
Sam Lindley and Max S. New (Eds.): Eighth

Workshop on Mathematically Structured

Functional Programming (MSFP 2020)

EPTCS 317, 2020, pp. 1–17, doi:10.4204/EPTCS.317.1

c© Niels Voorneveld

This work is licensed under the

Creative Commons Attribution License.

From Equations to Distinctions:

Two Interpretations of Effectful Computations

Niels Voorneveld∗

niels.voorneveld@gmail.com

Tallinn University of Technology

There are several ways to define program equivalence for functional programs with algebraic effects.

We consider two complementing ways to specify behavioural equivalence. One way is to specify

a set of axiomatic equations, and allow proof methods to show that two programs are equivalent.

Another way is to specify an Eilenberg-Moore algebra, which generate tests that could distinguish

programs. These two methods are said to complement each other if any two programs can be shown

to be equivalent if and only if there is no test to distinguish them.

In this paper, we study a generic method to formulate from a set of axiomatic equations an

Eilenberg-Moore algebra which complements it. We will look at an additional condition which must

be satisfied for this to work. We then apply this method to a handful of examples of effects, including

probability and global store, and show they coincide with the usual algebras from the literature. We

will moreover study whether or not it is possible to specify a set of unary Boolean modalities which

could function as distinction-tests complementing the equational theory.

1 Introduction

Program equivalence is an active field of study, allowing us to formulate when two different programs

can be used interchangeably. This can be done in two ways. One can axiomatise which programs should

be considered equivalent, and derive a notion of program equivalence from those axioms. Alternatively,

one can formulate theoretical tests on programs, which check whether the program satisfies a certain

behavioural property. Two programs are then considered equivalent if they satisfy the same properties.

We consider such methods in the presence of functional languages with algebraic effects in the

sense of [17, 19, 20]. Effects describe interactions a program has with the outside world. Because

of possibly varying inputs from the outside world, the same program may produce different results at

different executions. This happens, for instance, if the program requests a random number, or reads off

information from a global store location. Different possible continuations of a program can be combined

using algebraic operators. E.g. we get program terms like prob(P,Q), which probabilistically chooses

fairly between executing program term P and program term Q.

Traditionally, behaviour of algebraic effects has been formulated using algebraic equations [18, 16].

One could for instance state that prob(P,P) = P and prob(P,Q) = prob(Q,P). In recent research based

on [11], modalities are used to formulate properties on computations that exhibit effectful behaviour

[23, 24, 15]. Using these modalities, Boolean predicates on sets of return values could be lifted to

Boolean predicates on algebraic expressions over such return values. For instance, one might test whether

the probability that a program returns an even number exceeds some threshold. These modalities are then

used as the foundation upon which a logic of program properties is constructed, specifying a notion of

behavioural equivalence for functional languages.

∗This research was supported by the ESF funded Estonian IT Academy research measure (project 2014-2020.4.05.19-0001).

http://dx.doi.org/10.4204/EPTCS.317.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 From Equations to Distinctions: Two Interpretations of Effectful Computations

In [25], such logics were generalised to quantitative logics built using quantitative modalities. In

most examples of effects, it is more natural to use a singular quantitative modality, given by Eilenberg-

Moore algebras (e.g. used in [10]), to describe effectful behaviour. This generalisation also enables us

to describe combinations of effects more easily.

We say that an Eilenberg-Moore algebra complements a set of equational axioms when they induce

the same relation on algebraic expressions over the natural numbers. This then extends to them specifying

the same notion of program equivalence on functional languages. For most examples of effects, an

Eilenberg-Moore algebra exists which complements the traditionally chosen set of axiomatic equations.

In this paper, we show that these algebras can be directly constructed from the algebraic relations on

algebraic expressions induced by the axiomatic equations, motivating their formulation in the literature.

In general, we construct from any set of equations an Eilenberg-Moore algebra. We show that this

algebra complements the set of equations if an additional, relatively weak, property is satisfied. If a

stronger property is satisfied, which does not hold for all examples, we can also generically generate a

set of Boolean modalities complementing the axiomatic equations.

In Section 2, we study algebraic expressions and algebraic relations given by effects in general, and

several examples in particular. In Section 3 we look at the complementing view on effects, Eilenberg-

Moore algebras, and how to construct them using algebraic relations. Section 4 discusses some extra

topics surrounding effect descriptions, after which we look at Boolean modalities in Section 5.

2 Operations and Equations

For each effect, we specify an effect signature of algebraic operations Σ, containing effect operators

op ∈ Σ with an associated arity ar(op) ∈N∪{N}. See Subsection 2.2 for examples.

Definition 2.1. An effect tree (henceforth tree), over a set X , determined by a signature Σ of effect

operators, is a labelled tree of possibly infinite depth, whose nodes have the following possible forms:

1. A leaf node labelled ⊥ (representing divergence).

2. A leaf node labelled ⊤ (representing success or termination).

3. A leaf node labelled 〈x〉 where x ∈ X .

4. A node labelled op with children t1, . . . , tm, when the operator op ∈ Σ has arity ar(op) = m. In this

case, we write the subtree at that node as op〈t1, . . . , tm〉.

5. A node labelled op with an infinite sequence t0, t1, . . . of children, when the operator op ∈ Σ has

arity ar(op) = N. We write the subtree at that node as op〈m 7→ tm〉 (we may use this notation for

the nodes described in point 4 too).

This definition varies slightly from effect trees used in [24, 25], with the addition of a top element ⊤.

We define a functor TΣ(−) on the category of sets, sending each set X to the set of trees TΣX over X

determined by Σ, and sending each function f : X →Y to the function T f : TΣX →TΣY replacing each leaf

〈x〉 of its input by 〈 f (x)〉. We will henceforth write T X instead of TΣX , leaving the underlying signature

Σ implicit. The functor T (−) determines a monad (T,η ,µ), where η(x) = 〈x〉, and µ flattens a double-

tree d ∈ T T X into a tree µd ∈ T X by replacing each leaf 〈t〉 of d by t as a subtree. Both η and µ are

natural transformations, satisfying the monad laws. For f : X → TY , define f ∗ := µ ◦T (f) : T X → TY .

Given a preorder (X ,≤X) we define an order on T X coinductively according to the following rules:

1. ∀t ∈ T X . ⊥≤TX t ≤TX ⊤.

Niels Voorneveld 3

2. ∀x,y ∈ X . x ≤X y =⇒ 〈x〉 ≤TX 〈y〉.

3. op〈m → tm〉 ≤TX r =⇒ ∃r1,r2, · · · ∈ T X s.t. (r = op〈m → rm〉∧∀m. tm ≤TX rm).

An order is ω-complete if it contains the supremum (limit) of any ascending sequence of elements.

If X is an ω-complete preorder, then T X is an ω-complete preorder. Note that if X has the discrete order,

it is ω-complete, and hence T X is ω-complete, and its order is specified by rules 1 and 3 only.

2.1 Equations and Inequations

We use the natural numbers N to describe a countable set of variables, and trees TN as the set of possibly

infinite algebraic expressions. An algebraic equation is simply the assertion that two expressions a,b ∈
TN are equal ‘a = b’, and an algebraic inequation is the assertion that two expressions a,b ∈ TN are

ordered ‘a ≤ b’. Both such statements can be seen as elements of (TN)2.

