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After recalling the definitions of atomic and molecular logics, we show how notions of bisimulation

can be automatically defined from the truth conditions of the connectives of any of these logics. Then,

we prove a generalization of van Benthem modal characterization theorem for molecular logics.

Our molecular connectives should be uniform and contain all conjunctions and disjunctions. We

use modal logic, the Lambek calculus and modal intuitionistic logic as case study and compare in

particular our work with Olkhovikov’s work.

1 Introduction

Modal bisimulation is the notion of invariance of modal logic: every formula of first-order logic (FOL)

with a free variable whose truth value is always the same in two bisimilar models is equivalent to the

translation into FOL of a formula of modal logic. This is the core of the van Benthem characterization

theorem. A wide variety of non–classical logics have been introduced over the past decades: modal

logics, relevant logics, Lambek calculi, to name just a few. For each of these logics, one can define a

notion of invariance and prove by adapting the van Benthem’s characterization theorem that this notion

of invariance characterizes the given logic as a fragment of FOL. A drawback of this logical pluralis-

tic approach is that this has to be done by hand on a case by case basis for each non–classical logic.

Each time the notion of invariance has to be found out and each time the proof of the van Benthem

characterization theorem has to be adapted for that specific notion of invariance. For example, a similar

characterization theorem has been proved for (modal) intuitionistic logic [19], temporal logic [15], sab-

otage modal logic [7], the modal µ–calculus [14], graded modal logic [22]. This situation is obviously

problematic if one shares the ideal of “universal logic” [8]. Instead, we would prefer to obtain automati-

cally from the definitions of the connectives of a given logic a suitable definition of bisimulation and its

associated characterization theorem. This is what we are going to provide in this article for a wide range

of non–classical logics, those molecular logics whose connectives are uniform, a notion introduced in

that paper. Atomic and molecular logics are introduced in [6]. They behave as ‘normal forms’ for logics

since we show in [6] that every non-classical logic such that the truth conditions of its connectives can

be expressed in terms of first-order formulas is as expressive as an atomic or molecular logic.

Organization of the article. We start in Sections 2 and 3 by recalling first–order logics, modal logic,

the Lambek calculus and modal intuitionistic logic. In Section 4 we recall atomic and molecular logics.

Then, in Section 5, we will show how a suitable notion of bisimulation/invariance can be defined auto-

matically from the definition of the connectives of any atomic or molecular logic. Then, in Section 7, we

will generalize van Benthem modal characterization theorem to molecular logics whose connectives are

uniform. Finally, we discuss related work in Section 8, in particular the work of Olkhovikov.
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2 Classical logics

The set P ≜ {R1, . . . ,Rn, . . .} is a set of predicate symbols of arity k1, . . . ,kn, . . . respectively (one of them

can be the identity predicate = of arity 2), V ≜ {v1, . . . ,vn, . . .} is a set of variables and C ≜ {c1, . . . ,cn, . . .}
is a set of constants. Each of these sets can be finite or infinite. v1,v2,v3, . . . are the names of the variables

and we use the expressions x,x1,x2, . . . ,y,y1,y2, . . . ,z,z1,z2, . . . to refer to arbitrary variables or constants,

which can be for example v42,v5,c101,c21, . . .

The first-order language LP
FOL

is defined inductively by the following grammars in BNF:

LVC
FOL

∶ t ∶∶= x ∣ c

LP
FOL

∶ ϕ ∶∶= Rt . . .t ∣ � ∣ (ϕ → ϕ) ∣ ∀xϕ

where x ∈ V , c ∈ C, t ∈LVC
FOL

and R ∈P . Elements ofLVC
FOL

are called terms and elements ofLP
FOL

are called

first–order formulas. Formulas of the form Rt1 . . .tk are called atomic formulas. If ϕ ∈ LP
FOL

, the Boolean

negation of ϕ , denoted ¬ϕ , is defined by the abbreviation ¬ϕ ≜ (ϕ → �). We also use the abbreviations

⊺ ≜ ¬�, (ϕ ∨ψ) ≜ (¬ϕ →ψ), (ϕ ∧ψ) ≜ ¬(¬ϕ ∨¬ψ) and (ϕ↔ψ) ≜ (ϕ →ψ)∧(ψ → ϕ) as well as the

abbreviations ∃xϕ ≜ ¬∀x¬ϕ , ∀x1 . . .xnϕ ≜ ∀x1 . . .∀xnϕ , ∃x1 . . .xnϕ ≜ ∃x1 . . .∃xnϕ and ∀xϕ ≜ ∀x1 . . .xnϕ

if x = (x1, . . . ,xn) is a tuple of variables.

Let ϕ ∈ LP
FOL

. An occurrence of a variable x in ϕ is free (in ϕ) if, and only if, x is not within the

scope of a quantifier of ϕ . A variable which is not free (in ϕ) is bound (in ϕ). We say that a formula

of LP
FOL

is a sentence (or is closed) when it contains no free variable. We denote by ϕ(x1, . . . ,xk) a

formula of LP
FOL

whose free variables or constants coincide exactly with x1, . . . ,xk. In doing so, we depart

from the literature in which this notation means that the free variables of ϕ are included in {x1, . . . ,xk}.

Free variables may be used to bind elements of two different subformulas. For example, the formula

Ryx∨R
′
xz with free variables x,y,z will be evaluated in a structure in such a way that x will be assigned

the same element of the domain in the two subformulas Ryx and R
′
xz.

We denote by LP
FOL

(x) the fragment of LP
FOL

whose formulas all contain at least one free variable or

constant.

