
A. Indrzejczak, M. Zawidzki (Eds): 10th International Conference

on Non-Classical Logics. Theory and Applications (NCL 2022)

EPTCS 358, 2022, pp. 55–67, doi:10.4204/EPTCS.358.5

© P. Filipe, C. Caleiro & S. Marcelino

This work is licensed under the

Creative Commons Attribution License.

Monadicity of Non-deterministic Logical

Matrices is Undecidable

Pedro Filipe Carlos Caleiro Sérgio Marcelino *

SQIG - Instituto de Telecomunicações

Dep. Matemática, Instituto Superior Técnico,
Universidade de Lisboa, Portugal

pedro.g.filipe@tecnico.ulisboa.pt {ccal,smarcel}@math.tecnico.ulisboa.pt

The notion of non-deterministic logical matrix (where connectives are interpreted as multi-functions)

preserves many good properties of traditional semantics based on logical matrices (where connec-

tives are interpreted as functions) whilst finitely characterizing a much wider class of logics, and has

proven to be decisive in a myriad of recent compositional results in logic. Crucially, when a finite

non-deterministic matrix satisfies monadicity (distinct truth-values can be separated by unary formu-

las) one can automatically produce an axiomatization of the induced logic. Furthermore, the resulting

calculi are analytical and enable algorithmic proof-search and symbolic counter-model generation.

For finite (deterministic) matrices it is well known that checking monadicity is decidable. We

show that, in the presence of non-determinism, the property becomes undecidable. As a consequence,

we conclude that there is no algorithm for computing the set of all multi-functions expressible in a

given finite Nmatrix. The undecidability result is obtained by reduction from the halting problem for

deterministic counter machines.

1 Introduction

Logical matrices are arguably the most widespread semantic structures for propositional logics [17, 11].

After Łukasiewicz, a logical matrix consists in an underlying algebra, functionally interpreting logical

connectives over a set of truth-values, together with a designated set of truth-values. The logical models

(valuations) are obtained by considering homomorphisms from the free-algebra in the matrix similarity

type into the algebra, and formulas that hold in the model are the ones that take designated values.

However, in recent years, it has become clear that there are advantages in departing from semantics

based on logical matrices, by adopting a non-deterministic generalization of the standard notion. Non-

deterministic logical matrices (Nmatrices) were introduced in the beginning of this century by Avron and

his collaborators [3, 4], and interpret connectives by multi-functions instead of functions. The central

idea is that a connective can non-deterministically pick from a set of possible values instead of its value

being completely determined by the input values. Logical semantics based on Nmatrices are very mal-

leable, allowing not only for finite characterizations of logics that do not admit finite semantics based

on logical matrices, but also for general recipes for various practical problems in logic [13]. Further,

Nmatrices still permit, whenever the underlying logical language is sufficiently expressive, to extend

from logical matrices general techniques for effectively producing analytic calculi for the induced log-

ics, over which a series of reasoning activities in a purely symbolic fashion can be automated, including

proof-search and counter-model generation [16, 3, 4, 2, 9, 14, 7]. In its simplest form, the sufficient ex-

pressiveness requirement mentioned above corresponds to monadicity [16, 14, 7]. A Nmatrix is monadic
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when pairs of distinct truth-values can be separated by unary formulas of the logic. This crucial property

is decidable, in a straightforward way, for finite logical matrices, as one can simply compute the set of all

unary functions expressible in a given finite matrix. However, the computational character of monadicity

with respect to Nmatrices has not been studied before.

In this paper we show that, in fact, monadicity is undecidable for Nmatrices. Our proof is ob-

tained by means of a suitable reduction from the halting problem for counter machines, well known to

be undecidable [15]. Several details of the construction are inspired by results about the inclusion of

infectious values in Nmatrices [8], and also by undecidability results concerning term-dag-automata (a

computational model that bears some interesting connections with Nmatrices) [1]. As a consequence, we

conclude that the set of all unary multi-functions expressible in a given finite Nmatrix is not computable.

The paper is organized as follows. In Section 2 we introduce and illustrate our objects of study,

namely logical matrices and Nmatrices, the logics they induce, and the monadicity property. Section 3

recalls the counter machine model of computation, and shows how its computations can be encoded

into suitable Nmatrices. Finally, Section 4 establishes our main results, namely the undecidability of

monadicity for Nmatrices, and as a corollary the uncomputability of expressible multi-functions. We

conclude, in Section 5, with a discussion of the importance of the results obtained and several topics for

further research.

2 Preliminaries

In this section we recall the notion of logical matrix, non-deterministic matrix, and their associated logics.

We also introduce, exemplify and discuss the notion of monadicity.

Matrices, Nmatrices and their logics A signature Σ is a family of connectives indexed by their ar-

ity, Σ = {Σ(k) : k ∈ N}. The set of formulas over Σ based on a set of propositional variables P is de-

noted by LΣ(P). The set of subformulas (resp, variables) of a formula ϕ ∈ LΣ(P) is denoted by Sub(ϕ)
(resp.,Var(ϕ)). There are two subsets of LΣ(P) that will be of particular interest to us: the set of closed

formulas, denoted by LΣ( /0), and the set of unary (or monadic) formulas, denoted by LΣ({p}).

