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Modelling complex information systems often entails the need for dealing with scenarios of incon-

sistency in which several requirements either reinforce or contradict each other. In this kind of

scenarios, arising e.g. in knowledge representation, simulation of biological systems, or quantum

computation, inconsistency has to be addressed in a precise and controlled way. This paper gener-

alises Belnap-Dunn four-valued logic, introducing paraconsistent transition systems (PTS), endowed

with positive and negative accessibility relations, and a metric space over the lattice of truth values,

and their modal logic.

1 Introduction

Context and motivation. Different sort of many-valued logics have been proposed to reason about

modelling contexts in which the classical bivalent distinction is not enough, in particular to capture

vagueness or uncertainty. Residuated lattices, adding a commutative monoidal structure to a complete

lattice such that the monoid composition has a right adjoint, the residue, provide the semantic universe

for such logics. A suitable choice of the lattice carrier, which stands for the set of truth values, does the

job — a typical example being the real [0,1] interval. Reference [3] explores, in a systematic way, the

modal extensions of many-valued logics whose Kripke frames are defined over (variants of) residuated

lattices.

In a number of situations, however, this is not yet the whole picture. Often, indeed, there is also

a need to deal simultaneously with what could be called positive and negative accessibility relations,

one weighting the possibility of a transition to be present, the other weighting the possibility of being

absent. In most real situations such weights are not complementary, and thus both relations should be

incorporated in the Kripke frame. Suppose, for illustrative purposes, that weights for both transitions

come from a residuated lattice over the real [0,1] interval. Then, the two accessibility relations jointly

express a scenario of

• inconsistency, when the positive and negative weights are contradictory, i.e. they sum to some

value greater than 1 (cf, the upper triangle in Fig. 1 filled in grey).

• vagueness, when the sum is less than 1 (cf, the lower, periwinkle triangle in Fig. 1);

• strict consistency, when the sum is exactly 1, which means that the measures of the factors enforc-

ing or preventing a transition are complementary, corresponding to the red line in the figure.
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Figure 1: The vagueness-inconsistency square.

Exploring the three regions in the picture motivated an incursion into paraconsistent logic [8, 4],

whose purpose is to regard inconsistent information as potentially informative. Such logics were origi-

nally developed in the decades of 1950 and 1960, mainly by F. Asenjo and Newton da Costa. Quickly,

however, the topic attracted attention in the international community and the original scope of mathe-

matical applications broadened out, as witnessed in a recent book emphasizing the engineering potential

of paraconsistency [1].

A popular example of the sort of scenarios we want to capture is that of a robot with a sensor capturing

the presence of a specific stimulus and another collecting evidence in the opposite directions. Our own

motivation for this work comes, however, from a different context, that of quantum computation in the

context of NISQ (Noisy Intermediate-Scale Quantum) technology [11] in which levels of decoherence

of quantum memory need to be articulated with the length of the circuits to assess program quality.

The actual possibility of a transition, approached simultaneously, from the affirmative and the negative

perspectives, i.e. the possibility of the system remaining coherent during the execution of a program

step, or becoming unstable, respectively, provides a basis to analyse the impact of qubit decoherence in

quantum circuits optimization.

This example is discussed in the recent MSc dissertation of the first author [5]. This paper, however,

focuses on the characterization of the relevant transition structures, which we call paraconsistent transi-

tion systems, abbreviated to PTS in the sequel, and the modal logic for which they provide a semantics.

An important remark is that all constructions discussed in the sequel are parametric in a class of residu-

ated lattices, thus admitting different instances according to the structure of the truth values domain that

better suits each modelling context. Moreover, the semantics is endowed with a metric over the lattice

carrier to characterise the ‘grey-periwinkle square´ above, in a general setting.

A tribute to J. Dunn. In a sense this paper aims at generalising the Belnap-Dunn four-valued logic

[12], allowing transition weights to be taken from a larger class of residuated lattices. Recall that in

the latter propositions are interpreted in a bilattice over {T,F}, typically denoted by FOUR. Bilattice

elements are pairs (a,b) such that a,b ∈ {T,F}. Thus, the valuation of propositions assigns one out

of four possible truth values: {(T,F),(F,T ),(T,T ),(F,F)}, understood as representing not only the

classical Boolean values, but excess of information (i.e. inconsistency, (T,T)), and its insufficiency

(i.e. vagueness, (F,F)), respectively. The bilattice FOUR expresses both a truth and an information

ordering, ≤t and ≤i, each forming a complete lattice as depicted below. Formally,
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(a,b) ≤t (c,d) iff a ≤ c and b ≥ d and (a,b) ≤i (c,d) iff a ≤ c and b ≤ d

(T,F)

(T,T) (F,F)

(F,T )≤t

(T,F)

(T,T)

(F,F)

(F,T )

≤i

In the modal version of Belnap-Dunn logic, Kripke frames are built around a four-valued accessibility

relation, incorporating in the transitions the notions of inconsistency and vagueness, already considered

at the propositional level.

This paper follows a similar path, in a more general setting. Actually, the definition of a bilattice

over {T,F} does not generalize well to other domains. We discuss such a generalization from a different

perspective. Section 2 introduces paraconsistent transition systems (PTS) and reviews the underlying

semantic structures. The corresponding modal logic is discussed in 3. Section 4 characterises bisimilarity

for PTS and proves an invariance result.