We study algebraic relations I ⊆ (TN)2 containing such assertions, in particular inequations, and

write a ⊑I b for (a,b) ∈ I . We study properties of I , given e.g. in [11, 13].

R. I is reflexive if for any a ∈ TN, then a ⊑I a.

T. I is transitive if for any a,b,c ∈ TN, a ⊑I b∧b ⊑I c =⇒ a ⊑I c.

If I satisfies R and T, then it is a preorder. The next two properties discuss substituting trees for variables

in the algebraic expressions, with compositionality from [11].

S. I is substitutional if ∀(a,b) ∈ I and f : N→ TN, f ∗(a)⊑I f ∗(b).

C. I is compositional if ∀(a,b) ∈I and f ,g : N→ TN, s.t. ∀n∈N. f (n)⊑I g(n), f ∗(a)⊑I g∗(b).

Note that reflexivity and compositionality together imply substitutionality. We consider two more prop-

erties, concerning the order ≤TN on TN.

O. I is ordered if ∀a,b ∈ TN. a ≤TN b =⇒ a ⊑I b.

A. I is admissible if for any two increasing sequences {an}n∈N and {bn}n∈N, if (∀n ∈ N. an ⊑I bn)
then

∨
n∈N an ⊑I

∨
n∈N bn (here

∨
n∈N cn is the limit/sumpremum of the sequence {cn}n∈N).

Note that if I is ordered, then ⊥⊑I a ⊑I ⊤ for any a ∈ TN. Moreover, if I is ordered, then it is

reflexive. We call an algebraic relation I complete if it satisfies all of the six properties given above,

though as noted it is enough to satisfy T, C, O and A. Note that ≤TN is a complete algebraic relation.

Given a set of axioms A ⊆ (TN)2, we define the resulting algebraic relation I (A) as the transitive,

compositional and admissible closure of the relation given by A∪ (≤TN). As such, I (A) is the smallest

complete relation containing A. See [13] for some more details on axiomatically defined preorders.

We consider the empty set 0 as a subset of N given by 0 = {}. As such, we see T 0 as the subset of

TN containing algebraic expressions without variables, only having ⊤ and ⊥ as leaves. In this paper, T 0

takes the place of the set unit type trees from [24] as the basis for studying effects1.

We consider one more property for algebraic relations.

Definition 2.2. I is base-valued if for any a,b ∈ TN:

(∀ f : N→ T 0. f ∗(a)⊑I f ∗(b)) =⇒ a ⊑I b .

The property asserts that the algebraic relation I is completely specified by its subset I ∩ (T 0)2,

which we call the base relation B.

1There is a bijection between the two sets, with the ⊤ leaf corresponding to the unit leaf. However, this bijection does not

preserve the order.

4 From Equations to Distinctions: Two Interpretations of Effectful Computations

2.2 Effect examples

We look at some examples of effects and their algebraic operations. Moreover, we will specify the usual

axiomatic equations given in the literature (e.g. in [18, 16]). For clarity, we will use variables x,y,z, . . .
instead of numbers when writing elements of TN, and we will often leave out the leaf-notation, writing

x instead of 〈x〉. For each example, I (A) turns out to be base-valued, but we omit the proofs.

Example 2.3 (Nondeterminism). We first consider the example of nondeterminism, where the effect sig-

nature Σ contains a single algebraic effect operator ‘nond’ of arity ar(nond) = 2. This operator chooses

between two possible continuations in a completely unpredictable manner, under control of a scheduler

which makes choices according to some unknown decision process. Because of its unpredictable nature,

no probability can be associated to the choices. As such, its equational axioms are given by idempotency,

symmetry and associativity:

nond(x,x) = x, nond(x,y) = nond(y,x), nond(x,nond(y,z)) = nond(nond(x,y),z).

Example 2.4 (Probability). We consider the example of probability, with one algebraic effect operator

‘prob’ with arity 2, which chooses between two continuations randomly, by fair choice. In this case, the

equational axioms are given by idempotency, symmetry together with two more axioms:

prob(x,x) = x, prob(x,y) = prob(y,x)

prob(prob(x,y),prob(z,w)) = prob(prob(x,z),prob(y,w)), µx.prob(y,x) = y.

Here, µx.prob(y,x) stands for the infinite tree t such that t = prob(y, t).

Example 2.5 (Global Store). We consider a global memory location which contains some natural num-

ber. Our effect signature Σ contains a lookup operator ‘lookup’ with arity N, which looks up the stored

natural number and continues the computation accordingly, and for each n ∈ N we have an update op-

erator ‘updaten’ which updates the stored number to an n (this can be generalised to multiple store

locations). We have the following equations as axioms, ranging over natural numbers n,m ∈N:

updaten(updatem(x)) = updatem(x), lookup(m 7→ x) = x, updaten(lookup(m 7→ xm)) = xn,

lookup(m 7→ updatem(xm)) = lookup(m 7→ xm).

Example 2.6 (Exception catching). This example is similar to the algebraic description of the jump ef-

fect from [8]. We consider a set of exceptions Exc, and for each e ∈ Exc we have an operator ‘exepte’

of arity 0 raising the exception, and an operator ‘catche’ of arity 2 catching that exception. The compu-

tation catche(P,Q) will execute the computation P, and if the exception e is raised by P, it continues by

executing the computation given by Q. We consider the following axiomatic equations:

catche(exepte,x) = x, catche(exeptd ,x) = exeptd if e 6= d, catche(x,x) = x,

catche(catche(x,y),z) = catche(x,catche(y,z)), catche(⊥,x) =⊥, catche(⊤,x) =⊤.

Example 2.7 (Input). We consider the situation in which a computation may ask for a binary input from

the user of the computer. This is modelled using a single operation ‘input’ of arity two, where input(P,Q)
is the computation which asks a binary input, and continues with P if the input is 0, and Q if the input

is 1. In this example, the entity giving the inputs can keep track of what choices are made. As a result,

we will not assume any axioms, since any two different trees of TN can be distinguished by testing their

evaluation with a particular sequence of inputs.

Niels Voorneveld 5

Example 2.8 (Cost). We consider the situation in which we associate a cost to computation, for instance

energy, time, or monetary cost necessary to evaluate a program. We consider a single tick operation ‘tick’

with arity one, where tick(P) evaluates P after a unit of cost has been paid. Elements of TN are given

by a sequence of ticks, which is either infinite, or results in ⊥, ⊤, or a natural number. We consider one

axiom, asserting that cheaper is better:
tick(x) ≤ x .

As a consequence, we can show that ⊥≤ tick(⊥)≤⊥, and hence tick(⊥) =⊥. Using admissibility, we

can prove that the algebraic expression given by an infinite sequence of ticks is equal to ⊥.

Example 2.9 (Nondeterminism + Probability). As a last example, we look at a combination of effects. As

signature we take Σ := {nond,prob} with two binary operators, and we assume the axiomatic equations

of the two effects from Examples 3.11 and 3.12 hold. Moreover, we state the following interaction law:

prob(x,nond(y,z)) = nond(prob(x,y),prob(x,z)) .

3 Eilenberg-Moore Algebras

On the opposite side of equations, we have distinctions. We will use Eilenberg-Moore algebras to specify

tests on algebraic expressions as done in [25]. If two expressions give us a different result for a test, we

consider them to be distinct.