A Σ-Nmatrix, is a tuple M= 〈A, ·M,D〉 where A is the set of truth-values, D ⊆ A is the set of desig-

nated truth-values, and for each © ∈ Σ(k), the function ©M : Ak →℘(A) \{ /0} interprets the connective

©. A Σ-Nmatrix M is finite if it contains only a finite number of truth-values and Σ is finite. Clearly,

this definition generalizes the usual definition of logical matrix, which is recovered when, for every

© ∈ Σ(k) and a1, . . . ,ak ∈ A, ©M(a1, . . . ,ak) is a singleton. In this case we will sometimes refer to ©M

simply as a function. A valuation over M is a function v : LΣ(P) → A, such that, v(©(ϕ1, . . . ,ϕn)) ∈
©M(v(ϕ1), . . . ,v(ϕn)) for every © ∈ Σ(k). We use Val(M) to denote the set of all valuations over M. A

valuation v ∈ Val(M) is said to satisfy a formula ϕ if v(ϕ) ∈ D, and is said to falsify ϕ , otherwise. Note

that every formula ϕ ∈ LΣ(P), with Var(ϕ)= {p1, . . . , pk}, defines a multi-function ϕM : Ak →℘(A)\{ /0}
as ϕM(x1, . . . ,xk) = {v(ϕ) : v ∈Val(M),v(pi) = xi,1 ≤ i ≤ k}. The multi-function ϕM is said to be repre-

sented, or expressed, by the formula ϕ in M. Furthermore, we say that a multi-function f is expressible

in an Nmatrix M if there is a formula ϕ such that ϕM = f .

The logic induced by an Nmatrix M is the Tarskian consequence relation ⊢M⊆℘(LΣ(P))×LΣ(P)
defined as Γ⊢M ϕ whenever, for every v∈Val(M), if v(Γ)⊆D then v(ϕ)∈D. This definition generalizes

the usual logical matrix semantics [17, 11]. As usual, a formula ϕ is said to be a theorem of M if /0 ⊢M ϕ .
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Monadicity Given a Σ-Nmatrix M= 〈A, ·M,D〉, we say that a,b ∈ A are separated, written a#b if a ∈ D

and b /∈ D, or vice-versa. A pair of sets of elements X ,Y ⊆ A are separated, written X#Y , if for every

a ∈ X and b ∈ Y we have that a#b. Note that X#Y precisely if X ⊆ D and Y ⊆ A \D, or vice versa. A

monadic formula ϕ ∈ LΣ({p}) such that ϕM(a)#ϕM(b) is said to separate a and b. We say that a set of

monadic formulas S is a set of monadic separators for M when, for every pair of distinct truth-values of

M, there is a formula of S separating them. An Nmatrix M satisfies monadicity (or simply, is monadic)

if there is a set of monadic separators for M.

Example 2.1. Consider the signature Σ = {¬,∨,∧,→} and the Σ-matrix MŁ = 〈A, ·Ł,D〉, with A =
{0, 1

2
,1} and D = {1}, corresponding to Łukasiewicz 3-valued logic, with interpretations as described in

the following tables.

x ¬Ł(x)

0 1
1
2

1
2

1 0

∨Ł 0 1
2

1

0 0 1
2

1
1
2

1
2

1
2

1

1 1 1 1

∧Ł 0 1
2

1

0 0 0 0
1
2

0 1
2

1
2

1 0 1
2

1

→Ł 0 1
2

1

0 1 1 1
1
2

1
2

1 1

1 0 1
2

1

MŁ is monadic with {p,¬p} as a set of separators. Indeed, p separates 1 from 0, and also 1 from 1
2
,

whereas ¬p separates 0 and 1
2
. One may wonder, though, whether one could separate 0 and 1

2
without

using negation. △

Remark 2.2. Notice that we can decide if a given matrix M is monadic by algorithmically generating

every unary function expressible in M, as it is usually done when calculating clones over finite algebras

[12]. This procedure is, however, quite expensive, since there are, at most, nn unary formulas from a set

with n values to itself. The next example illustrates this procedure.

Example 2.3. Let M′
Ł be the {∨,∧,→}-reduct of MŁ introduced in Example 2.1, corresponding to the

negationless fragment of Łukasiewicz 3-valued logic. Let us show that M′
Ł is not monadic, by generating

every unary expressible function. For simplicity, we represent a unary function h : A → A as a tuple

(h(0),h(1
2
),h(1)).

The formulas p, p∨ p and p∧ p define the same function (0, 1
2
,1) and the formula p → p defines

the constant function (1,1,1). It is easy to see that we cannot obtain new functions by further applying

connectives, so (0, 1
2
,1) and (1,1,1) are the only expressible unary functions. For example, ((p → p)→

(p → p))M′
Ł
= (1,1,1). We conclude that 0 cannot be separated from 1

2
, and so M

′
Ł is not monadic. △

Monadicity in Nmatrices In the presence of non-determinism, we cannot follow the strategy described

in Remark 2.2 and Example 2.3. A fundamental difference from the deterministic case is that the multi-

functions represented by formulas in a Nmatrix are sensitive to the syntax since, even if there are multiple

choices for the value of a subformula, all its occurrences need to have the same value. Crucially, on an

Nmatrix M, the multi-function ©(ϕ1, . . . ,ϕk)M does not depend only on the multi-functions ©M and

(ϕ1)M, . . . , (ϕk)M, as we shall see in the next example.

Hence, contrarily to what happens in the deterministic case, when generating the expressible multi-

functions in an Nmatrix M (to find if M is monadic, or for any other purpose), we cannot just keep

the information about the multi-functions themselves but also about the formulas that produce them.

Otherwise, we might generate a non-expressible function (as every occurrence of a subformula must

have the same value) or miss some multi-functions that are still expressible.