A structure is a tuple M ≜ (W,{R1, . . . ,Rn, . . . ,c1, . . . ,cn, . . .}) where:

• W is a non-empty set called the domain;

• R1, . . . ,Rn, . . . are relations over W with the same arity as R1, . . . ,Rn, . . . respectively;

• c1, . . . ,cn, . . . ∈W are elements of the domain called distinguished elements.

An assignment over M is a mapping s ∶ V ∪ C →W such that for all ci ∈ C, s(ci) = ci. If s is an

assignment, s[x ∶= w] is the same assignment as s except that the value of the variable x ∈ V is assigned

to w. A pair of structure and assignement (M,s) is called a pointed structure. The class of all pointed

structures (M,s) is denoted MFOL.

The satisfaction relation FOL ⊆MFOL×L
P
FOL

is defined inductively as follows. Below, we write

(M,s) ϕ for ((M,s),ϕ) ∈ FOL.

(M,s) � never;

(M,s) Rit1 . . .tk iff (s(t1), . . . ,s(tk)) ∈ Ri;

(M,s) (ϕ →ψ) iff if (M,s) ϕ then (M,s) ψ ;

(M,s) ∀xϕ iff (M,s[x ∶= w]) ϕ for all w ∈W.

In the literature [10], (M,s) ϕ(x1, . . . ,xk) is sometimes denoted M ϕ(x1, . . . ,xk)[w1, . . . ,wk], M

ϕ[w1/x1, . . . ,wk/xk] or simply M ϕ[w1, . . . ,wk], with w1 = s(x1), . . . ,wk = s(xk). In that case, we say
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that (M,s) makes ϕ true. We say that the formula ϕ ∈ LP
FOL

is realized in M when there is an assignment

s such that (M,s) ϕ . We depart from the literature by treating constants on a par with variables: the

denotation of constants is usually not dealt with by means of assignments. Two (pointed) structures are

elementarily equivalent when they make true the same sentences.

A triple of the form (LFOL,EFOL, FOL) is called the first–order logic associated to LFOL and EFOL.

If LFOL = L
P
FOL

, the triple (LP
FOL

,EFOL, FOL) is called pure predicate logic (associated to EFOL), if

LFOL = L
P
FOL
(x), the triple (LP

FOL
(x),EFOL, FOL) is called pure predicate logic with free variables

and constants (associated to EFOL). When EFOL is MFOL, they are simply called respectively pure

predicate logic and pure predicate logic with free variables and constants.

3 Non-classical logics

In this section, A is a set of propositional letters which can be finite or infinite.

3.1 Modal logic

The set I is a set of indices which can be finite or infinite. The multi-modal language LML is defined

inductively by the following grammar in BNF:

LML ∶ ϕ ∶∶= p ∣ ¬p ∣ (ϕ ∧ϕ) ∣ (ϕ ∨ϕ) ∣ 3 jϕ ∣ 2 jϕ

where p ∈ A and j ∈ I. We present the so-called possible world semantics of modal logic. A Kripke

model M is a tuple M ≜ (W,{R1, . . . ,Rm, . . . ,P1, . . . ,Pn, . . .}) where

• W is a non-empty set whose elements are called possible worlds;

• R1, . . . ,Rm, . . . ⊆W ×W are binary relations over W called accessibility relations;

• P1, . . . ,Pn, . . . ⊆W are unary relations interpreting the propositional letters of P.

We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed Kripke model. The class of all

pointed Kripke models is denoted EML.

We define the satisfaction relation ML ⊆ EML×LML inductively by the following truth conditions.

Below, we write (M,w) ϕ for ((M,w),ϕ) ∈ ML. For all (M,w) ∈ EML, all ϕ ,ψ ∈ LML, all pi ∈ P and

all j ∈ I,
(M,w) pi iff Pi(w) holds;

(M,w) ¬pi iff Pi(w) does not hold;

(M,w) (ϕ ∧ψ) iff (M,w) ϕ and (M,w) ψ ;

(M,w) (ϕ ∨ψ) iff (M,w) ϕ or (M,w) ψ ;

(M,w) 3 jϕ iff there exists v ∈W such that R jwv and (M,v) ϕ ;

(M,w) 2 jϕ iff for all v ∈W such that R jwv,(M,v) ϕ .

The triple (LML,EML, ML) forms a logic, that we call modal logic. Bisimulations for modal logic

can be found in [9].

3.2 Lambek calculus

The Lambek language LLC is the set of formulas defined inductively by the following grammar in BNF:

LLC ∶ ϕ ∶∶= p ∣ (ϕ ⊗ϕ) ∣ (ϕ ⊂ ϕ) ∣ (ϕ ⊃ ϕ)
where p ∈A. A Lambek model is a tuple M = (W,{R,P1, . . . ,Pn, . . .}) where:
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• W is a non-empty set;

• R ⊆W ×W ×W is a ternary relation over W ;

• P1, . . . ,Pn, . . . ⊆W are unary relations over W .

We write w ∈ M for w ∈W by abuse and (M,w) is called a pointed Lambek model. The class of all

pointed Lambek models is denoted ELC. We define the satisfaction relation Int ⊆ ELC ×LLC by the

following truth conditions. Below, we write (M,w) ϕ for ((M,w),ϕ) ∈ LC. For all Lambek models

M = (W,{R,P1, . . . ,Pn, . . .}), all w ∈M, all ϕ ,ψ ∈ LLC and all pi ∈ P,

(M,w) pi iff Pi(x) holds;

(M,w) (ϕ ⊗ψ) iff there are v,u ∈W such that Rvuw,

(M,v) ϕ and (M,u) ψ ;

(M,w) (ϕ ⊃ψ) iff for all v,u ∈W such that Rwvu,

if (M,v) ϕ then (M,u) ψ ;

(M,w) (ψ ⊂ ϕ) iff for all v,u ∈W such that Rvwu,

if (M,v) ϕ then (M,u) ψ .