Definition 3.1. Given a monad (M,η ,µ), an Eilenberg-Moore algebra (henceforth EM-algebra) is a

morphism α : MA → A on some carrier object A, such that the following two diagrams commute:

A
ηA

// MA

α
��

MMA
Mα

//

µA

��

MA

α
��

A
!!id

❇❇
❇
❇
❇
❇
❇❇

MA
α

// A

Given a preorder (A,E), and an algebra α : TA→ A on the tree functor T (−), we define a relation

⊑α ⊆ (TN)2 as follows:

a ⊑α b ⇐⇒ ∀h : N→ A.α(T (h)(a)) E α(T (h)(b))

We say that α complements I if ⊑α coincides with ⊑I . The algebra α complements a set of axiomatic

equations A, if α complements I (A).
Suppose α complements A. For any two algebraic expressions a,b ∈ TN, it is either possible to show

that a ⊑I (A) b using the axioms from A and proof rules such as compositionality and admissibility, or it

is possible to show that a 6⊑I (A) b using the EM-algebra α together with some test h : N→ A. As such,

we have both a method for showing equivalence, and for showing inequivalence.

Note that ⊑α is reflexive and transitive. We look at some other general results.

Lemma 3.2. If α is an EM-algebra, then ⊑α is substitutional.

Proof. Assume a ⊑α b, and take f : N→ TN, we need to show that f ∗(a)⊑α f ∗(b). Let h : N→A, then

(α ◦T h◦ f) : N→ A, and hence α(T (α ◦T h◦ f)(a)) E α(T (α ◦T h◦ f)(b)). Note that the following

diagram commutes:

TN
T f

//

f ∗ ##●
●●

●●
●●

● T TN
TT h

//

µN

��

T TA
Tα

//

µA

��

TA

α
��

TN
Th // TA

α // A

(1)

6 From Equations to Distinctions: Two Interpretations of Effectful Computations

Hence (α ◦T h◦ f ∗) (a) E (α ◦T h◦ f ∗) (b). So we have the desired result.

We call α monotone if it preserves order: ∀a,b ∈ TA. a ≤TA b =⇒ α(a)E α(b).

Lemma 3.3. If α is a monotone EM-algebra, then ⊑α is ordered and compositional.

Proof. Let a ≤TN b and h : N→ A, then T (h)(a) ≤TA T (h)(b) and hence by monotonicity of α we get

α(T (h)(a)) E α(T (h)(b)).
Assume a⊑α b, and take (f ,g) :N→TN s.t. ∀n. f (n)⊑α g(n), we need to show that f ∗(a)⊑α g∗(b).

Because of substitutivity, g∗(a)⊑α g∗(b), so with transitivity it is sufficient to show that f ∗(a)⊑α g∗(a).
Let h : N → A, so for all n ∈ N, α(T (h)(f (n))) E α(T (h)(g(n))). Hence T (α ◦ T h ◦ f)(a) ≤TA

T (α ◦T h◦g)(a), and since α is monotone:

α(T (α ◦T h◦ f)(a)) E α(T (α ◦T h◦g)(a)) .

Using diagram (1) from the previous lemma, we conclude that (α ◦T h ◦ f ∗) (a) E (α ◦T h ◦ g∗) (a),
and hence f ∗(a)⊑α g∗(a). We conclude that ⊑α is compositional.

Last but not least, we establish a sufficient condition for admissibility. Note that α is a morphism in

the category of ω-cpos precisely if A is ω-complete and α preserves limits of ascending sequences.

Lemma 3.4. If α : TA→ A is an EM-algebra in the category of ω-cpos, then ⊑α is admissible.

Proof. Let {ai}i∈N and {bi}i∈N be ascending sequences of trees from TN such that ∀i ∈N. ai ⊑α bi. Let

h : N→ A, then ∀i ∈N. α(T (h)(ai))E α(T (h)(bi)) and hence:

α(T (h)(
∨

i∈N

ai)) =
∨

i∈N

α(T (h)(ai))E
∨

i∈N

α(T (h)(bi)) = α(T (h)(
∨

i∈N

ai)) .

We conclude that
∨

i∈N ai ⊑α
∨

i∈N bi, so ⊑α is admissible.

3.1 From Equations to EM-algebras

We specified how we can extract a relation ⊑α on TN from an EM-algebra α . If this algebra forms a

morphism in the category of ω-cpos, the resulting relation is complete. We will now go in the other

direction, extracting an algebra from a relation on TN in a novel way. In particular, we will formulate an

EM-algebra using the relation ⊑I specified by I .

We denote by R the largest symmetric subset of a relation R. Remember that B = I ∩ (T 0)2.

Definition 3.5. The value space of I is given by [B] := {[a] | a ∈ T 0}, where [a] := {b ∈ T 0 | a B b}.

We have a function [−] : T 0 → [B] defined by a 7→ [a]. Note that by transitivity, (b ∈ [a]) ⇐⇒
(([a]∩ [b]) 6= /0) ⇐⇒ ([a] = [b]) ⇐⇒ (a B b). We define an order E on [B] where ([a] E [b]) :⇔
(a B b), which by transitivity of B is well-defined.

A choice function for [B] is a function c : [B]→ T 0 such that for all S ∈ [B], c(S) ∈ S. Note by the

above properties that for all S ∈ [B], [c(S)] = S. We specify an algebra αc : T [B]→ [B] as the function

which makes the following diagram commute:

T [B]
αc

//

T c

��

[B]

T T 0
µ0

// T 0

[−]

OO

Niels Voorneveld 7

Lemma 3.6. If I is reflexive, transitive and compositional, then for any two choice functions c and d,

αc is equal to αd .

Proof. Note that for any S ∈ [B], c(S) ∈ S and d(S) ∈ S, hence c(S) B d(S). Take some t ∈ T [B].
Note that the number of leaves of t is countable, hence we can find a tree k ∈ TN and a function f :

N→ [B] such that t = T (f)(k). Since k I k by reflexivity, and for each n ∈ N, c(f (n)) B d(f (n)), it

holds by compositionality that (c◦ f)∗(k) B (d ◦ f)∗(k). Hence αc(t) = [µ0(T (c)(t))] = [(c◦ f)∗(k)] =
[(d ◦ f)∗(k)] = [µ0(T (d)(t))] = αd(t).

Hence, αc is invariant under choice of c. From now on, we will fix a choice function c, and simply

write α for αc. We will show that α is an EM-algebra. First, we establish a useful lemma.

Lemma 3.7. If I is reflexive, transitive and compositional, then the following diagram commutes:

T [B]
αc

// [B]

T T 0
µ0

//

T [−]

OO

T 0

[−]

OO

Proof. This has a similar proof to the previous lemma. Take t ∈ T T 0, and define k ∈ TN and f :

N → T 0 such that t = T (f)(k). For all n ∈ N, f (n) B c([f (n)]) holds, hence by compositional-

ity, f ∗(k) B (c◦ [−]◦ f)∗(k). So [µ0(t)] = [f ∗(k)] = [(c ◦ [−] ◦ f)∗(k)] = [(c∗ ◦ T ([−]) ◦ T (f))(k)] =
[c∗ ◦T ([−])(t)] = α(T ([−])(t)).

Proposition 3.8. If I is reflexive, transitive and compositional, then α is an EM-algebra.

Proof. We use the monad laws together with definition of α and Lemma 3.7 to observe that the following

diagrams commute:

[B]

id

00

c

..