With the intent of making the notation lighter, when representing the interpretation of the connectives

using tables, we drop the curly brackets around the elements of an output set. For example, in the table

of Example 2.4 we simply write a,c instead of {a,c}.
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Example 2.4. Consider the signature Σ with only one binary connective g, and two Nmatrices M =
〈{a,b,c}, ·M ,D〉 and M

′ = 〈{a,b,c}, ·M′ ,{c}〉, with interpretation described in the following table.

gM a b c

a c a b,c
b b c a,c
c b,c a,c c

gM′ a b c

a c a c

b b c a

c b,c a,c c

Let ϕ = g(g(p, p), p) and ψ = g(p,g(p, p)). In M, ϕM = ψM = ({b,c},{a,c},{c}). Although these

formulas define the same multi-function, they are not interchangeable, as g(ϕ ,ϕ)M = g(ψ ,ψ)M =
g(p, p)M = ({c},{c},{c}) but g(ϕ ,ψ)M = g(ψ ,ϕ)M = ({a,c},{b,c},{c}), thus illustrating the already

mentioned sensitivity to the syntax. Still, consider vx : LΣ(P)→{a,b,c}, with x ∈ {a,b,c}, defined as

vx(γ) =

{

x if γ ∈ P

c otherwise.

These functions can easily be shown to be valuations over M for every choice of x and so, for every

unary formula ϕ 6= p, we have that c ∈ ϕM(a)∩ϕM(b)∩ϕM(c). We conclude that, apart from p, no

unary formula can separate elements of {a,b,c}, and so M is not monadic, for any choice of D.

In M
′ the outcome is radically different. As g(p, p)M′(x) = {c} for every x ∈ {a,b,c}, we have

g(p,g(p, p))M′ (a) = {c} and g(p,g(p, p))M′ (b) = {a} and so, in this case, M′ is monadic with set of

separators {p,g(p,g(p, p))}. △

3 Counter machines and Nmatrices

In this section we recall the essentials of counter machines, and define a suitable finite Nmatrix repre-

senting the computations of any given counter machine.

Counter machines

A (deterministic) counter machine is a tuple C = 〈n,Q,qinit,δ 〉, where n ∈ N is the number of counters,

Q is a finite set of states, qinit ∈ Q is the initial state, and δ is a partial transition function δ : Q 6→ ({i++ :

1 ≤ i ≤ n}×Q)∪ ({itest : 1 ≤ i ≤ n}×Q2).
The set of halting states of C is denoted by H = {q ∈ Q : δ (q) is undefined}.

A configuration of C is a tuple C = (q,~x) ∈ Q×N
n
0, where q is a state, and ~x = x1, . . . ,xn are the

values of the counters. Let Conf(C ) be the set of all configurations. C ∈ Conf(C ) is said to be the initial

configuration if q = qinit and~x =~0. C is said to be a halting configuration if q ∈ H .

When (q,~y) is not a halting configuration, the transition function δ completely determines the next

configuration nxt(q,~y) as follows:

nxt(q,~y) =











(q′,~y+~ei) if δ (q) = 〈i++,q′〉,

(q′′,~y) if δ (q) = 〈itest,q′′,q′′′〉 and xi = 0,

(q′′′,~y−~ei) if δ (q) = 〈itest,q′′,q′′′〉 and xi 6= 0,

where ~ei is such that (ei)i = 1 and (ei) j = 0, for all j 6= i.

The computation of C is a finite or infinite sequence of configurations 〈Ci〉i<η , where η ∈N0 ∪{ω}
such that C0 is the initial configuration, and for each i < η , either Ci is a halting configuration and

i+1 = η is the length of the computation, or else Ci+1 = nxt(Ci).
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The intuition behind the transitions of a counter machine is clear from the underlying notion of

computation, and in particular the definition of the next configuration. Clearly, δ (q) = 〈i++,r〉 results

in incrementing the i-th counter and moving to state r, whereas δ (q) = 〈itest,r,s〉 either moves to state

r, leaving the counters unchanged, when the value of the i-th counter is zero, or moves to state s, and

decrements the i-th counter, when its value is not zero. As usual in counter machine models (see [15]),

and also for the sake of simplicity, we are assuming that in the initial configuration all counters have

value 0. This is well known not to hinder the computational power of the model, as a machine can

always start by setting the counters to other desired input values. We will base our undecidability result

on the following well known result about counter machines.

Theorem 3.1 ([15]). It is undecidable if a given counter machine halts when starting with all counters

set to zero.

In what follows, given ~x ∈ An and f : A → B, we define f (~x) ∈ Bn as f (~x) = 〈 f (xi) : 1 ≤ i ≤ n〉.

For a given counter machine C = 〈n,Q,qinit,δ 〉, we define the signature ΣC such that Σ
(0)
C

= {zero,ε},

Σ
(1)
C

= {suc}, Σ
(n+1)
C

= {stepq : q ∈ Q} and Σ
( j)
C

= /0, for all j /∈ {0,1,n+1}. As usual, zero and suc allow

us to encode every k ∈ N0 as the closed formula enc(k) = suck(zero). Moreover, we can encode every

finite sequence of configurations 〈C0, . . . ,Ck〉 as a sequence formula in the following way:

• seq(〈〉) = ε , and seq(〈C0, . . . ,Ck−1,(q,~y)〉) = stepq(seq(〈C0, . . . ,Ck−1〉),enc(~y)).

We will construct a finite Nmatrix MC over ΣC that recognizes as a theorem precisely the finite

computation of C , if it exists. This means that MC can only falsify a formula ϕ if it is not a sequence

formula, or if ϕ = seq(〈C0, . . . ,Ck〉) but C0 is not the initial configuration of C , or Ck is not a halting

configuration of C , or nxt(Ci) 6=Ci+1 for some 0 ≤ i < k.