2 A-paraconsistent transition structures

As mentioned above, a paraconsistent transition system will be defined over a set of states through a

positive and a negative accessibility relation, taking weights from a common universe. Equivalently,

a transition between two states can be regarded as weighted by a pair of values. In a similar way, the

valuation of a proposition in a state will be a pair of values capturing, respectively, the degree upon which

it may be considered to hold, and to fail. Note that pairs of weights labelling a transition or evaluating a

proposition are not necessarily complementary.

This entails the need for making precise i) where weights come from; ii) how is a ’distance’ between

two such weights computed, for example to assess the level of vagueness or inconsistency in a given

transition, and, finally, iii) how pairs of weights are composed. The following subsections address these

issues. Then, the definition of a paraconsistent transition system emerges as expected.

2.1 Weights

As usual in multi-valued logics, residuated lattices provide the underlying semantic structure.

A residuated lattice ⟨A,⊓,⊔,1,0,⊙,⇀,e⟩ over a set A is a complete lattice ⟨A,⊓,⊔,1,0⟩, equipped

with a monoid ⟨A,⊙,e⟩ such that ⊙ has a right adjoint, ⇀, called the residuum. We will, however, focus

on a particular class of residuated lattices in which the lattice meet (⊓) and monoidal composition (⊙)

coincide. Thus the adjunction is stated as

a⊓b ≤ c iff b ≤ a⇀ c

Additionally, we will enforce a prelinearity condition

(a⇀ b)⊔(b⇀ a) = 1 (1)
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A residuated lattice obeying prelinearity is known as a MTL-algebra in the literature1 [6]. With a

slight abuse of nomenclature, the designation iMTL-algebra, from integral MTL-algebra, will be used in

the sequel for the class of semantic structures considered, i.e. prelinear, residuated lattices such that ⊓
and ⊙ coincide.

This structure enjoys a number of properties. Some are direct consequences of the adjunction, namely

if a ≤ b then (c⇀ a) ≤ (c⇀ b) (2)

if a ≤ b then (b⇀ c) ≤ (a⇀ c) (3)

and

a⇀ (b⇀ c) = (b⊓a)⇀ c (4)

The interplay between the residuum and (the distributed versions of) of ⊓ and ⊔ is captured in the

following lemma.

Lemma 1. Let A = ⟨A,⊓,⊔,1,0,⇀⟩ be an iMTL-algebra. Then, for any a1, . . . ,an,b ∈ A

b⇀ (l
i

ai) =
l

i

(b⇀ ai) (5)

(⊔
i

ai)⇀ b =
l

i

(ai⇀ b) (6)

b⇀ (⊔
i

ai) =⊔
i

(b⇀ ai) (7)

(l
i

ai)⇀ b =⊔
i

(ai⇀ b) (8)

Proof. Properties (5) and (6) are true for any residuated lattice [3]. Equalities (7) and (8) follow from

properties 2 and 3, respectively, but also require the prelinearity condition [10].

Example 1. The Boolean algebra over {0,1} with the usual Boolean operators, 2 = ⟨{0,1},∧,∨,1,0,→⟩
is, of course, an iMTL-algebra. A more interesting example introduces a third element in the carrier, u,

as a denotation of unknown. The resulting iMTL-algebra 3 = ⟨{�,u,⊺},∧3,∨3,⊺,�,→3⟩ is the chain of

three elements, where

∨3 � u ⊺
� � u ⊺
u u u ⊺
⊺ ⊺ ⊺ ⊺

∧3 � u ⊺
� � � �
u � u u

⊺ � u ⊺

→3 � u ⊺
� ⊺ ⊺ ⊺
u � ⊺ ⊺
⊺ � u ⊺

Finally, a well-known example from fuzzy logic research, is Gödel algebra G̈ = ⟨[0,1],min,max,0,1,→⟩,
where max and min retain the usual definitions, and implication is given by

a→ b =

⎧⎪⎪⎨⎪⎪⎩
1, if a ≤ b

b, otherwise

1From monoidal t-norm based logic.
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2.2 Adding a metric

In order to give a concrete meaning to the vagueness-inconsistency square depicted in Fig. 1, one needs

to endow any iMTL-algebra A with a suitable metric, i.e. a function d ∶ A×A→R
+ such that d(x,y) = 0

iff x = y, and d(x,y) ≤ d(x,z)+d(z,y). Thus, we will focus on iMTL-algebras A whose carrier A supports

a metric space (A,d), for a suitable choice of d.

Example 2. Metrics for iMTL-algebras 2 and 3 are shown below.

2 3

d(x,y) =
⎧⎪⎪⎨⎪⎪⎩

0 if x = y

1 otherwise

d � u ⊺
� 0 1 2

u 1 0 1

⊺ 2 1 0

On its turn, G̈ can be endowed with the Euclidean metric, d(x,y) =√(x−y)2.