η[B] //

c

!!❈
❈
❈
❈
❈
❈
❈

T [B]

α

��

Tc{{✇✇
✇✇
✇✇
✇✇

T 0
ηT 0 //

id ""❊
❊❊

❊❊
❊❊

❊ T T 0

µ0

��
T 0

[−]

##●
●●

●●
●●

●●

[B]

T T [B]
Tα //

T Tc

$$❏
❏❏

❏❏
❏❏

❏❏

µ[B]

��

T [B]

α

��

T T T 0
T µ0 //

µT 0

��

T T 0

T [−]
;;✇✇✇✇✇✇✇✇

µ0

��
T T 0

µ0 // T 0
[−]

##●
●●

●●
●●

●●

T [B]
α //

Tc

::tttttttttt
[B]

Lemma 3.9. If I is reflexive, transitive and compositional, then for all a,b ∈ TN, a ⊑I b =⇒ a ⊑α b.

Proof. Assume that a ⊑I b, and let f :N→ [B], then c◦ f :N→ T 0. So by compositionality, (c◦ f)∗(a)
⊑I (c ◦ f)∗(b), hence (c ◦ f)∗(a) B (c ◦ f)∗(b), so we conclude that: α(T (f)(a)) = [(c◦ f)∗(a)] E
[(c◦ f)∗(b)] = α(T (f)(b)).

8 From Equations to Distinctions: Two Interpretations of Effectful Computations

To prove that the constructed EM-algebra complements the algebraic relation, we use a relation lift-

ing operation. Given a relation R ⊆ X ×Y , we define the lifted relation T 〈R〉 ⊆ T X ×TY coinductively

as follows:

1. ⊥ T 〈R〉 t =⇒ t =⊥, ⊤ T 〈R〉 t =⇒ t =⊤

2. 〈x〉 T 〈R〉 t =⇒ ∃y ∈ Y. t = 〈y〉∧ x R y.

3. op〈m 7→ tm〉 T 〈R〉 r =⇒ ∃{rm}m∈N. r = op〈m 7→ rm〉∧ (∀m. tm T 〈R〉 rm).

This can be seen as the functorial lifting of relations, and has the following two properties:

• ∀x ∈ X ,∀y ∈ Y. x R y =⇒ η(x) T 〈R〉 η(y).

• ∀a ∈ T T X ,b ∈ T TY. a T 〈T 〈R〉〉 b =⇒ µa T 〈R〉 µb.

Proposition 3.10. If I is reflexive, transitive, compositional and base-valued, then α complements I .

Proof. Assume that a ⊑α b, we prove that a ⊑I b using that I is base-valued, in order to conclude

using the previous lemma that α complements I .

Let f : N→ T 0, then ([−] ◦ f) : N → [B], hence α(T ([−] ◦ f)(a)) E α(T ([−] ◦ f)(b)). So we get

[µ(T (c ◦ [−] ◦ f)(a))] E [µ(T (c ◦ [−] ◦ f)(b))], and hence µ(T (c ◦ [−] ◦ f)(a)) B µ(T (c ◦ [−] ◦ f)(b)).
Note that for all t ∈ T 0, t B (c◦ [−])(t).

Hence for any k ∈ TN, T (f)(k) T 〈B〉 T (c◦ [−]◦ f)(k), so by compositionality, we derive that

f ∗(k) = µ(T (f)(k)) B µ(T (c◦ [−]◦ f)(k)). We conclude that:

f ∗(a) B µ(T (c◦ [−]◦ f)(a)) B µ(T (c◦ [−]◦ f)(b)) B f ∗(b) .

So by transitivity, f ∗(a) B f ∗(b). Hence by base-valuedness, a ⊑I b.

3.2 EM-algebras for the examples

We look at the examples of effects given in Subsection 2.2, and study what value spaces [B] and EM-

algebras α : T [B] → [B] they generate. For every example, the constructed EM-algebra satisfies the

following rules: α(⊥) = [⊥], α(⊤) = [⊤], α(〈a〉) = a for any a ∈ [B], and α(
∨

n∈N tn) =
∨

α(tn) for any

sequence t0 ≤T0 t1 ≤T0 t2 ≤T0 To complete the definition of the algebras in the following examples,

we will specify their behaviour over algebraic effect operators. These local functions together with the

above properties uniquely characterise the morphism α .

Example 3.11 (Nondeterminism). The first example is nondeterminism with the binary operation nond.

We study B as derived from the induced equational theory I (A), where A is given by the equations

from Example 3.11. We get three elements of [B], each denoting an equivalence class of B.

⊥. Any tree t ∈ T 0 without a ⊤-leaf is equivalent to ⊥.

♦. Any tree t ∈ T 0 with at least one ⊤-leaf, which moreover either has a ⊥ leaf or is infinite, is

equivalent to nond(⊤,⊥).

⊤. Any tree t ∈ T 0 which is finite and only has ⊤-leaves, is equivalent to ⊤.

If we write ♦ for nond(⊤,⊥), the ordered set [B] is given by {[⊥]E [♦]E [⊤]}.

We give some informal arguments for the above observations. Note first that:

⊥≤T0 nond(⊤,⊥)≤T0 ⊤,

Niels Voorneveld 9

which proves the given ordering. Now consider a finite tree t ∈ T 0. If t only has one type of leaf,

consequetive application of the idempotency axiom reduces that tree to just that leaf. If t has both ⊤ and

⊥ leaves, applying symmetry and transitivity can change the tree to one of the form nond(l,r), where l

only has ⊤ leaves, and r only ⊥-leaves. So t can be reduced to ♦ with idempotency. Now consider an

infinite tree t ∈ T 0, and let t0 ≤T0 t1 ≤T0 t2 ≤T0 . . . be a sequence of finite trees approximating t. If t only

has ⊥ leaves, all finite approximations only have ⊥ leaves, and each ti is equal to ⊥. So by admissibility,

t =
∨

n∈N tn B ⊥. If t has at least one ⊤ leaf, all finite approximations have at least one ⊥-leaf (by

studying ≤T0). Moreover, there must be an n ∈ N such that for all m ≥ n, tm has a ⊤-leaf, so tm B ♦.

Hence t B
∨

n∈N tn B ♦. We conclude that all trees must be equal to either ⊥, ⊤ or ♦.

The induced EM-algebra α : T [B] → [B] corresponds to the algebra operation given in [3], with

α(nond(a,a)) = a and α(nond(a,b)) = [♦] for any a,b ∈ [B] such that a 6= b.

Example 3.12 (Probability). We study I (A) resulting from Example 2.4. Consider the real number

interval [0,1], and the function P : T 0 → [0,1] satisfying the following rules P(⊥) = 0, P(⊤) = 1,

P(prob(l,r)) = (P(l) + P(r))/2, and P(
∨

n∈N tn) = limn→∞P(tn) for any ascending sequence t0 ≤T0

t1 ≤T0 t2 ≤T0 For any two elements a,b ∈ T 0, a B b holds if and only if P(a) ≤ P(b). More-

over, P is surjective2. Hence [B] can be expressed as [0,1], where [−] : T 0 → [B] is given by P. The

induced EM-algebra α : T [0,1]→ [0,1] calculates the expected result, where α(prob(a,b)) = (a+b)/2.

Example 3.13 (Global Store). The above two examples are standard in the literature, and do not explic-

itly use that element ⊤ is the top element of T 0. In the case of global store however, this fact is important.

We study I = I (A) resulting from Example 2.5.