From counter machines to Nmatrices

For a given counter machine C = 〈n,Q,qinit,δ 〉 let

Rm = {r=0,r≥0,r≥1,r≥2} and Conf = {confq,−→r : q ∈ Q,−→r ∈ Rmn}

and consider the Nmatrix MC = 〈A, ·MC
,D〉 over ΣC , where

A = Rm∪Conf∪{init,error} and D = {confq,−→r : q ∈ H,−→r ∈ Rmn} and

zeroMC
= {r=0,r≥0} εMC

= {init} sucMC
(x) =























{r≥1} if x = r=0

{r≥0,r≥1} if x = r≥0

{r≥2} if x ∈ {r≥1,r≥2}

{error} otherwise

(stepq)MC
(x,~z) =











































{confq,~z} if x = init,q = qinit and~z ∈ {r=0}
n ∪{r≥0}

n, or

if x = confq′,−→y ,
−→z ∈ Rmn, and

δ (q′) = 〈itest,q,s〉,yi ∈ {r=0,r≥0} and −→y =−→z , or

δ (q′) = 〈itest,s,q〉,yi ∈ sucMC
(zi) and z j = y j for j 6= i, or

δ (q′) = 〈i++,q〉,zi ∈ sucMC
(yi) and z j = y j for j 6= i

{error} otherwise

where, s ∈ Q represents an arbitrary state.
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MC is conceived as a finite way of representing the behavior of C . For that purpose, it is useful

to understand the operations zero and suc as means of representing the natural number values of the

counters. Their interpretation, however, is finitely defined over the abstract values Rm. In fact, in order

to check if some formula ϕ encodes a sequence of computations respecting nxt, it is not essential to

distinguish all natural values. Indeed, it is easy to conclude from the definition of counter machine that

in each computation step its counters either retain their previous values, or else they are incremented

or decremented. As we set the initial configuration with all counters set to zero and the effect of test

transitions also depends on detecting zero values, it is sufficient to being able to characterize unambigu-

ously the value 0 and, additionally, being able to recognize pairs of values whose difference is larger

than one. This is successfully accomplished with the proposed non-deterministic interpretation of suc, as

shall be made clear below. The ε and step operations are then meant to represent sequences of configu-

rations, whereas their interpretation over the abstract values Conf∪{init} guarantees that consecutive

configurations respect nxt. Of course, the designated values of MC are those corresponding to halting

configurations. The error value is absorbing with respect to the interpretation of all operations, and

gathers all meaningless situations. Overall, as we will show, MC induces a logic that has at most one

theorem, corresponding to the computation of C , if it is halting.

The inner workings of the construction

In the next examples we will illustrate the way the Nmatrix MC encodes the computations of C . Proofs

of the general statements are postponed to the next section.

In order for ⊢MC
to have, at most, the formula representing the computation of C as theorem,

Val(MC ) must contain enough valuations to refute every formula not representing the computation of C .

These valuations are presented in the following example

Example 3.2. By definition of seq, it is clear that no formula containing variables corresponds to a se-

quence of configurations. Furthermore, no formula containing variables can be a theorem of MC since

these formulas are easily refuted by any valuation sending the variables to the truth value error, as this

value is absorbing (aka infectious), that is, sucMC
(x)= errorwhenever x= error and (stepq)MC

(x,~z)=
error whenever x = error or zi = error. Because of this, from here onwards, we concern ourselves

only with the truth-values assigned to closed formulas.

We do not have much freedom left, but it will be enough. The interpretations of the connectives are

all deterministic, except in the case of zeroMC
and sucMC

(r≥0). This means that, if v ∈ Val(MC ) and

v(zero) = r=0, then there is no choice left for the values assigned by v to the remaining closed formulas.

Consider, therefore, the following valuation

v=0 (ψ) =











































r=0 if ψ = zero,

r≥1 if ψ = enc(1),

r≥2 if ψ = enc( j) with j ≥ 2,

init if ψ = ε ,

(stepq)MC
(v=0 (ϕ),~z) if ψ = stepq(ϕ ,ψ1, . . . ,ψn) and zi = v=0 (ψi),

error, otherwise.

If v(zero) = r≥0, however, we can still loop the truth values assigned to formulas of the form enc( j).
The amount of loops could be infinite or finite, though the infinite case is of no interest to us, since it

does not allow us to falsify any of the formulas that we want to falsify.
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Let k ∈ N0, consider the valuations

vk(ψ) =











































r≥0 if ψ = enc( j) with j ≤ k,

r≥1 if ψ = enc( j) with j = k+1,

r≥2 if ψ = enc( j) with j ≥ k+2,

init if ψ = ε ,

(stepq)MC
(vk(ϕ),~z) if ψ = stepq(ϕ ,ψ1, . . . ,ψn) and zi = vk(ψi),

error, otherwise. △

As previously discussed, it is crucial for the valuations in Val(MC ) to be able to identify whenever

two given numbers a,b ∈ N0 are not consecutive, or different. To this aim, for every pair a,b ∈ (N0)
2,

we denote by µ+
a,b,µ

−
a,b,µ

6=
a,b the valuations determined by the following conditions

µ+
a,b =











va if b ≥ a+1,

va−1 if b ≤ a and a 6= 0,

v=0 if b ≤ a and a = 0.

µ−
a,b =











va−2 if b ≤ a−2,

va−1 if b ≥ a−1 and a 6= 0,

v=0 if b ≥ a−1 and a = 0.

µ 6=
a,b =

{

v=0 if a = 0,

va−1 if a 6= 0.