2.3 An algebra of (pairs of) weights

If the values of both transitions and propositions are pairs of weights, an algebra is needed to operate

upon them. We resort to the notion of a twist-structure [9], enriched with a metric. Formally,

Definition 1. Given a iMTL-algebra A = ⟨A,⊓,⊔,1,0,⇀⟩ enriched with a metric d ∶ A×A→R
+, a metric

A-twisted algebra A2
= ⟨A×A,⩎,⩏,Ô⇒,�,D⟩ is defined as follows: for any (a,b), (c,d) ∈ A×A

• (a,b)⩎(c,d) = (a⊓c,b⊔d)
• (a,b)⩏(c,d) = (a⊔c,b⊓d)
• (a,b)Ô⇒ (c,d) = (a⇀ c,a⊓d)
• �(a,b) = (b,a)
• D((a,b),(c,d)) =√d(a,c)2 +d(b,d)2 is the metric over A×A induced by d.

The order in A is lifted to A2 as

(a,b) ≼ (c,d) if and only if a ≤ c and b ≥ d

Under this definition, we are now able to characterize precisely the sets of paraconsistent, consistent and

strictly consistent pairs, ∆P, ∆C and ∆, as for Fig. 1. Thus, in the same order,

∆P = {(a,b)∣D((a,b),(1,1)) ≤D((a,b),(0,0))}
∆C = {(a,b)∣D((a,b),(0,0)) ≤D((a,b),(1,1))}

∆ = ∆P∩∆C

Example 3. Let us revisit the iMLT-algebras considered in Example 2.

• As expected, in 22, the four-element lattice FOUR mentioned in section 1, (1,1) ∈ ∆P, since

D((1,1),(1,1)) =√d(1,1)+d(1,1) = 0 ≤ D((0,0),(1,1)) =√d(0,1)+d(0,1) =√2

Hence, ∆ = {(1,0),(0,1)}, ∆P = {(1,1)} and ∆C = {(0,0),(1,0),(0,1)}.
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• For 32, observe, for instance, that (⊺,u) ∈ ∆P, since

D((⊺,u),(�,�)) =√d(⊺,�)2 +d(u,�)2 =

√
5 and D((⊺,u),(⊺,⊺)) =√d(⊺,⊺)2 +d(u,⊺)2 = 1.

Hence, ∆P ={(⊺,�),(u,u),(�,⊺),(⊺,u),(u,⊺),(⊺,⊺)} , ∆C ={(⊺,�),(u,u),(�,⊺),(�,�),(u,�),(�,u)}
and ∆ = {(⊺,�),(u,u),(�,⊺)}.

• Finally, in G̈
2
, observe that, for any (a,b) ∈ [0,1]×[0,1],

D((a,b),(1,1)) =√d(a,1)2 +d(b,1)2 =

√(a2+b2)−2(a+b)+2

and, if a+ b > 1,
√

a2+b2 = D((a,b),(0,0)). Therefore ∆P = {(a,b) ∈ [1,0] × [1,0] ∣ a+ b > 1},

∆C = {(a,b) ∈ [1,0]×[1,0] ∣ a+b <= 1}, and ∆ = {(a,b) ∈ [1,0]×[1,0] ∣ a+b = 1}, as expected.

2.4 Paraconsistent transition systems

We are now ready to define paraconsistent transition systems parametric on a iMTL-algebra A. Notice

that, in the sequel, given a value (a,b), (a,b)+ denotes a and (a,b)− denotes b.

Definition 2. Let A be an iMTL-algebra. An A-paraconsistent transition system (PTS) is a structure

(W,R) where W is a finite (non-empty) set of states, and R ⊆W ×W ×A×A is a relation over W and the

carrier of A such that between any pair of states w1,w2 ∈W, there is at most one transition.

Example 4. The definition is illustrated with two examples over G̈.

w1 w2

w3

w4

w5

(0.4,0.7)

(0
.3
,0
.6)

(0.2,0.8)

(0.2,0.9)

v1 v2 v3

v4

(0.5,0.5) (0.3,0.5)

(0
.5
,0
.5)

A tuple (w1,w2,a,b) ∈ R represents a transition from w1 to w2 which occurs with a certainty degree

a, and is prevented to occur with a certainty degree b. Note that a PTS over 2 in which all transitions are

weighted by (1,0) is just a standard, deterministic transition system.

The fact that each pair of states can only participate in one transition, makes it possible to write

R(w1,w2) = (a,b) for (w1,w2,a,b) ∈ R, as well as to express R in terms of a positive and a negative

accessibility relation R+,R− ∶W ×W Ð→ A such that for w,w′ ∈W ,

R+(w,w′) =
⎧⎪⎪⎨⎪⎪⎩

a if (w,w′,a,b) ∈ R

0 otherwise
and R−(w,w′) =

⎧⎪⎪⎨⎪⎪⎩
b if (w,w′,a,b) ∈ R

0 otherwise
.

Thinking of PTS as Kripke frames, we may define the corresponding notion of a model over an

arbitrary iMTL-algebra, as follows:

Definition 3. Let A= ⟨A,⊓,⊔,1,0,⇀⟩ be an iMTL-algebra and Prop a set of propositions. A A-paraconsistent

Krikpe model is a triple M = (W,R,V ) where (W,R) is a PTS over A and V ∶ Prop×W →A×A is a valu-

ation function. For p ∈Prop and w ∈W, V (p,w) = (a,b) gives a pair of truth values (a,b) ∈A×A, where

a (respectively, b) is the degree upon which p is considered to hold (respectively, not to hold) in state w.
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3 The logic

This section introduces a logic L(A) to specify paraconsistent Kripke models parametric on a iMTL-

algebra A.