Note that updaten(⊥) ≤TN updaten(updatem(⊥)) I updatem(⊥). Hence for any two natural

numbers n,m ∈N, updaten(⊥) I updatem(⊥) . So:

⊥ I lookup(m 7→ ⊥) I lookup(m 7→ updatem(⊥)) I lookup(m 7→ updaten(⊥)) I updaten(⊥) .

With similar reasoning, updaten(⊤) I ⊤. We derive that for any tree t ∈ TN, there is a function

f : N→ ({updatem(〈n〉) | n,m ∈ N}∪{⊥,⊤}) such that t I lookup(m 7→ f (m)).
Studying B in particular, we see that each a∈ T 0 is equivalent to lookup(m 7→ f (m)) for some unique

function fa : N → {⊥,⊤}. For a,b ∈ TN, a B b holds if and only if for any m ∈ N, (fa(m) =⊤) ⇒
(fb(m) = ⊤). Note moreover that for any function f : N → {⊥,⊤}, there is an element a ∈ TN such

that fa = f . So, [B] can be expressed as the powerset P(N), where [a] := {n ∈N | fa(n) =⊤}, and the

order is given by inclusion. We see this powerset as the set of assertions on the global state.

The induced EM-algebra α : TP(N)→ P(N) calculates the weakest precondition: it gives the set

of starting sates for which the tree reaches a leaf 〈A〉 with a final state s satisfying the assertion A.

Example 3.14 (Exception catching). We look at B resulting from Example 2.6. Note that any element of

T 0 is, under B, equivalent to one of the following three types of trees: ⊥,⊤ or exepte for some e ∈ Exc.

The elements are ordered in the following way:

∀e ∈ Exc. [⊥] E [exepte] E [⊤] .

There is no ordering between exepte and exeptd if e 6= d. The induced EM-algebra α is defined by

α(exepte) = [exepte].

Example 3.15 (Input). We look at the input effect as given in Example 2.7. We did not specify any

axioms there, which can be motivated from the perspective of testing distinctions. A test of an input

2Since rationals with power 2 denominators are dense in the real numbers.

10 From Equations to Distinctions: Two Interpretations of Effectful Computations

program would be checking a series of inputs until either: a) the program terminates successfully (marked

by ⊤), or b) the program stops asking for inputs because of divergence (marked by ⊥). Since there are

no axioms, B is given by ≤T0, [B] is given by T 0, and the constructed EM-algebra α is given by the

function µ0 : T T 0 → T 0.

Example 3.16 (Cost). We look at B for the cost effect given in Example 2.8. Considering the observa-

tions made there, we see that [B] is given by the set containing:

[⊤] D [tick(⊤)] D [tick(tick(⊤))] D [tick(tick(tick(⊤)))] D . . . D [⊥] .

We can represent A = [B] as N∞ = N∪ {∞} with reverse order. The constructed EM-algebra is α :

TN∞ → N∞, where α(tick(t)) = α(t)+1 and α applied to the infinite sequence of ticks gives ∞.

Example 3.17 (Nondeterminism + Probability). We look at the induced EM-algebra for the combination

of effects given in Example 2.9, which coincides with a description from [13]. The value space is given by

[B] = {(a,b)∈ [0,1]2 | a≤ b}, and the EM-algebra α by α(nond((a,b),(c,d))) = (min(a,c),max(b,d))
and α(prob((a,b),(c,d))) = ((a+ c)/2,(b+d)/2). E.g. α(prob(⊤,nond(⊤,⊥))) = (1/2,1).

4 Notes on logic and equivalence

In this section we will look at some more connections with the quantitative logic from [25] used to

specify behavioural equivalence. In particular, we will look at two topics discussed in that paper.

4.1 Relators

In proving that the behavioural equivalence given by an EM-algebra is a congruence, the paper [25] made

essential use of a connection with applicative bisimilarity [1]. Applicative bisimilarity gives us a tech-

nique for proving equivalence between higher-order functional programs. In [5], applicative bisimilarity

is defined for effectful programs using relators. We will briefly look at how we can derive such a relator

from algebraic relations and EM-algebras.

Definition 4.1 ([12, 5]). A relator Γ for a monad M is a family of operations, giving for each pair of sets

X , Y , a function ΓX ,Y sending relations R ⊆ X ×Y to relations Γ(R)⊆ MX ×MY , such that:

(1) =MX⊆ Γ(=X), (2) Γ(R)Γ(S)⊆ Γ(RS), (3) R ⊆ S ⇒ Γ(R)⊆ Γ(S),

(4) ∀ f : X → Z,g : Y →W,R ⊆ Z ×W. Γ({(x,y) | f (x) R g(y)}) = {(a,b) | M(f)(a)Γ(R)M(g)(b)}

For instance, T 〈−〉 defined at the end of Subsection 3.1 is a relator. We give two ways of constructing a

relator.

Firstly, given a complete algebraic relation I , we define the operation ΓI for the monad T (−) as

follows: For any two sets X and Y , relation R ⊆ X ×Y , and elements a ∈ T X and b ∈ TY , a ΓI
X ,Y (R) b

holds if and only if for any two functions f : X → T 0,g : Y → T 0:

(∀x ∈ X ,y ∈Y,x R y ⇒ f (x) ⊑I g(y)) =⇒ f ∗(a)⊑I g∗(b) .

Secondly, given an Eilenberg-Moore algebra α : TA→A, we define the operation Γα for the monad

T (−) as follows: For any two sets X and Y , relation R ⊆ X ×Y , and elements a ∈ T X and b ∈ TY ,

a Γα
X ,Y (R) b holds if and only if for any two functions f : X → A,g : Y → A:

(∀x ∈ X ,y ∈ Y,x R y ⇒ f (x)E g(y)) =⇒ α(T f (a)) E α(T g(b)) .

Γα = ΓI if I is complete. Moreover, I is base-valued precisely when ΓI (idN) = I .

Niels Voorneveld 11

Lemma 4.2. If A is a complete lattice, and α : TA→A is a monotone EM-algebra, then Γα is a relator.

This lemma holds for all of the given examples. If moreover α is a morphism in the category of

ω-cpos, then Γα satisfies the additional properties required in [5] in order to use Howe’s method and

prove that applicative bisimilarity is compatible. As such, A is required to be a complete lattice by the

theory developed in [25]. This is the case in all our examples.

4.2 Involutions

In [25], a quantitative logic is defined with the intention to specify a behavioural equivalence. One

optional ingredient in that definition is the notion of negation, an involution on the carrier set A of the

Eilenberg-Moore algebra. Given how trees are formulated in this paper, with the addition of a top element

⊤, there is a natural candidate for an involution function on T 0.

A function f : X → X on a preorder X is an involution if, a) for all x ∈ X , f (f (x)) = x, and b) for all

x,y ∈ X , x ≤ y holds if and only if f (y) ≤ f (x). Note in particular that N with the discrete ordering has

the identity function as an involution, and 0 has a trivial involution. Given a preorder X with involution

f , we let ¬(−) : T X → T X be the function that takes a tree t ∈ T 0, and produces a tree of the same shape

by doing the following two alterations:

• Replace each leaf of t labelled ⊤ with a leaf labelled ⊥, and vice versa.

• Replace each leaf of t labelled x ∈ X , with a leaf labelled f (x).

Note that ¬(−) gives an involution on T X with respect to the tree ordering ≤TX . In particular, T 0 and

TN have an involution.