The triple (LLC,ELC, LC) forms a logic, that we call the Lambek calculus. Bisimulations for the

Lambek calculus, called directed bisimulations, can be found in [21].

3.3 Modal intuitionistic logic

The modal intuitionistic language LInt is defined inductively by the following grammar in BNF:

LInt ∶ ϕ ∶∶= ⊺ ∣ � ∣ p ∣ (ϕ ∧ϕ) ∣ (ϕ ∨ϕ) ∣ (ϕ⇒ ϕ) ∣ 3ϕ ∣ 2ϕ

where p ∈A. A modal intuitionistic model is a tuple M = (W,{R,R3,P1, . . . ,Pn, . . .}) where:

• W is a non-empty set;

• R⊆W ×W is a binary relation over W which is reflexive and transitive (R is reflexive if for all w ∈W

Rww and transitive if for all u,v,w ∈W , Ruv and Rvw imply Ruw);

• R3 ⊆W ×W is a binary relation over W ;

• P1, . . . ,Pn, . . . ⊆W are unary relations over W such that for all v,w ∈W , if Rvw and Pn(v) then Pn(w).
We write w ∈M for w ∈W by abuse and the pair (M,w) is called a pointed modal intuitionistic model.

The class of all pointed modal intuitionistic models is denoted EInt. We define the satisfaction relation

Int ⊆ EInt ×LInt by the following truth conditions. Below, we write (M,w) ϕ for ((M,w),ϕ) ∈ Int.

For all modal intuitionistic models M = (W,{R,R3,P1, . . . ,Pn, . . .}), all w ∈M, all ϕ ,ψ ∈LInt and all pi ∈P,

(M,w) ⊺ always;

(M,w) � never;

(M,w) pi iff Pi(w) holds;

(M,w) (ϕ ∧ψ) iff (M,w) ϕ and (M,w) ψ ;

(M,w) (ϕ ∨ψ) iff (M,w) ϕ or (M,w) ψ ;

(M,w) (ϕ⇒ψ) iff for all v ∈W such that Rwv, if (M,v) ϕ then (M,v) ψ ;

(M,w) 2ϕ iff for all v ∈W such that Rwv,

for all u ∈W such that R3vu,(M,u) ϕ ;

(M,w) 3ϕ iff for all v ∈W such that Rwv,

there is u ∈W such that R3vu and (M,u) ϕ .
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The triple (LInt,EInt, Int) forms a logic, that we call modal intuitionistic logic. Bisimulations for

(modal) intuitionistic logic can be found in [18, 19].

4 Atomic and molecular logics

4.1 Atomic logics

Atomic logics are logics such that the truth conditions of their connectives are defined by first-order

formulas of the form ∀x1 . . .xn(±1P1x1∨ . . .∨±nPnxn∨±Rx1 . . .xnx) or ∃x1 . . .xn(±1P1x1∧ . . .∧±nPnxn∧
±Rx1 . . .xnx) where ±i and ± are either empty or ¬. Likewise, propositional letters are defined by first-

order formulas of the form ±Px. We will represent the structure of these formulas by means of so–called

skeletons whose various arguments capture the different features and patterns that allow us to define them

completely.

We recall that N∗ denotes the set of natural numbers minus 0 and that for all n ∈ N∗, Sn denotes

the group of permutations over the set {1, . . . ,n}. Permutations are generally denoted σ ,τ , the identity

permutation Id is sometimes denoted 1 as the neutral element of every permutation group and σ
− stands

for the inverse permutation of the permutation σ . For example, the permutation σ = (3,1,2) is the

mapping that maps 1 to 3, 2 to 1 and 3 to 2 (see for instance [23] for more details).

Definition 1 (Atomic skeletons and connectives). The sets of atomic skeletons P and C are defined as

follows:

P ≜S1×{+,−}×{∀,∃}×N∗

C ≜P∪ ⋃
n∈N∗
{Sn+1×{+,−}×{∀,∃}×N∗n+1

×{+,−}n} .

P is called the set of propositional letter skeletons and C is called the set of connective skeletons. They

can be represented by tuples (σ ,±,Æ,k,± j) or (σ ,±,Æ,k) if it is a propositional letter skeleton, where

Æ ∈ {∀,∃} is called the quantification signature of the skeleton, k = (k,k1, . . . ,kn) ∈N∗n+1
is called the

type signature of the skeleton and ± j = (±1, . . . ,±n) ∈ {+,−}n
is called the tonicity signature of the

skeleton; (Æ,k,± j) is called the signature of the skeleton. The arity of a propositional letter skele-

ton (σ ,±,Æ,k) is 0 and its type is k. The arity of a skeleton ⋆ ∈C is n, its input types are k1, . . . ,kn and

its output type is k.

An (atomic) connective or (atomic) propositional letter is an object to which is associated an (atomic)

skeleton. Its arity, signature, quantification signature, type signature, tonicity signature, input and output

types are the same as its skeleton. By abuse, we sometimes identify a connective with its skeleton. We

also introduce the Boolean connectives called conjunctions and disjunctions:

B ≜ {∧k,∨k ∣ k ∈N∗}
The type signatures of ∧k and ∨k are (k,k,k) and their arity is 2.