3.1 Syntax

Definition 4 (Formulas). Given an iMTL-algebra A and a set of propositions Prop, the formulas Fm(Prop)
of L(A) are generated by the following grammar:

ϕ ∶= p ∣ � ∣ ¬ϕ ∣ ϕ ∧ϕ ∣ϕ ∨ϕ ∣ ϕ → ϕ ∣ ϕ ∣ ◇ϕ ∣ /ϕ ∣ /◇ϕ ∣ ○ϕ

where p ∈ Prop.

As usual, the following abbreviations are assumed: ⊺ for ¬�, and ϕ1 ↔ ϕ2 for (ϕ1 → ϕ2)∧(ϕ2 → ϕ1).
Informally, connectives �, ¬, ∧, ∨ and → stand for false, negation, conjunction, disjunction and impli-

cation, respectively. There are two sets of modalities over positive and negative information, respectively.

Together with negation, modalities are discussed in next sub-section. Finally, ○ is the unary consistency

connective.

3.2 Satisfaction relation

The satisfaction relation in L(A) evaluates the satisfaction of a formula as pairs (a,b) ∈ A×A at a given

state, in terms of the positive and negative information grades at hands. Modalities, in particular, explore

both components of the accessibility relation defining the underlying A-paraconsistent Kripke model,

through auxiliary operators ⊞,◇+ and ⊟,◇− .

Definition 5 (Satisfaction relation). Let A = ⟨A,⊓,⊔,1,0,⇀⟩ be an iMTL-algebra and M = (W,R,V ) an

A-paraconsistent Kripke model, where W is a set of states, R is the paraconsistent accessibility relation

and V a valuation function. The satisfaction relation for M in L(A) is a function

⊧ ∶W ×Fm(Prop)Ð→ A×A

defined for each ϕ ∈ Fm(Prop) as follows:

• (w ⊧ p) =V (p,w)
• (w ⊧ �) = (0,1)
• (w ⊧ ¬ϕ) = �(w ⊧ ϕ)
• (w ⊧ ϕ1∧ϕ2) = (w ⊧ ϕ1)⩎(w ⊧ ϕ2)
• (w ⊧ ϕ1∨ϕ2) = (w ⊧ ϕ1)⩏(w ⊧ ϕ2)
• (w ⊧ ϕ1 → ϕ2) = (w ⊧ ϕ1)Ô⇒ (w ⊧ ϕ2)
• (w ⊧ ϕ) = (⊞(w,ϕ+),◇+ (w,ϕ−))
• (w ⊧◇ϕ) = (◇+ (w,ϕ+),⊞(w,ϕ−))
• (w ⊧ / ϕ) = (◇− (w,ϕ−),⊟(w,ϕ+))
• (w ⊧ /◇ϕ) = (⊟(w,ϕ−),◇− (w,ϕ+))
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• (w ⊧ ○ϕ) =
⎧⎪⎪⎨⎪⎪⎩
(1,0) if (w ⊧ ϕ) ∈ ∆C

(0,1) otherwise

The definition resorts to the following operators

• ⊞(w,ϕ∗) =d
w′∈R[w](R+(w,w′)⇀ (w′ ⊧ ϕ)∗)

• ⊟(w,ϕ∗) =d
w′∈R[w](R−(w,w′)⇀ (w′ ⊧ ϕ)∗)

• ◇+ (w,ϕ∗) =⊔w′∈R[w](R+(w,w′)⊓(w′ ⊧ ϕ)∗)
• ◇− (w,ϕ∗) =⊔w′∈R[w](R−(w,w′)⊓(w′ ⊧ ϕ)∗)

where ∗ ∈ {+,− } and R[w] = {w′∣(w,w′,a,b) ∈ R, for some a,b ∈ A}. Two formulas ϕ ,ψ ∈ Fm(Prop) are

semantically equivalent, in symbols ϕ ≡ ψ , if for any w ∈W, (w ⊧ ϕ) = (w ⊧ψ). We say that ϕ is valid

if, for any w ∈W, (w ⊧ ϕ) = (1,0).
Example 5. Consider the G̈-paraconsistent Kripke model for Prop = {p} defined over the left G̈-PTS of

Example 4, with V (w2, p) = (1,0), V(w3, p) = (0,1) and V(w, p) = (0,0) for w ∈W ∖{w2,w3}. Then,

(w1 ⊧ p) = (⊞(w, p+),◇+ (w, p−))
= ( l

w′∈R[w1]

(R+(w1,w
′)⇀ (w′ ⊧ p)+), ⊔

w′∈R[w1]

(R+(w1,w
′)⊓(w′ ⊧ p)−)

= ((R+(w1,w2)⇀ (w2 ⊧ p)+)⊓(R+(w1,w3)⇀ (w3 ⊧ p)+),
(R+(w1,w2)∧(w2 ⊧ p)−)⊔(R+(w1,w3)⊓(w3 ⊧ p)−))
= (min(1,0),max(min(0.4,0),min(0.3,1)))
= (min(1,0),max(0,0.3)) = (0,0.3)

A few comments are in order with respect to both modalities and negation. Let us start with the latter.