Remark 3.3. The following properties can be easily checked by inspecting the corresponding definition:

• if b 6= a+1 then µ+
a,b(enc(b)) /∈ sucMC

(µ+
a,b(enc(a))),

• if b 6= a−1 then µ−
a,b(enc(a)) /∈ sucMC

(µ−
a,b(enc(b))), and

• if b 6= a then µ 6=
a,b(enc(b)) 6= µ 6=

a,b(enc(a)).

In the following two examples we consider two different machines that should make clear the sound-

ness of our construction. In the first one, we show how every valuation validates the formula encoding a

finite computation. We also see how sequences of configurations can fail to respect nxt in different ways

and how we can use the valuations presented in Example 3.2 to falsify formulas encoding them. In the

second example, we show a counter machine that never halts.

Example 3.4. Consider the counter machine C = 〈1,Q,qinit,δ 〉 with Q = {qinit,q1,q2,q3} and δ as

defined in the following table

q qinit q1 q2 q3

δ (q) 〈1++,q1〉 〈1test,q3,q2〉 〈1test,q3,q3〉 undefined

The only halting state of C is q3 and the machine C has the following finite computation

〈(qinit,0),(q1,1),(q2,0),(q3,0)〉.

For every v∈Val(MC ), we have v(ε) = init. The values of v(enc(k)) are dependent on v: if v= v=0 then

v(enc(0)) = r=0 and v(enc(1)) = r≥1. If v 6= v=0 then v(enc(0)) = r≥0 and v(enc(1)) ∈ (suc)MC
(r≥0) =

{r≥0,r≥1}.

Let ϕ j be the formula representing the prefix with only the first j+1 configurations, we obtain, from

the above equalities and the definition of stepM, that

v(ϕ0) = v(stepqinit
(ε ,enc(0))) = (stepqinit

)M(init,v(enc(0))) = confqinit,v(enc(0))

v(ϕ1) = v(stepq1
(ϕ0,enc(1))) = (stepq1

)M(confqinit,v(enc(0)),v(enc(1))) = confq1,v(enc(1))

v(ϕ2) = v(stepq2
(ϕ1,enc(0))) = (stepq2

)M(confq1,v(enc(1)),v(enc(0))) = confq2,v(enc(0))

v(ϕ3) = v(stepq3
(ϕ2,enc(0))) = (stepq3

)M(confq2,v(enc(0)),v(enc(0))) = confq3,v(enc(0))
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The formula ϕ3 encodes the finite computation of C and, since confq3,v(enc(0)) ∈ D, /0 ⊢MC
ϕ3. Fur-

thermore, the formulas ϕi with 0 ≤ i ≤ 3, that encode its strict prefixes, are falsified by all valuations,

since q3 is the only halting state.

Formulas not representing sequences of configurations, like suc(ψ) with ψ 6= enc( j), are falsified by

every v ∈ Val(MC ) since v(suc(ψ)) = sucM = error. Formulas encoding sequences of configurations

not starting in the initial configuration of M are also falsifiable: v0(stepq(ψ ,enc( j))) = error whenever,

either q 6= qinit and ψ = ε , or, q = qinit, ψ = ε and j 6= 0. For example, v0(stepqinit
(ε ,enc(1))) =

(stepqinit
)MC

(init,r≥1) = error.

The sequence 〈(qinit,0),(q1,2)〉, encoded by ψ = stepq1
(ϕ0,enc(2)), illustrates a situation where the

value in the counter was incremented by two while the transition δ (q1) = 〈1++,q2〉 required it to increase

by only one. In this case, we have µ+
0,2(ψ) = v=0 (ψ)= (stepq1

)M(confqinit,r=0
,r≥2)= error. In the same

way, we also have µ−
2,0(γ) = error with γ = stepq2

(ϕ1,enc(2)). This reflects the fact that γ encodes the

sequence resulting from appending (q2,2) to the sequence encoded by ϕ1, hence incrementing the value

the counter while δ (q1) required it to be decremented by one.

Finally, consider ξ = stepq3
(ϕ2,enc(1)) encoding the sequence resulting from appending (q3,1) to

the sequence encoded by ϕ2. As the value in the first counter was incremented, while the transition

δ (q2) = 〈1test,q3,q3〉 required it to remain unchanged we obtain µ 6=
0,1(ξ ) = v=0 (ξ ) = error. △

Example 3.5. Consider the counter machine C = 〈2,Q,qinit,δ 〉 with Q = {qinit,q1,q2,q3,q4} and δ as

defined in following table

q qinit q1 q2 q3 q4

δ (q) 〈1++,q1〉 〈2++,q2〉 〈1test,q4,q3〉 〈1++,qinit〉 undefined

This machine does not have a finite computation, and its infinite computation loops indefinitely in the

following cycle consisting of 4 transitions. It starts by incrementing both counters. Then it tests if the

first counter has the value 0. As the counter has just been incremented, the test is bound to fail and hence

that counter is decremented. It then increments the same counter, and returns to the initial state.

The halting state q4 could only be reached if at a certain point the test would succeed, but this never

happens since, at the point the tests are made, the value of the first counter is never 0. Thus, the machine

C has the following infinite computation

〈(qinit,0,0),(q1,1,0),(q2,1,1),(q3,0,1),(qinit,1,1),(q1,2,1),(q2 ,2,2),(q3,1,2),(qinit,2,2), . . .〉

As we show in the next section, since C has no finite computations, MC has no theorems. Let k ≥ 1 and

consider the sequence resulting from adding (q3,k − 1,k + 1) to the prefix of the infinite computation

of C with 4(k− 1)+ 3 elements, and let ϕk encode this sequence. In this case, the value of the second

counter is increased, when it should have remained the same, and we have

µ 6=
k,k+1(ϕk) = vk−1(ϕk) = (stepq3

)MC
(confq2,r≥1,r≥1

,r≥0,r≥2) = error. △

4 Monadicity of Nmatrices is undecidable

In this section we show that MC really does what is intended. The main result of the paper then follows,

after we additionally introduce a construction connecting the existence of a theorem with monadicity.