In order for ¬ to induce an involution on [B], we need I to preserve involutions:

Definition 4.3. I ⊆ (TN)2 preserves involutions if ∀a,b ∈ TN. a ⊑I b ⇔¬b ⊑I ¬a.

We call the inequation ¬b ⊑I ¬a the involution-complement of a ⊑I b. If I preserves involutions,

then the function f : [B]→ [B] given by [t] 7→ [¬t] is well-defined and hence gives an involution on [B].
Unfortunately though, for all but the input example, ¬ does not give an involution on [B].

For the cost example, the ¬ does not give an involution because N∞ simply does not have an involu-

tion. Remember the asserted axiom (tick(x) ≤ x) ∈ A ⊆ I , and note that its complement (x ≤ tick(x))
is not contained in I . Hence, in order to get a proper involution, we need the I to preserve involutions

(at least on finite trees). This is however impossible for this example.

For nondeterminism too, ¬ does not give an involution on [B]. This is curious, since its axioms are

closed under involution-complement. Moreover, [B] = {⊥,♦,⊤} does have an obvious candidate for

an involution. The problem is our treatment of infinite trees. Consider the tree t = µx.nond(x,x), the

infinite binary tree without any leaves. By admissibility, t is equal to ⊥. However, ¬t = t and ¬⊥ =⊤,

hence I does not preserve involutions.

The same problem occurs for examples like probability and global store. However, as in the case of

nondeterminism, ¬ does give a natural notion of involution on finite trees:

• For probability, we get ¬ : [0,1]→ [0,1] sending p to 1− p.

• For global store, we get ¬ : P(N)→ P(N) sending S to its complement N−S.

It may be possible to extend this definition to infinite trees, circumventing the above mentioned issue,

using approximations to change how ¬ operates on infinite trees. This is a potential subject for future

research.

12 From Equations to Distinctions: Two Interpretations of Effectful Computations

5 Extracting Boolean predicates

In [24], effectful behaviour is described using Boolean modalities. In this section, we will see how

we can extract a collection of Boolean modalities from an EM-algebra, and study when this collection

correctly characterises that EM-algebra and its induced behavioural equivalence.

Here we define a Boolean modality o on an effect signature Σ in a slightly different way from [24],

in order for it to fit more naturally in the current framework. We specify o using a map JoK : T B → B,

where B are the Booleans: the two element set {F,T} with an order ‘⇛’ defined by F ⇛ T. For any

predicate P : X → B and modality o we define a predicate o(P) : T X → B denoted by JoK◦T P. Given a

set of modalities O we define a relation ⊑O ⊆ TN as follows:

l ⊑O r : ⇐⇒ ∀v : N→ B,∀o ∈ O. o(v)(l)⇛ o(v)(r) .

We construct a set of Boolean modalities from an EM-algebra α using two ingredients:

• Suppose X is a set with an ω-complete preorder ≤. A predicate P : X → B is open with respect

to ≤ if for any ascending sequence of elements a0 ≤ a1 ≤ a2 ≤ . . . such that ∀n ∈ N.P(an) = F,

P(
∨

n∈N an) = F. For instance, in case that X = [0,1], the open predicates are given by tests Pr(a) =
T ⇐⇒ a > r where r is some real number.

• Given a preorder X with minimum element ⊥∈ X , and given an element v ∈ X , we define v′ : B →
X to be the function sending T to v and F to ⊥. We then define v̂ := T v′ : T B → T X .

Consider an EM-algebra α : TA→ A, where A is a complete lattice with order E.

Definition 5.1. Given an open predicate P : A→ B and v ∈ A, we define a Boolean modality (P,v) with

denotation J(P,v)K = (P◦α ◦ v̂) : T B → B. We define Oα := {(P,v) | v ∈ A,P : A→ B open w.r.t. E}.

T B
J(P,v)K

//

v̂
��

B

TA
α

// A

P

OO

Note that the EM-algebra α defined in 3.1 factors through the function T c : TA→ T T 0, choosing

for each element a ∈ A an appropriate element c(a) ∈ T 0. In this case, we see that the function T c ◦ v̂

assigns to T a continuation c(v). Secondly, suppose I is complete (hence admissible). Then B is an

ω-complete preorder, and the function P◦ [−] : T 0 → B is a predicate on T 0 which is open with respect

to the order B. This motivates the following alternative definition.

Definition 5.2. Given a predicate P : T 0 → B open w.r.t. B, and continuation t ∈ T 0, we define a

Boolean modality (P, t) with denotation J(P, t)K = (P ◦µ0 ◦ t̂) : T B → B. We define OI := {(P, t) | t ∈
T 0,P : T 0 → B open w.r.t. the order B}.

T B
J(P,t)K

//

t̂
��

B

T T 0
µ0

// T 0

P

OO

Given the discussion from before, the following lemma is evident.

Lemma 5.3. The sets of functions {JoK | o ∈ OαI
} and {JoK | o ∈ OI } coincide.

Niels Voorneveld 13

In particular, this means that ⊑O induced by OI and ⊑O induced by Oα are identical. Let us look at

the order ⊑O given by O = Oα .

Lemma 5.4. For any l,r ∈ TN:

l ⊑O r ⇐⇒ ∀v ∈ A, f : N→ {
∨

/0,v}. α(T f (l))E α(T f (r)) .

Proof. Note that for a,b ∈A, a E b if and only if P(a)⇛ P(b) for any open predicate P : A→ B. This is

because open predicates preserve order, and the predicate Pb : A→ B defined by Pb(c) = F ⇐⇒ (c E b)
is an open predicate. The result follows by unfolding the definition of ⊑O .

Given the above lemma, not all complete base-valued algebraic relations on TN can be expressed

as ⊑O for some set of Boolean modalities O . As such, not all equational theories can be properly

represented using Boolean modalities. More concretely, it is not always the case that ⊑O is equal to ⊑I .

In such cases, we should stick to the EM-algebra as a tool for specifying distinctions for the algebraic

relation. Later on, we will investigate this issue with Boolean modalities for two specific examples. First,

we look at two examples for which this is not a problem.

5.1 Examples

Example 5.5 (Global store). We will start with the example of global store from Examples 2.5 and

3.13, as it most clearly conveys the use of the two ingredients for constructing Boolean modalities.

Firstly, each open predicate P : P(N)→ B, if not constantly F, is specified by a finite set f ⊂ N where

P(S) = T ⇐⇒ f ⊆ S. Given a value v ∈ A= P(N), we write (f 7→ v) for the modality (P,v), where P

is specified by the finite set f . The following statements hold:

• J(f 7→ v)K(〈F〉) = F.

• J(f 7→ v)K(〈T〉) = T ⇐⇒ f ⊆ v.

• J(f 7→ v)K(updatem(t)) = J({m} 7→ v)K(t).

• J(f 7→ v)K(lookup(m 7→ tm)) = T ⇐⇒ ∀n ∈ f . J({n} 7→ v)K(tn) = T.

We interpret (f 7→ v) as a test on trees, using a precondition and postcondition: for any starting state n

satisfying assertion f , the computation terminates with leaf T and a final state satisfying assertion v. This

naturally generalises to cases where there is a finite number of global store locations.