The satisfaction of a formula ϕ ∈Fm(Prop) is given by a pair (a,b) ∈A×A assigning truth degrees a

and b to the sentences ”ϕ holds” and ”ϕ does not hold”, respectively. The satisfaction of ¬ϕ is simply the

converse (b,a), which has a straightforward interpretation. This negation is an involution and satisfies

the so-called pre-minimality condition: ¬ψ ≤ ¬φ if φ ≤ψ . Actually, in the underlying semantics,

�(a′,b′) ≼�(a,b) if (a,b) ≼ (a′,b′)
= (b′,a′) ≼ (b,a) if (a,b) ≼ (a′,b′)
= b′ ≤ b and a′ ≥ a if a ≤ a′ and b ≥ b′

Together, these properties define a De Morgan negation algebra [2], making both De Morgan equalities

to hold, as well as ¬⊺ = � and ¬� = ⊺. Similarly each pair of modalities is dual, as detailed in lemma 4.

Our syntax has, therefore, some redundancy. Note, however, that

(a,b)⩎(�(a,b)) = (a,b)⩎(b,a) = (a⊓b,b⊔a)
which does not coincide with (0,1), the interpretation of �, even if, in a sense, it ‘gets closer’ by de-

scending in the underlying lattice.

A negation operator ∼ induced through implication, i.e.

(w ⊧ ∼ϕ) = (w ⊧ ϕ → �) = (w ⊧ ϕ)Ô⇒ (w ⊧ �)
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has a different behaviour. Actually, if the value of ϕ in w is (a,b), the value of ∼ϕ becomes (a ⇀
0,a⊓1) = (a⇀ 0,a). This means that ∼ϕ in a state w yields ⊺ iff the value of ϕ in that state has the form

(0,b), for any b ∈ A. This also means that the corresponding pre-minimality property depends on the

specific underlying iMTL-algebra. The same applies to the duality of � and ⊺. Both clearly hold for 2, 3

and G̈, but not necessarily in general. Clearly, this negation is not an involution, even if the De Morgan

laws hold. Actually,

Lemma 2. Let A be a iMTL-algebra. The De Morgan laws for ∼ are valid in L(A).

Proof. Let us consider one of the laws; the proof of the other is similar.

w ⊧ ∼(ϕ1∧ϕ2)
= { definition of ∼ }

w ⊧ (ϕ1∧ϕ2)→ �
= { definition of ⊧ }

(w ⊧ (ϕ1∧ϕ2))Ô⇒ (w ⊧ �)
= { definition of ⊧ }

((w ⊧ ϕ1)⩎(w ⊧ ϕ2))Ô⇒ (0,1)
= { making a = (w ⊧ ϕ1)

+, b = (w ⊧ ϕ1)
−, and similalry for a′, b′ }

((a,b)⩎(a′,b′))Ô⇒ (0,1)
= { definition of ⩎ }

(a⊓a′,b⊔b′)Ô⇒ (0,1)
= { definition ofÔ⇒ }

((a⊓a′)⇀ 0,a⊓a′)
= { (8):

d
i ai ⇀ b =⊔i(ai ⇀ b) }

(a→ 0⊔a′→ 0,a⊓a′)
= { definition of ⩏ }

(a⇀ 0,a)⩏(a′ ⇀ 0,a′)
= { definition ofÔ⇒; unfolding abbreviations a,a′,b,b′ }

((w ⊧ ϕ1)Ô⇒ (0,1))⩏((w ⊧ ϕ2)Ô⇒ (0,1))
= { definition of ∼ }

(w ⊧ ∼ϕ1)⩏(w ⊧ ∼ϕ2)
= { definition of ⊧ }

w ⊧ (∼ϕ1∨∼ϕ2)
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Can we directly compare both negations? Again the result depends on the underlying iMTL-algebra.

For all the cases considered in this paper, however, a simple calculation leads to the following conclusion:

Lemma 3. Let φ be a formula in L(A). For A instantiated to 2, 3 or G̈,

(w ⊧ ¬φ) ≼ (w ⊧ ∼φ) if (w ⊧ φ)+ = 0

(w ⊧ ∼φ) ≼ (w ⊧ ¬φ) if (w ⊧ φ)+ ≠ 0

Proof. By direct calculation in each case.

The two pairs of modalities behave as expected, quantifying over the positive and the negative

component of the accessibility relation, as shown in the following lemma. This assigns an existential,

‘diamond-like’ behaviour to / , and dually a universal, ‘box-like’ behaviour to /◇.