P. Filipe, C. Caleiro & S. Marcelino 63

MC validates the finite computation of C

In the following propositions we show that MC is interpreting computations of C as it should. Thus,

formulas encoding computations of C that do not end in a halting state can be falsified, whilst the one

encoding the finite computation of C is always designated.

Proposition 4.1. Let C = 〈n,Q,qinit,δ 〉 be a deterministic n-counter machine. If nxt(q,~y) = (q′,~z) then

(stepq′)MC
(confq,v(enc(~y)),v(enc(~z))) = {confq′,v(enc(~z))}, for every v ∈ Val(MC ). (1)

Proof. Suppose that nxt(q,~y) = (q′,~z). We have to consider three cases, depending on δ (q).

If δ (q) = (i++,q′) and ~z = ~y+~ei then, for every j 6= i and v ∈ Val(MC ), we have z j = y j and

v(enc(z j)) = v(enc(y j)). Furthermore, zi = yi+1, so enc(zi) = suc(enc(yi)) and, for every v ∈ Val(MC ),
v(enc(zi)) = v(suc(enc(yi))) ∈ sucMC

(v(enc(yi))).

Otherwise, δ (q) = 〈itest,s1,s2〉 for some machine states s1 and s2.

If s1 = q′, yi = 0 and ~z = ~y. Then, for every v ∈ Val(MC ), we have v(enc(~z)) = v(enc(~y)) and

v(enc(zi)) = v(enc(yi)) = v(zero) ∈ {r=0,r≥0}.

If s2 = q′, yi 6= 0 and ~y =~z+~ei. Then, for every j 6= i and v ∈ Val(MC ), we have z j = y j and so

v(enc(z j)) = v(enc(y j)). Furthermore, yi = zi+1, so enc(yi) = suc(enc(zi)) and, for every v ∈ Val(MC ),
v(enc(yi)) = v(suc(enc(zi))) ∈ sucMC

(v(enc(zi))).

In all the three cases we conclude (1) directly by the definition of (stepq′)MC
.

Theorem 4.2. Let C = 〈n,Q,qinit,δ 〉 be a deterministic n-counter machine with a finite computation

〈C0, . . . ,Ck〉, then /0 ⊢MC
seq(〈C0, . . . ,Ck〉).

Proof. Suppose that 〈C0, . . . ,Ck〉 is the finite computation of C . Then we have that C0 = (qinit, ~zero),
where ~zero = 〈zero, . . . ,zero〉, nxt(C j) = C j+1 for every 0 ≤ j < k and Ck = (qk,~z) is a halting con-

figuration. For every v ∈ Val(MC ) we have v(seq(〈C0〉)) = confqinit,v( ~zero) and, by proposition 4.1,

v(〈C0, . . . ,Ck〉) = confqk,v(enc(~z)), where Ck = (qk,~z). Since Ck is a halting configuration, we conclude

that confqk ,v(enc(~z)) ∈ D, and so /0 ⊢MC
seq(〈C0, . . . ,Ck〉).

MC can falsify everything else

The following propositions deal with all the possible ways in which a formula can fail to represent a

halting computation of C .

Proposition 4.3. Let C = 〈n,Q,qinit,δ 〉 be a deterministic n-counter machine. If ϕ ∈ LΣC
( /0) does not

represent a sequence of configurations of C then v(ϕ) 6= confq,~y for all v ∈ ValC , q ∈ Q and~y ∈ Rmn.

Proof. The proof follows by induction on the structure of the formula ϕ ∈ LΣC
( /0).

In the base case we have ϕ ∈ {zero,ε}. The statement then holds since, for all v ∈ ValC , v(ϕ) ∈
{zero,init}.

For the step we have two cases. In the first case, ϕ = suc(ψ) and v(suc(ψ)) ∈ Rm∪{error}. In

the second case, ϕ = stepq(ψ ,ψ1, . . . ,ψn) and, if ϕ does not represent any sequence of configurations,

then one of the following must hold

• ψ does not represent a sequence of configurations, in which case, by induction hypothesis, v(ψ) 6=
confq,~y, or

• ψi 6= enc( j), for some 1 ≤ i ≤ n, so v(ψi) /∈ Rm.



64 Monadicity of NMatrices is Undecidable

In both cases we have v(ϕ) = sucMC
(v(ψ),v(ψ1), . . . ,v(ψn)) = error.

Proposition 4.4. Given a deterministic counter machine C = 〈n,Q,qinit,δ 〉. If nxt(q,~y) 6= (q′,~z) then

(stepq′)MC
(confq,v(enc(~y)),v(enc(~z))) = {error}, (2)

for some v ∈ Val(MC ).

Proof. Assume nxt(q,~y) 6= (q′,~z) and notice that, if δ (q) concerns the ith counter and y j 6= z j, for some

j 6= i, then µ 6=
y j ,z j(enc(y j)) 6= µ 6=

y j ,z j(enc(z j)), by remark 3.3. Therefore, equality (2) holds for v = µ 6=
y j ,z j .

