in set theory à la Bishop:
enumerated sets (that we call listable sets), bounded size sets, Noetherian sets and streamless sets. They
showed how these different notions are connected and proved several closure properties. Parmann [9]
studied streamless sets in the setting of Martin-Löf type theory. He showed that streamless sets are
closed under Cartesian product, if at least one of the sets has decidable equality. Firsov and Uustalu [5]
developed a practical toolbox for programming with listable subsets of base sets with decidable equality
in Agda. Bezem et al. [3] investigated a number of notions of finiteness of decidable subsets of natural
numbers.

In this paper, we introduced several variations on the notion of Noetherian set. Our current knowledge
about the relations between different encodings is summed up in Figure 1.

Different encodings of Noetherianness all share the distinctive property of hiding the elements of the
set. Nonetheless some implementations “reveal” more information about the set than others. We showed
that NoethExpose, and most importantly NoethAcc, allow one to construct a decider of equality for the
set, while such a decider cannot generally be built for sets satisfying NoethAccS or NoethGame.

It remains open whether NoethAccS and NoethGame are equivalent notions or not. A class of sets
separating NoethAccS from NoethGame must have the following properties: its members cannot have a
computable bound on their size; they cannot have decidable equality.

Coquand and Spiwack [4] analyzed some closure properties of NoethAcc, such as closure under
subsets, binary products and coproducts. In this paper, we did not extend the study of such properties for
the variations on Noetherianness discussed. This is a possible direction for future work. Nevertheless, it
is worth mentioning that NoethAccS is closed under quotients (implemented as inductive-like types à la
Hofmann [6]) while NoethAcc is not.

In constructive mathematics, one encounters several further standard ways of expressing finiteness,
e.g., Dedekind finiteness. Clearly, one can express finiteness in also in many exotic ways. We won-
der whether some form of unifying theory of useful notions finiteness in constructive mathematics is
possible.
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Listable

NoethExpose Bounded

AFEq NoethAcc Streamless

NoethAccS

NoethGame

LEMprop LEMpropLPO

LEMprop

LPOLEMprop

DEQ

?

Figure 1: Variations on Noetherianness. LEMprop, LPO, and DEQ denote the law of excluded middle for
propositions, the limited principle of omniscience, and the decidable equality for all types.
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A Basic Definitions in Agda

Membership in a list We define the inductive type of proofs that an element x is in a list xs.

data _∈_ {X : Set} (x : X) : List X → Set where

here : {xs : List X} → x ∈ x :: xs

there : {y : X} {xs : List X} → x ∈ xs → x ∈ y :: xs

The constructor here says that the head of a list is a member of the list, and the constructor there says
that any element of the tail of a list is also an element of the entire list.

Duplicates in a list We define the type of proofs that the list contains duplicates:

data Dup {X : Set} : List X → Set where

duphere : {x : X} {xs : List X} → x ∈ xs → Dup (x :: xs)

dupthere : {x : X} {xs : List X} → Dup xs → Dup (x :: xs)

The list x :: xs contains duplicates, if the element x appears in the tail xs or if xs contains duplicates.

Generalized types for membership and duplicates in a list An inhabitant of the type x ∈ xs is a
proof that the list xs contains an element equal to x. This can generalized by replacing equality by an
arbitary binary relation R:

data MemR {X : Set}(R : X → X → Set) (x : X) : List X → Set where

here : {y : X} {xs : List X} → R y x → MemR R x (y :: xs)

there : {y : X} {xs : List X} → MemR R x xs → MemR R x (y :: xs)

The type MemR R x xs contains proofs that the element x is related by R to some element in the list xs.
A similar generalization is possible for duplicates:

data DupR {X : Set}(R : X → X → Set) : List X → Set where

duphere : {x : X} {xs : List X} → MemR R x xs → DupR R (x :: xs)

dupthere : {x : X} {xs : List X} → DupR R xs → DupR R (x :: xs)

The type DupR R xs contains proofs that the list xs contains a pair of elements related by R.
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D. Firsov, T. Uustalu & N. Veltri 87

Decidable equality If P is a set, then Dec P is a type of proofs of P or not P:

data Dec (P : Set) : Set where

yes : (prf : P) → Dec P

no : (prf : ¬ P) → Dec P

Here yes and no are two constructors of Dec P. The former takes a proof of P as its argument while the
latter takes a proof of ¬ P (i.e., P → ⊥).

Now, we say that X has decidable equality, if, for any x1 and x2 of type X, we have Dec (x1 ≡ x2):

DecEq : Set → Set

DecEq X = (x1 x2 : X) → Dec (x1 ≡ x2)

Propositional types We say that the type X is a proposition, if any two elements of X are equal, i.e., if
the type has at most one element:

isProp : Set → Set

isProp X = (x1 x2 : X) → x ≡ x2

For example, the empty and unit types are propositions.

Function extensionality Two functions are extensionally equal, if they return the same value when
applied to the same input. The principle of function extensionality asserts that two functions are equal,
if they are extensionally equal.

funext : {X Y : Set} {f g : X → Y} → ((x : X) → f x ≡ g x) → f ≡ g

The principle of function extensionality is assumed in the proof of NoethAccS→NoethSet and in Sec-
tion 3.1.

Membership and duplicates in a stream Streams are “infinite lists”, defined coinductively as follows:

data Stream {X : Set} : Set where

_::_ : X → ∞ (Stream X) → Stream X

The membership relation and the predicate of duplicates are defined similarly to those for lists.

data _∈S_ {X : Set} (x : X) : Stream X → Set where

here : {xs : ∞ (Stream X)} → x ∈S x :: xs

there : {y : X} {xs : ∞ (Stream X)} → x ∈S [ xs → x ∈S y :: xs

data DupS {X : Set} : Stream X → Set where

duphere : {x : X} {xs : ∞ (Stream X)} → x ∈S [ xs → DupS (x :: xs)

dupthere : {x : X} {xs : ∞ (Stream X)} → DupS ([ xs) → DupS (x :: xs)

Membership, duplicates and finite length for colists Colists are “possibly infinite lists”, defined
coinductively as follows:

data Colist {X : Set} : Set where

[] : Colist X

_::_ : X → ∞ (Colist X) → Colist X

The membership relation and the predicate of duplicates are defined similarly to those for lists and
streams.
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data _∈C_ {X : Set} (x : X) : Colist X → Set where

here : {xs : ∞ (Colist X)} → x ∈C x :: xs

there : {y : X} {xs : ∞ (Colist X)} → x ∈C [ xs → x ∈C y :: xs

data DupC {X : Set} : Colist X → Set where

duphere : {x : X} {xs : ∞ (Colist X)} → x ∈C [ xs → DupC (x :: xs)

dupthere : {x : X} {xs : ∞ (Colist X)} → DupC ([ xs) → DupC (x :: xs)

A colist has finite length, if it is a list after all. Formally, a colist has finite length, if it satisfies the
following inductively defined predicate:

data _⇓ {X : Set} : Colist X → Set where

[] : [] ⇓
_::_ : (x : X) {xs : ∞ (Colist X)} → ([ xs) ⇓ → (x :: xs) ⇓
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