Lemma 4. Let A be an iMTL-algebra. The following equivalences hold in any A-paraconsistent Kripke

model:

¬ϕ ≡ ¬◇ϕ (9)

◇¬ϕ ≡ ¬ ϕ (10)

/¬ϕ ≡ ¬ /◇ϕ (11)

/◇¬ϕ ≡ ¬ /ϕ (12)

Proof. We prove the ’box’ cases, (9) and (11); the remaining cases are similar. Hence, for (11),

(w ⊧ / ¬ϕ)
= { definition of ⊧ }

(◇− (w,(¬ϕ)−),⊟(w,(¬ϕ)+))
= { definition of ⊟,◇− }

⎛
⎝ ⊔

w′∈W

{R−(w,w′)⊓(w′ ⊧ ¬ϕ)−}, l

w′∈W

{R−(w,w′)⇀ (w′ ⊧ ¬ϕ)+}⎞⎠
= { definition of ⊧ }

⎛
⎝ ⊔

w′∈W

{R−(w,w′)⊓(�(w′ ⊧ ϕ))−}, l

w′∈W

{R−(w,w′)⇀ (�(w′ ⊧ ϕ))+}⎞⎠
= { definition of � }

⎛
⎝ ⊔

w′∈W

{R−(w,w′)⊓(w′ ⊧ ϕ)+}, l

w′∈W

{R−(w,w′)⇀ (w′ ⊧ ϕ)−}⎞⎠
= { definition of◇− and ⊟ }

(◇− (w,ϕ+),⊟(w,ϕ−))
= { definition of � }

�(⊟(w,ϕ−),◇− (w,ϕ+))
= { definition of ⊧ }

(w ⊧ ¬ /◇ϕ)
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The proof of (9) has exactly the same structure, unfolding (w⊧ ¬ϕ) into (⊞(w,(¬ϕ)+),◇+ (w,(¬ϕ)−)),
and then replacing ⊞ and ◇+ by their definitions. The conclusion comes from swapping the formula

through negation and rolling back the definitions.

To conclude this section, let us look into the evaluation of a few, simple formulas, which may help to

build up intuitions. In the following three examples take G̈ as the underlying iMTL-algebra.

Example 6. A very simple scenario illustrates the behaviour of both pairs of modalities in presence

of ‘crisp’ transitions, weighted by (1,0) and (0,1). Notice how the typical roles of the universal and

existential modalities are reversed when going from the positive to the negative components of the acces-

sibility relation.

w w′
(1,0)

V (p,w′) (0,1) (1,0) (0,0) (1,1)

p (0,1) (1,0) (0,0) (1,1)

◇p (0,1) (1,0) (0,0) (1,1)

/ p (0,1) (0,1) (0,1) (0,1)

/◇p (1,0) (1,0) (1,0) (1,0)

w w′
(0,1)

V(p,w′) (0,1) (1,0) (0,0) (1,1)

p (1,0) (1,0) (1,0) (1,0)

◇p (0,1) (0,1) (0,1) (0,1)

/ p (1,0) (0,1) (0,0) (1,1)

/◇p (1,0) (0,1) (0,0) (1,1)

Example 7. Still sticking to one-transition systems, observe now the effect of introducing arbitrary

weights in both transitions and the valuation of propositions. The following table, sums up the results

for different valuations in both states w and v.

w w′ v v′
(0.7,0.3) (0.3,0.7)

V (p,x),x ∈ {w′,v′} (0,0) (0,0.5) (0,1) (0.5,1) (1,1) (1,0.5) (1,0) (0.5,0) (0.5,0.5)
w ⊧ p (0,0) (0,0.5) (0,0.7) (0.5,0.7) (1,0.7) (1,0.5) (1,0) (0.5,0) (0.5,0.5)
v ⊧ p (0,0) (0,0.3) (0,0.3) (1,0.3) (1,0.3) (1,0.3) (1,0) (1,0) (1,0.3)
w ⊧◇p (0,0) (0,0.5) (0,1) (0.5,1) (0.7,1) (0.7,0.5) (0.7,0) (0.5,0) (0.5,0.5)
v ⊧◇p (0,0) (0,1) (0,1) (0.3,1) (0.3,1) (0.3,1) (0.3,0) (0.3,0) (0.3,1)
w ⊧ / p (0,0) (0.3,0) (0.3,0) (0.3,1) (0.3,1) (0.3,1) (0,1) (0,1) (0.3,1)
v ⊧ / p (0,0) (0.5,0) (0.7,0) (0.7,0.5) (0.7,1) (0.5,1) (0,1) (0,0.5) (0.5,0.5)
w ⊧ /◇p (0,0) (1,0) (1,0) (1,0.3) (1,0.3) (1,0.3) (0,0.3) (0,0.3) (1,0.3)
v ⊧ /◇p (0,0) (0.5,0) (1,0) (1,0.5) (1,0.7) (0.5,0.7) (0,0.7) (0,0.5) (0.5,0.5)

With no surprise, we conclude that w ⊧ p = v ⊧ ¬ / p, w ⊧ ◇p = v ⊧ ¬ /◇p, w ⊧ / p = v ⊧ ¬ p, and

w ⊧ /◇p = v ⊧ ¬◇ p.

Example 8. Extending the model with an additional node as in

w w′ v
(0.1,0.3) (0.4,0.7)
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we may evaluate deeper formulas. For example, V(p,w′) =V (p,v) = (1,0), entails

p = (1,0), ◇ p = (0.1,0), / p = (0,1), /◇ p = (0,1).
and

/◇◇ p = (0,0.3), ◇/◻p = (0.1,0), /◇/◻p = (0,1), /◇ /◇p = (0,0.1).