Because of this, throughout the rest of the proof, we assume that, y j = z j, for every j 6= i, and concern

ourselves only with the values taken by yi and zi. We have to consider three cases, depending on δ (q).
If δ (q) = 〈i++,s〉, for some machine state s. Then either q′ 6= s, in which case equality (2) holds

for every v ∈ Val(MC ), or zi 6= yi + 1. In this later case, also by remark 3.3, we have µ+
yi ,zi

(enc(zi)) /∈
sucMC

(µ+
yi,zi

(enc(yi))), so equality (2) holds for v = µ+
yi,zi

.

Otherwise, δ (q) = 〈itest,s1,s2〉 for some machine states s1 and s2.

If yi = 0, then either q′ 6= s1 or zi 6= yi. Consider the valuation µ=
yi,zi

= v=0 . Since v=0 (yi) = r=0 /∈
sucMC

(v=0 (enc(zi))), the second condition concerning itest, in the definition of (stepq′)MC
, is not satisfied

whenever v = µ=
yi,zi

. The first condition is also not satisfied if q′ 6= s1, directly, or if zi 6= yi, since in this

case µ=
yi ,zi

(zi) 6= µ=
yi ,zi

(yi), by remark 3.3. We conclude that equality (2) holds for v = µ=
yi,zi

.

If yi 6= 0, then either q′ 6= s2 or zi 6= yi −1. Note that, in any case, µ−
yi,zi

(enc(yi)) /∈ {r=0,r≥0}, which

can easily be checked using the definition of µ−
yi,zi

. Therefore, the first condition concerning itest, in the

definition of (stepq′)MC
, is not satisfied whenever v = µ−

yi,zi
. The second condition is also not satisfied if

q′ 6= s2, directly, or if zi 6= yi−1, since in this case µ−
yi,zi

(enc(yi)) /∈ sucMC
(µ−

yi,zi
(enc(zi))), by remark 3.3.

We conclude that equality (2) holds for v = µ−
yi,zi

.

Proposition 4.5. Given a deterministic counter machine C = 〈n,Q,qinit,δ 〉 and ϕ ∈ LΣC
( /0) such that

ϕ = seq(〈C0, . . . ,Ck〉). If 〈C0, . . . ,Ck〉 is not the computation of C then /0 6⊢MC
ϕ .

Proof. If 〈C0, . . . ,Ck〉 is not the computation of C , then one of the following must hold: (i) C0 is not the

initial configuration of C , (ii) Ck is not a halting configuration of C , or (iii) there is some 1 ≤ i < k such

that nxt(Ci) 6=Ci+1. We deal with each situation separately.

If (i) holds and C0 = (q,~y) then either q 6= qinit or y j 6= 0, for some 1 ≤ j ≤ n. In the first case, for

all v ∈ Val(MC ), we have (stepq)MC
(init,v(enc(~y))) = error. In the second case, vy j−1(enc(y j)) /∈

{r=0,r≥0} and (stepqinit
)MC

(init,vy j−1(enc(~y))) = error.

If (ii) holds and Ck = (q,~y) then q is not a halting state and v(ϕ) ∈ {error,confq,v(~y)} ⊆ A\D, for

all v ∈ Val(MC ).
If (iii) holds then, by proposition 4.4, there is v∈Val(MC ) such that v(seq(〈C0, . . . ,Ci+1〉)) = error.

In any of the cases, there is some v ∈ Val(MC ) such that v(ϕ) /∈ D, so /0 6⊢MC
ϕ .

Having seen how to refute any formula not representing a computation of C we conclude MC does

exactly what we intended.

Theorem 4.6. Let C = 〈n,Q,qinit,δ 〉 be a deterministic counter machine. For any formula ϕ ∈ LΣC
(P)

we have /0 ⊢MC
ϕ if and only if ϕ = seq(〈C0, . . . ,Ck〉) and 〈C0, . . . ,Ck〉 is a finite computation of C .

Proof. From right to left, if 〈C0, . . . ,Ck〉 is a finite computation of C and ϕ = seq(〈C0, . . . ,Ck〉) then,

by theorem 4.2, we have that /0 ⊢MC
ϕ . In the other direction, suppose /0 ⊢MC

ϕ then, as discussed in

example 3.2, ϕ must be a closed formula. By proposition 4.3, ϕ = seq(〈C0, . . . ,Ck〉) for some sequence
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of configurations seq(〈C0, . . . ,Ck〉), and, by proposition 4.5, seq(〈C0, . . . ,Ck〉) must be the computation

of C .

From theoremhood to monadicity

In order to obtain the announced undecidability result we need one last construction. We will show how

to build an Nmatrix Mm from an Nmatrix M, under certain conditions, such that Mm is monadic if and

only if ⊢M has theorems.

Given a finite Σ-Nmatrix M= 〈A, ·M,D〉, let Σm be such that Σ
(2)
m =Σ(2)∪{ fa : a∈A} and Σ

(k)
m = Σ(k),

for every k 6= 2.

Let Am = A∪{1}, assuming w.l.g. that 1 /∈ A, consider Mm = 〈Am, ·m,{1}〉 the Σm-Nmatrix where,

for each g ∈ Σ(k),

gm(x1, . . . ,xk) =

{

gM(x1, . . . ,xk) if x1, . . . ,xk ∈ A

Am otherwise

and, for every a ∈ A,

( fa)m(x,y) =











{1} if x = a and y ∈ D

A if x ∈ A\{a} and y ∈ D

Am otherwise

The following theorem targets Nmatrices with infectious values. Recall that ∗ is infectious in M if

for every connective © in the signature of M we have ©M(x1, . . . ,xk) = ∗ whenever ∗ ∈ {x1, . . . ,xk}.