Example 5.6 (Probability). In the case of probability from Examples 2.4 and 3.12, the second ingredient

for constructing Boolean modalities is redundant. However, this case does illustrate the importance of

using open predicates, to ensure that the modalities are Scott-open (a requirement from [23, 24]). As

noted before, open predicates on [0,1] are given by tests Pr : [0,1]→ B such that Pr(a) = T ⇐⇒ a > r,

where r is some real number. For any v ∈ [0,1]:

• J(Pr,v)K(〈F〉) = T ⇐⇒ r < 0.

• J(Pr,v)K(〈T〉) = T ⇐⇒ r < v.

• J(Pr,v)K(prob(l,r)) = T ⇐⇒ ∃a,b∈R. (a+b)/2 ≥ r ∧ J(Pa,v)K(l) =T ∧ J(Pb,v)K(r) =T.

Note that (Pr,v)(t) = (Pr/v,1)(t) if v 6= 0, and (Pr,0)(t) = T ⇐⇒ r < 0.

14 From Equations to Distinctions: Two Interpretations of Effectful Computations

5.2 Representability

We will now study which algebraic relations I can be specified by a set of Boolean modalities.

Definition 5.7. I is single-valued if for any a,b ∈ TN:

(∀ f : N→{⊥,〈0〉} ⊆ TN. f ∗(a)⊑I f ∗(b)) =⇒ a ⊑I b .

Lemma 5.8. Let I be a complete base-valued algebraic relation and let O := OI , then I is single-

valued if and only if ⊑O=⊑I .

Proof. Let α be the EM-algebra αI and O = OI . By Lemma 5.4 we derive that:

a ⊑O b ⇐⇒ ∀v ∈ A,∀ f : N→{
∨

/0,v}. α(T f (a)) E α(T f (b))

⇐⇒ ∀ f : N→{⊥,〈0〉},∀v ∈ A,∀g : N→{
∨

/0,v}. α(T g(f ∗(a))) E α(T g(f ∗(b)))

⇐⇒ ∀ f : N→{⊥,〈0〉}. f ∗(a) ⊑O f ∗(b) .

So if ⊑O= ⊑I , then I is single-valued. Assume that I is single-valued. Using that I is also base-

valued, we do the following derivation.

a ⊑O b ⇐⇒ ∀P : N→ B,o ∈ OI . o(P)(a)⇛ o(P)(b)

⇐⇒ ∀P : N→ B,∀t ∈ T 0,∀K : T 0 → B open w.r.t. I . (K ◦µ0 ◦ t̂)(T P(a))⇛ (K ◦µ0 ◦ t̂)(T P(b))

⇐⇒ ∀P : N→ B,∀t ∈ T 0. (µ0 ◦ t̂)(T P(a))⊑I (µ0 ◦ t̂)(T P(b))

⇐⇒ ∀ f : N→{⊥,〈0〉},∀g : N→ T 0. g∗(f ∗(a)) ⊑I g∗(f ∗(b))

⇐⇒ ∀ f : N→{⊥,〈0〉}. f ∗(a)⊑I f ∗(b)

⇐⇒ a ⊑I b .

The examples of global store and probability are single-valued. However, not all equational theories

are single-valued. Consider for instance the combination of nondeterminism with probability.

Example 5.9 (Nondeterminism + Probability). We look at the combination of effects given in Exam-

ples 2.9 and 3.17, and let I be the smallest complete single-valued relation containing the axioms from

that example. We derive that I contains an undesirable algebraic equation.

Lemma 5.10. Let I be as above, then I contains the algebraic equation:

prob(nond(x,y),nond(x,z)) = nond(x,prob(y,z))

Proof. We use single-valuedness to prove the equation. We check all possible substitutions, leaving out

two cases because of symmetry, and unifying the four cases where y = z using arbitrary a,b ∈ {⊥,0}.

x y z prob(nond(x,y),nond(x,z)) nond(x,prob(y,z))

a b b pr(no(a,b),no(a,b)) = no(a,b) = no(a,pr(b,b))
⊥ 0 ⊥ pr(no(⊥,0),no(⊥,⊥)) = pr(⊥,no(⊥,0)) = no(pr(⊥,⊥),pr(⊥,0)) = no(⊥,pr(0,⊥))
0 0 ⊥ pr(no(0,0),no(0,⊥)) = pr(0,no(0,⊥)) = no(pr(0,0),pr(0,⊥)) = no(0,pr(0,⊥))

Informally, the equation from above asserts that the scheduler controlling nondeterministic choice knows

how future probabilistic choices will be resolved. Other undesirable equations can be derived from this.

Niels Voorneveld 15

Another problematic example is the combination of nondeterminism and global store, which we shall

not discuss here. As a last example, we look at exception catching.

Example 5.11 (Exception Catching). We cannot represent exception catching from Example 3.14 with

Boolean modalities. This is evident from the following lemma.

Lemma 5.12. Assume I is complete, single-valued, and contains the axiomatic equations from Exam-

ple 3.14, then ⊑I = (TN)2.

Proof. We first use single-valuedness to prove that catche(x,y) ≤ x:

x y catche(x,y) x

⊥ ⊥ catche(⊥,⊥) = ⊥
0 ⊥ catche(0,⊥) ≤ catche(0,0) = 0

⊥ 0 catche(⊥,0) = ⊥
0 0 catche(0,0) = 0

If we substitute exepte for x, and ⊤ for y, we get ⊤ = catche(exepte,⊤) ≤ exepte ≤ ⊤ and hence ⊤ =
exepte. So ⊤= catche(⊤,x) = catche(exepte,x) = x, and we conclude that everything is equal to ⊤.

If there are multiple exceptions, we could have avoided the use of ⊤ in the above proof. As such, the

problem remains in a setting where we do not use a top element.

6 Conclusions

Comparing the theory presented in this paper with the established literature [24, 25], a main difference is

the addition of a top element ⊤ in the definition of effect trees T X , and the accommodated focus on T 0

as an alternative to T{∗}. If instead, we generated our EM-algebra from the latter structure, the resulting

value space [B] would not be a complete lattice for some of the usual examples. A complete lattice is

necessary for formulating program equivalence for higher-order functions, as quantitative formulas from

[25] need to be closed under suprema in general, and relators are formulated more easily using suprema

(see Lemma 4.2).

For instance, for global store the value constructed from the algebraic axioms is [B] = P(N),
whereas an alternative construction on T{∗} yields as value space the set of partial functions from N

to N, which is not a complete lattice.

One of the main motivations for this work was to more closely compare the two complementing views

of specifying program equivalence: determining equality, and determining distinctness (inequality). The

developed theory will hopefully give rise to practical proof methods for showing program equivalence

and non-equivalence. Moreover, there might be some semi-decidability results in the sense of [6], or

even decidability results in the absence of general recursion.

Although this paper only studies equivalence between effectful expressions at base types N and 0,

it is done so with the expectation that we can extend it to a description of program equivalence on

functional languages with higher-order types. On the one hand, the EM-algebra is used as a basis to

formulate a quantitative logic of behavioural properties in [25], which are used to describe differences

between inequivalent functional programs. On the other hand, applicative bisimilarity is used in order

to prove equivalence between higher-order programs, using the relator formulated in Subsection 4.1 in

the definition of effectful applicative bisimilarity from [5]. Further up-to techniques could potentially be

utilised to prove equivalence of terms even more easily [21, 22, 4].

Last but not least, it would make sense to use EM-algebras for formulating quantitative relations

between programs, e.g. metrics [2, 7, 14, 9]. This is a potential subject for future research.