Example 9. As a last example, consider 3 as the underlying iMTL-algebra, and the following model

w w1 w2

w3

(u,�) (⊺,�)

(⊺
,�)

A valuation such that V (p,w1) =V (p,w2) = (⊺,�) and V (p,w3) = (u,u) entails

w ⊧ p (u,u)
w ⊧ p (⊺,�)
w ⊧◇ p (⊺,�)
w ⊧ / p (�,⊺)
w ⊧ /◇ p (�,u)

w ⊧◇p (u,�)
w ⊧ ◇ p (�,⊺)
w ⊧◇◇ p (u,�)
w ⊧ / ◇ p (u,�)
w ⊧ /◇◇ p (⊺,�)

w ⊧ / p (�,⊺)
w ⊧ / p (u,�)
w ⊧◇/ p (u,�)
w ⊧ / / p (�,⊺)
w ⊧ /◇ / p (�,u)

w ⊧ / p (�,u)
w ⊧ / p (�,u)
w ⊧◇/ p (�,u)
w ⊧ / / p (u,�)
w ⊧ /◇ / p (⊺,�)

4 Bisimilarity and invariance

This section characterises simulation and bisimulation for A-paraconsistent models.

Definition 6. Let A be an iMTL-algebra enriched with a metric. Let T1 = (W1,R1), T2 = (W2,R2) be two

A-PTS.

A relation S ⊆W1×W2 is a simulation if, for any (w1,w2) ∈ S,

w1

(a,b)
ÐÐÐ→T1

w′1 ⇒ ⟨∃w′2 ∈W2,∃(a′,b′) ∈ A×A ∶w2

(a′,b′)
ÐÐÐ→T2

w′2∧(w′1,w′2) ∈ S and (a,b) ≼ (a′,b′)⟩
Example 10. Let us consider the G̈-PTS of Example 4. Observe that w1 ≲ v1, because there is a simula-

tion, S = {(w1,v1),(w2,v2),(w3,v2),(w4,v3),(w5,v4)} that contains (w1,v1).
Definition 7. Let A be an iMTL-algebra enriched with a metric. Let M1 = (W1,R1,V1) and M2 =

(W2,R2,V2) two A-paraconsistent Kripke models. The relation S ⊆W1 ×W2 is a simulation between

M1 and M2 if

• S is a simulation between the A-PTS (W1,R1) and (W2,R2)
• for any p ∈ Prop and (w,v) ∈ S, V1(w, p) ≼V2(v, p)

Lemma 5. Let A be an iMTL-algebra enriched with a metric. If S ⊆W1 ×W2 is a simulation between

A-paraconsistent Kripke models M1 and M2 and ⟨w1,w2⟩ ∈ S then (w1 ⊧ ϕ) ≼ (w2 ⊧ ϕ) for ϕ ∈ Fm+◇

where Fm+◇ is the positive fragment of L(A) with the modal connective ◇, but omitting the consistency

connective ○.
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Proof. The proof proceeds by induction over the structure of formulas.

Case ϕ = �: We have (w ⊧ �) = (1,0) = (v ⊧ �). Hence (w ⊧ �) ≼ (v ⊧ �).
Case ϕ = p, p ∈ Prop: Since S is simulation, V+1 (w, p) ≤V+2 (v, p) and V−1 (w, p) ≥V−2 (v, p). Hence,

(w ⊧ p) = (V+1 (w, p),V−1 (w, p)) ≼ (V+2 (w, p),V−2 (w, p)) = (v ⊧ p)
.

Case ϕ = ϕ1∧ϕ2: By induction hypothesis and monotonicity,

(w ⊧ ϕ1)⩎(w ⊧ ϕ2) ≼ (v ⊧ ϕ1)⩎(v ⊧ ϕ2)
Hence, (w ⊧ ϕ1∧ϕ2) ≼ (v ⊧ ϕ1∧ϕ2).

Case ϕ = ϕ1∨ϕ2: Analogous to the previous case.

Case ϕ =◇ϕ1: We have to prove that

( ⊔
w′∈R1[w]

{R+1 (w,w′)⊓(w′ ⊧ ϕ1)+},
l

w′∈R1[w]

{R+1 (w,w′)⇀ (w′ ⊧ ϕ1)−})

≼ ( ⊔
v′∈R1[v]

{R+1 (v,v′)⊓(v′ ⊧ ϕ1)+},
l

v′∈R1[v]

{R+1 (v,v′)⇀ (v′ ⊧ ϕ1)−})

Observe that, since (w,v) ∈ S, we have by induction hypothesis that, for any w′ ∈ R1[w] with

R+1(w,w′)⊓ (w′ ⊧ ϕ1)+, there is a v′ ∈ R1[v] such that R+1 (w,w′)⊓ (w′ ⊧ ϕ1)+ ≤ R+1 (v,v′)⊓ (v′ ⊧
ϕ1)−. Hence, by monotonicity of ⊔,

⊔
w′∈R1[w]

{R+1 (w,w′)⊓(w′ ⊧ ϕ1)+ ≤ ⊔
w′∈R1[w]

{R+1 (w,w′)⊓(w′ ⊧ ϕ1)+}

Analogously, one may prove that

l

w′∈R1[w]

{R+1 (w,w′)⇀ (w′ ⊧ ϕ1)−} ≥
l

v′∈R1[v]

{R+1 (v,v′)⇀ (v′ ⊧ ϕ1)−}.