Proposition 4.7. Given Nmatrix M with at least two truth-values and among them an infectious non-

designated value, ⊢M has theorems if and only if Mm is monadic.

Proof. Let us denote the infectious non-designated value of M by ∗. Clearly, ∗ ceases to be infectious

in Mm as ( fa)Mm
does not necessarily output ∗ when it receives it as input. The value 1 is also not

infectious in Mm, quite the opposite, when given as input to any connective the output can take any

value. That is, for every connective © ∈ Σm we have ©Mm
(x1, . . . ,xk) = Am whenever 1 ∈ {x1, . . . ,xk}.

This immediately implies that if ψ ∈ Sub(ϕ)\{ϕ} and 1 ∈ ψMm
(x) then ϕMm

(x) = Am for any x ∈ Am.

If /0 ⊢M ϕ then ϕ must be a closed formula due to the presence of ∗. Hence, for v ∈ Val(Mm) we

have v(ϕ) ∈ D. Thus, {p}∪{ fa(p,ϕ) : a ∈ A} is a set of monadic separators for Mm, as p separates 1

from the elements in A, and fa(p,ϕ) separates a from every b ∈ A.

If instead there are no theorems in ⊢M, let us consider an arbitrary monadic formula ϕ ∈ LΣm
({p})

and show it cannot separate ∗ from the other elements of A. We need to consider two cases.

• If ϕ ∈ LΣ({p}) then ϕMm
(a) = ϕM(a) ⊆ A 6∋ 1 for every a ∈ A. In which case ϕ cannot separate

any pair of distinct elements of A and, in particular, cannot separate ∗ from any other element of

A.

• If ϕ ∈ LΣm
({p})\LΣ({p}) then there is fa(ψ1,ψ2) ∈ Sub(ϕ) with ψ1,ψ2 ∈ LΣ({p}). If p occurs

in ψ2 then (ψ2)Mm
(∗) = (ψ2)M(∗) = {∗} and ( fa(ψ1,ψ2))Mm

(∗) = Am, since ∗ /∈ D. If p does not

occur in ψ2 then, since /0 6⊢M ψ2, (ψ2)M∩(A\D) 6= /0 and we also obtain ( fa(ψ1,ψ2))Mm
(∗) = Am.

Therefore, ϕMm
(∗) = Am since either ϕ = fa(ψ1,ψ2) or fa(ψ1,ψ2) ∈ Sub(ϕ) \ {ϕ} and 1 ∈

( fa(ψ1,ψ2))Mm
(∗). As ϕMm

(∗) contains both designated and non-designated elements it cannot

separate ∗ from any other element of A.

As we are assuming that A has at least two elements, we conclude that Mm is not monadic.
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Finally, we get to the main result of this paper.

Theorem 4.8. The problem of determining if a given finite Σ-Nmatrix is monadic is undecidable.

Proof. For every counter machine C , the Nmatrix MC is in the conditions of Theorem 4.7, as it has more

than two truth-values and error is infectious. Therefore, by applying successively Theorem 4.6 and 4.7,

we reduce the halting problem for counter machines to the problem of checking if a finite Nmatrix is

monadic. Indeed, for a given counter machine C , C halts if and only if ⊢MC
has theorems if and only if

(MC )m is monadic. Furthermore, the presented constructions are all computable and (MC )m is always

finite since, if C has m states and n counters, then MC has m× 4n + 6 truth-values and ΣC has 3+m

connectives. Therefore, (MC )m has m×4n +7 truth-values and (ΣC )m has m×4n +m+9 connectives.

We can therefore conclude the proof just by invoking Theorem 3.1.

As a simple corollary we obtain that following result about Nmatrices, or better, about their underly-

ing multi-algebras.

Corollary 4.9. The problem of generating all expressible unary multi-functions in an arbitrary finite

Nmatrix is not computable.

Proof. Just note that if we could compute the set of all expressible unary multi-functions, as the set is

necessarily finite, we could test each of them for the separation of values, as illustrated in the case of

matrices in Example 2.3.

5 Conclusion

In this paper we have shown that, contrarily to the most common case of logical matrices, the monadicity

property is undecidable for non-deterministic matrices. As a consequence, we conclude that the set of

all multi-functions expressible in a given finite Nmatrix is not computable, in general. These results,

of course, do not spoil the usefulness of the techniques for obtaining axiomatizations, analytical calculi

and automated proof-search for monadic non-deterministic matrices. This is especially the case since,

for a given Nmatrix, one can always define a monadic Nmatrix over an enriched signature, such that its

logic is a conservative extension of the logic of the previous Nmatrix, as described in [14]. The results

show, however, that tool support for logics based on non-deterministic matrices must necessarily have its

limitations.

On a closer perspective, the reduction we have obtained from counter machines to Nmatrices (of

which non-determinism is a fundamental ingredient) just adds to the initial perception that allowing for

non-determinism brings a substantial amount of expressive power to logical matrices. Concretely, it

opens the door for studying the computational hardness of other fundamental meta-theoretical questions

regarding logics defined by Nmatrices. In particular, we will be interested in studying the problem of

deciding whether two given finite Nmatrices define the same logic, a fundamental question raised by

Zohar and Avron in [5], for which only necessary or sufficient conditions are known.

Additionally, we deem it important to further explore the connections between Nmatrices and term-

dag-automata (an interesting computational model for term languages [10, 1]) and which informed our

undecidability result. Another relevant direction for further investigation is the systematic study of in-

fectious semantics, in the lines of [8, 6], whose variable inclusion properties also played an important

role in our results.
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