We say that a set of atomic connectives C is complete for conjunction and disjunction when it con-

tains all conjunctions and disjunctions ∧k,∨k, for k ranging over all input types and output types of

the atomic connectives of C. The set of atomic skeletons associated to C is denoted ⋆(C), its set of

propositional letters is denoted P(C).
Propositional letters are denoted p, p1, p2, etc. and connectives are denoted ⋆,⋆1,⋆2, etc. ⊣

Remark 1. The permutations σ mentioned in atomic skeletons play an important role in the proof theory

of atomic logics, which is dealt with in [4, 5].
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Definition 2 (Atomic language). Let C be a set of atomic connectives. The (typed) atomic language

LC associated to C is the smallest set that contains the propositional letters and that is closed under the

atomic connectives. That is,

• P(C) ⊆ LC;

• for all ⋆ ∈C of arity n > 0 and of type signature (k,k1, . . . ,kn) and for all ϕ1, . . . ,ϕn ∈ LC of types

k1, . . . ,kn respectively, we have that ⋆(ϕ1, . . . ,ϕn) ∈ LC and ⋆(ϕ1, . . . ,ϕn) is of type k.

The Boolean atomic language LB

C
is the smallest set that contains the propositional letters and that is

closed under the atomic connectives of C as well as the Boolean connectives B:

• for all ϕ ,ψ ∈ LB

C
of type k, we have that (ϕ ∧k ψ),(ϕ ∨k ψ) ∈ LB

C
.

Elements of LC are denoted ϕ ,ψ ,α , . . . The type of a formula ϕ ∈ LC is denoted k(ϕ). For all

ϕ1, . . . ,ϕn ∈ L of type k, ⋀{ϕ1, . . . ,ϕn} and ⋁{ϕ1, . . . ,ϕn} stand for ((ϕ1∧k ϕ2)∧k . . .∧k ϕn) and

((ϕ1∨k ϕ2) ∨k . . .∨k ϕn) respectively. When it is clear from the context, we will omit the subscript k

in ∧k,∨k and write them ∧,∨.

In the sequel, we assume that all sets of connectives C are such that they contain at least a proposi-

tional letter. ⊣

Definition 3 (C–models). Let C be a set of atomic connectives. A C–model is a tuple M = (W,R) where

W is a non-empty set and R is a set of relations over W such that each n–ary connective ⋆ ∈C which is

not a Boolean connective of type signature (k,k1, . . . ,kn) is associated to a k1 + . . .+ kn + k–ary relation

R⋆ ∈ R.

An assignment is a tuple (w1, . . . ,wk) ∈W k for some k ∈N∗, generally denoted w. A pointed C–model

(M,w) is a C–model M together with an assignment w. In that case, we say that (M,w) is of type k. The

class of all pointed C–models is denoted MC. ⊣

Definition 4 (Atomic logics). Let C be a set of atomic connectives and let M = (W,R) be a C–model.

We define the interpretation function of LC in M, denoted J⋅KM
∶ LC → ⋃

k∈N∗
W k, inductively as fol-

lows: for all propositional letters p ∈ C of skeleton (Id,±,Æ,k), all connectives ⋆ ∈ C of skeleton

(σ ,±,Æ,(k,k1, . . . ,kn),(±1, . . . ,±n)) of arity n > 0 and all k ∈N∗, for all ϕ ,ψ ,ϕ1, . . . ,ϕn ∈ LC, if k(ϕ) =
k(ψ) = k,

JpKM ≜ ±Rp

J(ϕ ∧k ψ)KM ≜ JϕKM
∩ JψKM

J(ϕ ∨k ψ)KM ≜ JϕKM
∪ JψKM

J⋆(ϕ1, . . . ,ϕn)KM ≜ f⋆(Jϕ1K
M
, . . . ,JϕnK

M)
where +Rp ≜Rp and −Rp ≜W k

−Rp and the function f⋆ is defined as follows: for all W1 ∈P(W k1), . . . ,Wn ∈
P(W kn), f⋆(W1, . . . ,Wn) ≜ {wn+1 ∈W k ∣ C⋆ (W1, . . . ,Wn,wn+1)} where C⋆ (W1, . . . ,Wn,wn+1) is called the

truth condition of ⋆ and is defined as follows:

• if Æ =∀: “∀w1 ∈W k1
. . .wn ∈W kn (w1 ⋔1 W1∨ . . .∨wn ⋔n Wn ∨R±σ

⋆ w1 . . .wnwn+1)”;

• if Æ = ∃: “∃w1 ∈W k1
. . .wn ∈W kn (w1 ⋔1 W1∧ . . .∧wn ⋔n Wn∧R±σ

⋆ w1 . . .wnwn+1)”;

where, for all j ∈ J1;nK, w j ⋔ j Wj ≜

⎧⎪⎪⎨⎪⎪⎩
w j ∈Wj if ± j = +

w j ∉Wj if ± j = −
and R±σ

⋆ w1 . . .wn+1 holds iff

±R⋆wσ−(1) . . .wσ−(n+1) with the notations +R⋆ ≜ R⋆ and −R⋆ ≜W k+k1+...+kn −R⋆. If EC is a class of

pointed C–models, the satisfaction relation ⊆ EC ×LC is defined as follows: for all ϕ ∈ LC and all
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Permutations of S2 unary signatures

τ1 = (1,2) t1 = (∃,(1,1),+)
τ2 = (2,1) t2 = (∀,(1,1),+)

t3 = (∀,(1,1),−)
t4 = (∃,(1,1),−)

Permutations of S3 binary signatures

σ1 = (1,2,3) s1 = (∃,(1,1,1),(+,+))
σ2 = (3,2,1) s2 = (∀,(1,1,1),(+,−))
σ3 = (3,1,2) s3 = (∀,(1,1,1),(−,+))
σ4 = (2,1,3) s4 = (∀,(1,1,1),(+,+))
σ5 = (2,3,1) s5 = (∃,(1,1,1),(+,−))
σ6 = (1,3,2) s6 = (∃,(1,1,1),(−,+))

s7 = (∃,(1,1,1),(−,−))
s8 = (∀,(1,1,1),(−,−))

Figure 1: Permutations of S2 and S3 and ‘orbits’ of unary and binary signatures

(M,w) ∈ EC, ((M,w),ϕ) ∈ iff w ∈ JϕKM. We usually write (M,w) ϕ instead of ((M,w),ϕ) ∈
and we say that ϕ is true in (M,w).