16 From Equations to Distinctions: Two Interpretations of Effectful Computations

References

[1] Samson Abramsky (1990): The lazy λ -calculus. Research Topics in Functional Programming, pp. 65–117.

[2] André Arnold & Maurice Nivat (1980): Metric interpretations of infinite trees and semantics

of non deterministic recursive programs. Theoretical Computer Science 11(2), pp. 181 – 205,

doi:10.1016/0304-3975(80)90045-6.

[3] Ingo Battenfeld, Klaus Keimel & Thomas Streicher (2014): Observationally-induced Algebras in Domain

Theory. Logical Methods in Computer Science 10(3:18), pp. 1–26, doi:10.2168/lmcs-10(3:18)2014.

[4] Ugo Dal Lago & Francesco Gavazzo (2019): Effectful Normal Form Bisimulation. In: Programming Lan-

guages and Systems, Springer International Publishing, pp. 263–292, doi:10.1007/978-3-030-17184-1 10.

[5] Ugo Dal Lago, Francesco Gavazzo & Paul B. Levy (2017): Effectful Applicative Bisimilarity: Monads,

Relators, and the Howes Method. Logic in Computer Science, pp. 1–12, doi:10.1109/lics.2017.8005117.

[6] Martn Escard (2009): Semi-decidability of May, Must and Probabilistic Testing in a Higher-type Setting.

Electronic Notes in Theoretical Computer Science 249, pp. 219 – 242, doi:10.1016/j.entcs.2009.07.092. Pro-

ceedings of the 25th Conference on Mathematical Foundations of Programming Semantics (MFPS 2009).

[7] Martn Hötzel Escardó (1999): A metric model of PCF. In: Workshop on Realizability Semantics and Appli-

cations.

[8] Marcelo Fiore & Sam Staton (2014): Substitution, Jumps, and Algebraic Effects. In: Proceedings of

the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth

Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, pp. 41:1–41:10,

doi:10.1145/2603088.2603163.

[9] Francesco Gavazzo (2018): Quantitative Behavioural Reasoning for Higher-order Effectful Programs: Ap-

plicative Distances. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2018, pp. 452–461, doi:10.1145/3209108.3209149.

[10] Ichiro Hasuo (2015): Generic Weakest Precondition Semantics from Monads Enriched with Order. Theoret-

ical Computer Science 604(C), pp. 2–29, doi:10.1016/j.tcs.2015.03.047.

[11] Patricia Johann, Alex Simpson & Janis Voigtlnder (2010): A Generic Operational Metatheory for Algebraic

Effects. In: Proceedings of Logic in Computer Science (LICS’10), pp. 209–218, doi:10.1109/lics.2010.29.

[12] Paul Blain Levy (2011): Similarity Quotients as Final Coalgebras. In: Foundations of Software Science and

Computational Structures, Springer Berlin Heidelberg, pp. 27–41, doi:10.1007/978-3-642-19805-2 3.

[13] Aliaume Lopez & Alex Simpson (2018): Basic Operational Preorders for Algebraic Effects in General,

and for Combined Probability and Nondeterminism in Particular. In: 27th EACSL Annual Conference on

Computer Science Logic, CSL 2018, pp. 29:1–29:17, doi:10.4230/LIPIcs.CSL.2018.29.

[14] Radu Mardare, Prakash Panangaden & Gordon D. Plotkin (2016): Quantitative Algebraic Reasoning. In:

Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, pp. 700–

709, doi:10.1145/2933575.2934518.

[15] Cristina Matache & Sam Staton (2019): A Sound and Complete Logic for Algebraic Effects. In: Lecture Notes

in Computer Science, Springer International Publishing, pp. 382–399, doi:10.1007/978-3-030-17127-8 22.

[16] Gordon D. Plotkin (1983): Domains. Course notes.

[17] Gordon D. Plotkin & John Power (2001): Adequacy for Algebraic Effects. Foundations of Software Science

and Computation Structures, pp. 1–24, doi:10.1007/3-540-45315-6 1.

[18] Gordon D. Plotkin & John Power (2002): Notions of Computation Determine Monads. In: Proceedings of the

5th International Conference on Foundations of Software Science and Computation Structures, pp. 342–356,

doi:10.1007/3-540-45931-6 24.

[19] Gordon D. Plotkin & John Power (2003): Algebraic Operations and Generic Effects. Applied Categorical

Structures 11, pp. 69–94, doi:10.1023/A:1023064908962.

http://dx.doi.org/10.1016/0304-3975(80)90045-6
http://dx.doi.org/10.2168/lmcs-10(3:18)2014
http://dx.doi.org/10.1007/978-3-030-17184-1_10
http://dx.doi.org/10.1109/lics.2017.8005117
http://dx.doi.org/10.1016/j.entcs.2009.07.092
http://dx.doi.org/10.1145/2603088.2603163
http://dx.doi.org/10.1145/3209108.3209149
http://dx.doi.org/10.1016/j.tcs.2015.03.047
http://dx.doi.org/10.1109/lics.2010.29
http://dx.doi.org/10.1007/978-3-642-19805-2_3
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.29
http://dx.doi.org/10.1145/2933575.2934518
http://dx.doi.org/10.1007/978-3-030-17127-8_22
http://dx.doi.org/10.1007/3-540-45315-6_1
http://dx.doi.org/10.1007/3-540-45931-6_24
http://dx.doi.org/10.1023/A:1023064908962

Niels Voorneveld 17

[20] Gordon D. Plotkin & John Power (2004): Computational Effects and Operations: An Overview. Electronic

Notes in Theoretical Computer Science 73, pp. 149–163, doi:10.1016/j.entcs.2004.08.008.

[21] Davide Sangiorgi (2011): Introduction to Bisimulation and Coinduction. Cambridge University Press, Cam-

bridge, UK, doi:10.1017/cbo9780511777110.

[22] Davide Sangiorgi & Jan Rutten, editors (2011): Advanced Topics in Bisimulation and Coinduction.

Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK,

doi:10.1017/CBO9780511792588.

[23] Alex Simpson & Niels Voorneveld (2018): Behavioural Equivalence via Modalities for Algebraic Effects.

In: Programming Languages and Systems (ESOP 2018), pp. 300–326, doi:10.1007/978-3-319-89884-1 11.

[24] Alex Simpson & Niels Voorneveld (2020): Behavioural Equivalence via Modalities for Algebraic Effects.

ACM Trans. Program. Lang. Syst. 42, doi:10.1145/3363518. 45 pages.

[25] Niels Voorneveld (2019): Quantitative Logics for Equivalence of Effectful Programs. 347, pp. 281 – 301,

doi:10.1016/j.entcs.2019.09.015. Proceedings of the Thirty-Fifth Conference on the Mathematical Founda-

tions of Programming Semantics.

http://dx.doi.org/10.1016/j.entcs.2004.08.008
http://dx.doi.org/10.1017/cbo9780511777110
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1007/978-3-319-89884-1_11
http://dx.doi.org/10.1145/3363518
http://dx.doi.org/10.1016/j.entcs.2019.09.015

	1 Introduction
	2 Operations and Equations
	2.1 Equations and Inequations
	2.2 Effect examples

	3 Eilenberg-Moore Algebras
	3.1 From Equations to EM-algebras
	3.2 EM-algebras for the examples

	4 Notes on logic and equivalence
	4.1 Relators
	4.2 Involutions

	5 Extracting Boolean predicates
	5.1 Examples
	5.2 Representability

	6 Conclusions