Note there is a number of formulas which are not preserved by these mappings. Such are the cases of

¬ϕ , ϕ1 → ϕ2, ϕ , /ϕ and /◇ϕ . A systematic study of these cases, with counterexamples, can be found

in [5].

Definition 8. Let A be an iMTL-algebra enriched with a metric. Let T1 = ⟨W1,R1⟩ and T2 = ⟨W2,R2⟩ be

two A-PTS. A relation B ⊆W1×W2 is a bisimulation if for ⟨p,q⟩ ∈ B:

p
(a,b)
ÐÐÐ→M1

p′⇒ ⟨∃q′ ∈W2 ∶ q (a,b)ÐÐÐ→M2
q′ and ⟨p′,q′⟩ ∈ B⟩ and

q
(a,b)
ÐÐÐ→M2

q′⇒ ⟨∃p′ ∈W1 ∶ p
(a,b)
ÐÐÐ→M1

p′ and ⟨p′,q′⟩ ∈ B⟩.
Two states p and q are bisimilar, written p ∼ q, if there is a bisimulation B such that ⟨p,q⟩ ∈ B.

Definition 9. A relation B ⊆W1 ×W2 is a bisimulation between two A-paraconsistent Kripke models

M1 = (W1,R1,V1) and M2 = (W2,R2,V2) if

• B is a bisimulation between the A-PTS (W1,R1) and (W2,R2)
• for any p ∈ Prop and (w1,w2) ∈ B, V1(w1, p) =V2(w2, p).
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Lemma 6. Let M1 = (W1,R1,V1) and M2 = (W2,R2,V2) two A-paraconsistent Kripke models for Prop

and B ⊆W1 ×W2 a bisimulation. Then, for any (w,v) ∈ B and for any ϕ ∈ Fm(Prop), (w ⊧ ϕ) = (v ⊧ ϕ).
Proof. The proof proceeds by induction on the structure of the formulas.

• Case ϕ = �: by definition of ⊧, (w ⊧ �) = (0,1) = (v ⊧ �).
• Case ϕ = p, p ∈ Prop: since by hypothesis (w,v) ∈ B, we have that V1(w, p) = V1(v, p). Hence

(w ⊧ p) =V1(w, p) =V1(v, p) = (v ⊧ p).
• Case ϕ = ¬ϕ1: (w ⊧ ¬ϕ1) = ((w ⊧ ϕ1)−,(v ⊧ ϕ1)+) = (v ⊧ ¬ϕ1), and, by induction hypothesis,

(w ⊧ ϕ1)+) = ((v ⊧ ϕ1)−.

• Case ϕ = ϕ1∧ϕ2: the proof is analogous to the case in Lemma 5.

• Cases ϕ = ϕ1∨ϕ2 and ϕ = ϕ1 → ϕ2: analogous to the previous case.

• Case ϕ =◇ϕ1: analogous to the proof of the case in Lemma 5.

• Case ϕ = ϕ1: analogous to the previous case.

• Case ϕ = / ϕ1: Observe that

(w ⊧ /ϕ1) = ( ⊔
w′∈W1

(R−(w,w′)⊓(w′ ⊧ ϕ1)−),
l

w′∈W1

(R−(w,w′)⇀ (w′ ⊧ ϕ1)+))

By induction hypothesis, this is equal to

( ⊔
v∈W2

(R−(v,v′)⊓(v′ ⊧ ϕ1)−),
l

v∈W2

(R−(v,v′)⇀ (v′ ⊧ ϕ1)+)) = (v ⊧ /ϕ1)

• Case ϕ = /◇ϕ1: is analogous to the previous case.

• Case ϕ = ○ϕ1: since (w ⊧ ϕ) = (v ⊧ ϕ) it is straightforward that (w ⊧ ○ϕ) = (v ⊧ ○ϕ)

5 Conclusions and future work

We have discussed a method to “build paraconsistent modal logics on-demand” (in style of [10]), i.e.

parametric in an iMTL-algebra equipped with a metric space over its carrier. As explained, these re-

sults generalise the modal extension of Belnap-Dunn four-valued logic [12] to deal with more complex

truth spaces. An earlier work by V. Goranko [7], which discusses axiomatizations and completeness

of bimodal logics with modalities associated with an accessibility relation and its complement, bears

an interesting correspondence with the structures proposed in this paper. In the particular, the case in

which the weights labelling the positive and the negative components of the accessibility relation are

complementary is discussed there.

A lot remains to be done. The main challenge is the development of a (also parametric) proof calculus

for L(A), and study its properties. From the applications side, on the other hand, we intend to pursue its

application to optimization of quantum circuits [5]. A realted work direction focus on the development

of an algebra of A-paraconsistent transition systems, to proceed towards more complex systmes in a

compositional way. This will also open possibility of developing a dynamic logic for weighted (e.g.

probabilisitc, quantum) programs on top of this semantic framework and its algebra. We believe this

may be relevant, namely for verification of quantum programs.
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