The class of atomic logics is defined by LGGL ≜ {(LC,EC, ) ∣C is a finite set of atomic connectives

and EC is a class of C–models}. The atomic logic (LC,EC, ) is the atomic logic associated to EC and

C. The logics of the form (LC,MC, ) are called basic atomic logics. We call them Boolean (basic)

atomic logics when their language includes the Boolean connectives B. ⊣

Example 1 (Lambek calculus, modal logic). The Lambek calculus, where C = {p,○,/,/} is defined

in Section 3, is an example of atomic logic. Here ○,/,/ are the connectives of skeletons (σ1,+,s1),
(σ5,−,s3),(σ3,−,s2). Another example of atomic logic is modal logic where C = {p,⊺,�,∧,∨,3,2} is

such that

• ⊺,� are connectives of skeletons (Id,+,∃,1) and (Id,−,∀,1) respectively;

• ∧,∨,3,2 are connectives of skeletons (σ1,+,s1), (σ1,−,s4), (τ2,+,t1) and (τ2,−,t2) respectively;

• C-models M = (W,R) ∈ EC are such that R∧ = R∨ = {(w,w,w) ∣w ∈W}, R3 = R2 and R⊺ = R� =W .

Indeed, one can easily show that, with these conditions on the C–models of EC, we have that for all

(M,w) ∈ EC, (M,w) ∧(ϕ ,ψ) iff (M,w) ϕ and (M,w) ψ , and (M,w) ∨(ϕ ,ψ) iff (M,w) ϕ

or (M,w) ψ . The Boolean conjunction and disjunction ∧ and ∨ are defined using the connectives of C

by means of special relations R∧ and R∨. However, they could obviously be defined directly. Many more

examples of atomic connectives are in Figure 2. They are in fact just examples of gaggle connectives

since all gaggle logics [4, 5] are also atomic logics; they are all of type signature (1,1, . . . ,1). All the

possible truth conditions of unary and binary atomic connectives of this type signature are in [4, 5]. ⊣

4.2 Molecular logics

Molecular logics are logics whose primitive connectives are compositions of atomic connectives. That

is why we call them ‘molecular’, just as molecules are compositions of atoms in chemistry.

Definition 5 (Molecular skeleton and connective). The class C
∗ of molecular skeletons is the smallest

set such that:

• P∪B ⊆C∗ and C
∗ contains for each k ∈N∗ a symbol idk of type signature (k,k) and arity 1;
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Atomic connective Truth condition Non–classical con.

in the literature

The conjunction orbit

ϕ (σ1,+,s1) ψ ∃vu(v ∈ JϕK∧u ∈ JψK∧Rvuw) ϕ ○ψ [16], ϕ⊗3 ψ [3]

ϕ (σ2,−,s2) ψ ∀vu(v ∈ JϕK∨u ∉ JψK∨−Rwuv)
ϕ (σ3,−,s2) ψ ∀vu(v ∈ JϕK∨u ∉ JψK∨−Ruwv) / [16], ϕ ⊂2 ψ [3]

ϕ (σ4,+,s1) ψ ∃vu(v ∈ JϕK∧u ∈ JψK∧Ruvw)
=ψ (σ1,+,s1) ϕ

ϕ (σ5,−,s3) ψ ∀vu(v ∉ JϕK∨u ∈ JψK∨−Rwvu) / [16], ϕ ⊃1 ψ [3]

=ψ (σ2,−,s2) ϕ

ϕ (σ6,−,s3) ψ ∀vu(v ∉ JϕK∨u ∈ JψK∨−Rvwu)
=ψ (σ3,−,s2) ϕ

The not–but orbit

ϕ (σ1,+,s6) ψ ∃vu(v ∉ JϕK∧u ∈ JψK∧Rvuw) ϕ �3 ψ [3]

ϕ (σ2,+,s6) ψ ∃vu(v ∉ JϕK∧u ∈ JψK∧Rwuv)
ϕ (σ3,−,s4) ψ ∀vu(v ∈ JϕK∨u ∈ JψK∨−Ruwv) ϕ �2 ψ [3]

ϕ (σ4,+,s5) ψ ∃vu(v ∈ JϕK∧u ∉ JψK∧Ruvw)
=ψ (σ1,+,s6) ϕ

ϕ (σ5,+,s5) ψ ∃vu(v ∈ JϕK∧u ∉ JψK∧Rwvu) ϕ �1 ψ [3]

=ψ (σ2,+,s6) ϕ

ϕ (σ6,−,s4) ψ ∀vu(v ∈ JϕK∨u ∈ JψK∨−Rvwu)
=ψ (σ3,−,s4) ϕ

The but–not orbit

ϕ (σ1,+,s5) ψ ∃vu(v ∈ JϕK∧u ∉ JψK∧Rvuw) ϕ �3 ψ [3]

ϕ (σ2,−,s4) ψ ∀vu(v ∈ JϕK∨u ∈ JψK∨−Rwuv)
ϕ (σ3,+,s6) ψ ∃vu(v ∉ JϕK∧u ∈ JψK∧Ruwv) ϕ �2 ψ [3]

ϕ (σ4,+,s6) ψ ∃vu(v ∉ JϕK∧u ∈ JψK∧Ruvw) ϕ �ψ [12, 17]

=ψ (σ1,+,s5) ϕ

ϕ (σ5,−,s4) ψ ∀vu(v ∈ JϕK∨u ∈ JψK∨−Rwvu) ϕ �ψ [12, 17]

=ψ (σ2,−,s4) ϕ ϕ �1 ψ [3]

ϕ (σ6,+,s5) ψ ∃vu(v ∈ JϕK∧u ∉ JψK∧Rvwu) ϕ �ψ [12, 17]

=ψ (σ3,+,s6) ϕ

The stroke orbit

ϕ (σ1,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Rvuw) ϕ ∣3 ψ [1, 11]

ϕ (σ2,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Rwuv)
ϕ (σ3,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Ruwv)
ϕ (σ4,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Ruvw)
=ψ (σ1,+,s7) ϕ

ϕ (σ5,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Rwvu) ϕ ∣1 ψ [1, 11]

=ψ (σ2,+,s7) ϕ

ϕ (σ6,+,s7) ψ ∃vu(v ∉ JϕK∧u ∉ JψK∧Rvwu) ϕ ∣2 ψ [1, 11]

=ψ (σ3,+,s7) ϕ

Figure 2: Some binary connectives of atomic logics of type (1,1,1)
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• for all ⋆ ∈C of type signature (k,k1, . . . ,kn) and all c1, . . . ,cn ∈C
∗ of type signatures (k1,k

1
1, . . . ,k

1
a1
),

. . . ,(kn,k
n
1, . . . ,k

n
an
) respectively, the connective ⋆(c1, . . . ,cn) belongs to C

∗, its type signature is

(k,k1
1, . . . ,k

1
a1
, . . . ,kn

1, . . . ,k
n
an
) and its arity is a1+ . . .+an.

We define the quantification signature Æ(c) of c = ⋆(c1, . . . ,cn) by Æ(c) ≜Æ(⋆).
If c ∈C∗, we define its decomposition tree as follows. If c = ⋆ ∈C is of arity n > 0, then its decom-

position tree Tc is the tree of root ⋆ with n children–leaves labeled by id. If c = ⋆(c1, . . . ,cn) ∈C∗ then

its decomposition tree Tc is a tree labeled with atomic connectives defined inductively as follows: the

root of Tc is c and it is labeled with ⋆ and one sets edges between that root and the roots c1, . . . ,cn of the

decomposition trees Tc1
, . . . ,Tcn respectively.

A molecular connective is an object to which is associated a molecular skeleton. Its arity, quantifica-

tion signature and decomposition tree are the same as its skeleton.

The set of atomic connectives associated to a set C of molecular connectives is the set of labels

different from id of the decomposition trees of the molecular connectives of C. ⊣

Example 2 (Modal intuitionistic logic). Let us consider the connectives defined by the following first–

order formulas:

c(x) ≜ ∀y(Rxy→ ∀z(R3yz→P(z)))
c′(x) ≜ ∀y(Rxy→ ∃z(R3yz∧P(z)))
⋆1(x) ≜ ∀y(Rxy→P(y))
⋆2(x) ≜ ∀z(R3yz→P(z))
⋆3(x) ≜ ∃z(R3yz∧P(z))

Then, ⋆1,⋆2,⋆3 are atomic connectives and the connectives associated to c,c′ are molecular connectives.

Indeed, c is the composition of ⋆1 and ⋆2, c = ⋆1(⋆2), and c′ is the composition of ⋆1 and ⋆3, c′ =
⋆1(⋆3). Equivalently, c and c′ will have the same semantics as c = ⋆1(⋆2(id1)) and c′ = ⋆1(⋆3(id1)).
The connective associated to c corresponds to the connective 2 of modal intuitionistic logic and the

connective associated to c′ corresponds to the connective 3 of modal intuitionistic logic [19] defined in

Section 3. ⊣

Definition 6 (Molecular language). Let C be a set of molecular connectives. The (typed) molecular

language LC associated to C is the smallest set that contains the propositional letters and that is closed

under the molecular connectives while respecting the type constraints. That is,

• the propositional letters of C belong to LC;

• for all ⋆ ∈C of type signature (k,k1, . . . ,kn) and for all ϕ1, . . . ,ϕn ∈ LC of types k1, . . . ,kn respec-

tively, we have that ⋆(ϕ1, . . . ,ϕn) ∈ LC and ⋆(ϕ1, . . . ,ϕn) is of type k.

The Boolean molecular language LB

C
is the smallest set that contains the propositional letters and

that is closed under the molecular connectives of C as well as the Boolean connectives B:

• for all ϕ ,ψ ∈ LB

C
of type k, we have that (ϕ ∧k ψ),(ϕ ∨k ψ) ∈ LB

C
.

We say that C is complete for conjunction and disjunction when its associated set of atomic connec-

tives is complete for conjunction and disjunction.

Elements of LC are called molecular formulas and are denoted ϕ ,ψ ,α , . . . The type of a formula

ϕ ∈ LC is denoted k(ϕ). We use the same abbreviations as for the atomic language. ⊣
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Definition 7 (Molecular logic). If C is a set of molecular connectives, then a C–model M is a C
′
–model

M where C
′

is the set of atomic connectives associated to C. We also define w(M,C) ≜ w(M,C
′). The

truth conditions for molecular connectives are defined naturally inductively from the truth conditions of

atomic connectives of Definition 4 (we only give the new cases): for all k ∈N∗,

Jidk(ϕ)KM ≜ JϕKM

J⋆(c1, . . . ,cn)(ϕ1
1 , . . . ,ϕ

k1

1 , . . . ,ϕ
1
n , . . . ,ϕ

kn
n )KM ≜ f⋆ (Jc1(ϕ1

1 , . . . ,ϕ
k1

1 )KM
, . . . ,Jcn(ϕ1

n , . . . ,ϕ
kn
n KM)

If EC is a class of pointed C–models, the triple (LC,EC, ) is a logic called the molecular logic

associated to EC and C. The logics of the form (LC,MC, ) are called basic molecular logics. We call

them Boolean (basic) molecular logics when their language includes the Boolean connectives B. ⊣

4.3 Boolean negation

Note that atomic logics do not include Boolean negation as a primitive connective. It turns out that

Boolean negation can be defined systematically for each atomic connective by applying a transformation

on it. The Boolean negation of a formula then boils down to taking the Boolean negation of the outermost

connective of the formula. This transformation is defined as follows.

Definition 8 (Boolean negation). Let ⋆ be a n–ary connective of skeleton(σ ,±,Æ,k,±1, . . . ,±n). The

Boolean negation of ⋆ is the connective −⋆ of skeleton (σ ,−±,−Æ,k,−±1, . . . ,−±n) where −Æ ≜ ∃ if

Æ = ∀ and −Æ ≜ ∀ otherwise, which is associated in any C–model to the same relation as ⋆. If ϕ =
⋆(ϕ1, . . . ,ϕn) is an atomic formula, the Boolean negation of ϕ is the formula −ϕ ≜ −⋆(ϕ1, . . . ,ϕn). ⊣

Proposition 1. Let C be a set of atomic connectives such that −⋆ ∈C for all ⋆ ∈C. Let ϕ ∈ LC and M be

a C–model. Then, for all w ∈w(M,C), w ∈ J−ϕKM iff w ∉ JϕKM.

5 Automatic bisimulations for atomic and molecular logics

In this section, we are going to see that notions of bisimulations can be automatically defined for atomic

logics on the basis of the definition of the truth conditions of their connectives, not only for plain atomic

logics but also for molecular logics.

5.1 Atomic logics

Definition 9 (C–bisimulation). Let C be a set of atomic connectives, let ⋆ ∈C and let M1 = (W1,R1) and

M2 = (W2,R2) be two C–models. A binary relation Z ⊆ ⋃
k∈N∗
(W k

1 ×W k
2 )∪(W k

2 ×W k
1 ) is a C–bisimulation

between M1 and M2 when for all ⋆ ∈C, if {M,M′} = {M1,M2}, then for all w1, . . . ,wn,w
′
1, . . . ,w

′
n,w,w

′ ∈
w(M,C)∪w(M′,C),

1. if ⋆ is an propositional letter p then, if wZw′ and w ∈ JpK then w′ ∈ JpK;

2. if ⋆ has skeleton (σ ,±,∃,k,(±1, . . . ,±n)) and we have wZw′ and R±σ
⋆ w1 . . .wnw, then

∃w′1, . . . ,w′n (w1⋈w′1∧w2⋈w′2∧ . . .∧wn⋈w′n∧R
′±σ
⋆ w′1 . . .w′nw′);

3. if ⋆ has skeleton (σ ,±,∀,k,(±1, . . . ,±n)) and we have wZw′ and −R
′±σ
⋆ w′1 . . .w′nw′, then

∃w1, . . . ,wn (w1⋈w′1∧w2⋈w′2∧ . . .∧wn⋈w′n∧−R±σ
⋆ w1 . . .wnw);
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where, for all j ∈ J1;nK, we define w j ⋈w′ j ≜

⎧⎪⎪⎨⎪⎪⎩
w jZw′ j if ± j = +

w′ jZw j if ± j = −
.

When such a C–bisimulation Z exists and wZw′, we say that (M,w) and (M′,w′) are C–bisimilar

and we write it (M,w)→C (M′,w′). ⊣

Note that case 1. is a particular instance of cases 2. and 3. with n = 0. The fact that the order M1−M2

can be possibly reversed at the level of the definition is reminiscent of the way directed bisimulations are

defined for the Lambek calculus, as we will see in Example 4.

Definition 10. Let C be a set of atomic connectives. Let (M,w) and (M′,w′) be two pointed C–models.

We write (M,w)↝C (M′,w′) when for all ϕ ∈ LC, (M,w) ϕ implies (M′,w′) ϕ . ⊣

Proposition 2. Let C be a set of atomic connectives and let M1 = (W1,R1) and M2 = (W2,R2) be two

C–models. Let Z be a C–bisimulation between M1 and M2. Then, if {M,M′} = {M1,M2} then for all

w ∈w(M,C), all w′ ∈w(M′,C), if wZw′ then (M,w)↝C (M′,w′).
Example 3 (Modal logic). Let us consider the connectives of modal logic: C = {p,¬p,∧,∨,3,2} where

p has skeleton (Id,+,∃,1), ¬p has skeleton (Id,−,∀,1), 3 has skeleton (τ2,+,t1) and 2 has skeleton

(τ2,−,t2). Let M1 = (W1,{R1,P1}) and M2 = (W2,{R2,P2}) be two Kripke models (they are also C-

models). A binary relation Z between M1 and M2 is a C–bisimulation between M1 and M2 when for all

M,M′ ∈ {M1,M2} with M = (W,{R,P}) and M′ = (W ′,{R′,P′}), all w,v ∈M and all w′,v′ ∈M′,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZw′ and w′ ∈ JpK then w ∈ JpK (condition for ¬p);

• if wZw′ and Rwv then there is v′ ∈W ′ such that vZv′ and R′w′v′ (condition for 3 = (τ2,+,t1) );

• if wZw′ and R′w′v′ then there is v ∈W such that vZv′ and Rwv (condition for 2 = (τ2,−,t2) ).

Note that every C–bisimulation can be canonically extended into a symmetric C–bisimulation: one sets

w′Zw when wZw′ already holds. ⊣

Example 4 (Lambek calculus). Let us consider the connectives of the Lambek calculus: C = {p,○,/,/}
where p has skeleton (Id,+,∃,1), ○ has skeleton (σ1,+,s1) , / has skeleton (σ5,−,s3) and / has skeleton

(σ3,−,s2). Let M1 = (W1,{R1,P1}) and M2 = (W2,{R2,P2}) be two Lambek models (they are also C–

models). A binary relation Z between M1 and M2 is a C–bisimulation between M1 and M2 when for all

M,M′ ∈ {M1,M2} with M = (W,{R,P}) and M′ = (W ′,{R′,P′}), all w,v,u ∈M and all w′,v′,u′ ∈M′,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if wZw′ and Rvuw then there are v′,u′ ∈W ′ such that vZv′, uZu′ and Rv′u′w′ (condition for ○ =
(σ1,+,s1));

• if vZv′ and Rv′u′w′ then there are u,w ∈W such that u′Zu, wZw′ and Rvuw (condition for / =
(σ5,−,s3) );

• if uZu′ and Rv′u′w′ then there are v,w ∈ W such that v′Zv, wZw′ and Rvuw (condition for /
= (σ3,−,s2) ). ⊣

The following proposition shows that the notions of C–bisimulation for the Lambek calculus and

directed bisimulation coincide (directed bisimulations are defined for example in [21, Definition 13.2])

and likewise for modal logic.

Proposition 3. • Let C = {p,¬p,∧,∨,3,2} be the connectives of Example 3 and let M and M′ be

two C–models. Then, a C–bisimulation between M and M′ is a modal bisimulation between M

and M′ and vice versa.



G. Aucher 95

• Let C = {p,○,/,/} be the connectives of Example 4 and let M and M′ be two C–models. Then, a

C–bisimulation between M and M′ is a directed bisimulation between M and M′ and vice versa.

Example 5 (Intuitionistic logic). Let us consider the connectives of intuitionistic logic: C = {p,�,⊺,∧,∨,

⇒} where p has skeleton (Id,+,∃,1), ⊺ has skeleton (Id,+,∃,1), � has skeleton (Id,−,∀,1), ∧ and

∨ are Boolean connectives and ⇒ has skeleton (σ5,−,s3) (here, ⊺ and � are represented by specific

propositional letters of respective signatures (Id,+,∃,1) and (Id,−,∀,1)). Let M1 = (W1,R1,P) and

M2 = (W2,R2,P) be two intuitionistic models. Following the results of [3, Section 8], we represent these

intuitionistic models by the C–models M⇒1 = (W1,R1,⇒,P) and M⇒2 = (W2,R2,⇒,P) respectively such

that for all u1,v1,w1 ∈W1 and all u2,v2,w2 ∈W2,

R1,⇒u1v1w1 iff R1u1w1 and R1v1w1 (1)

R2,⇒u2v2w2 iff R2u2w2 and R2v2w2 (2)

One can show [3] that for all ϕ ∈ LC and all w1 ∈W1, M1,w1 ϕ iff M⇒1 ,w1 ϕ (and likewise for M2

and M⇒2 ). Now, a binary relation Z between M⇒1 and M⇒2 is a C–bisimulation between M⇒1 and M⇒2 iff

for all M,M′ ∈ {M⇒1 ,M⇒2 }, all w,w′,v′,u′ ∈w(M,C)∪w(M′,C) and all p ∈ P,

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p);

• if vZv′ and R′⇒v′u′w′ then there are u,w ∈W such that u′Zu, wZw′ and R⇒vuw (∗) (condition for

⇒);

• conditions for ⊺ and � trivially hold because of their semantics.

Using Expressions (1) and (2), one can easily show that condition (∗) is equivalent to the following

condition:

• if vZv′ and R′v′w′ and R′u′w′ then there are u,w ∈W such that u′Zu, wZw′ and Rvw and Ruw (∗∗).
We will show in Section 8 that condition (∗∗) is equivalent on ω–saturated models to Olkhovikov’s

condition “step” of [19, Definition 1] of his “basic asimulation”. ⊣

5.2 Molecular logics

Definition 11 (C–bisimulation for molecular connectives). Let C be a set of molecular connectives and

let M1 = (W1,R1) and M2 = (W2,R2) be two C–models. For all c0 ∈ C, let Vc0
be the vertices of the

decomposition tree Tc0
. We associate to each vertex c ∈Vc0

a binary relation Zc ⊆ ⋃
k∈N∗
(W k

1 ×W k
2 )∪(W k

2 ×

W k
1 ). The set of such binary relations is denoted {Z}∪ ⋃

c0∈C
{Zc ∣ c ∈Vc0

} and is such that if c is idk for

some k ∈N∗ then Zc is Z and we have that Z ⊆⋂{Zc ∣ c ∈C}. We say that this set of binary relations is a

C–bisimulation between M1 and M2 when for all c0 ∈C, all vertices c ∈Vc0
, if {M,M′} = {M1,M2} then

for all w1, . . . ,wn,w
′
1, . . . ,w

′
n,w,w

′ ∈w(M,C)∪w(M′,C),
1. if c is an propositional letter p then, wZcw′ and w ∈ JpK imply w′ ∈ JpK;

2. if c has skeleton ⋆(c1, . . . ,cn) with ⋆ = (σ ,±,∃,k,(±1, . . . ,±n)) and we have wZcw′ and

R±σ
⋆ w1 . . .wnw, then

∃w′1w′2 . . .w′n (w1⋈c1
w′1∧w2⋈c2

w′2∧ . . .∧wn⋈cn w′n∧R
′±σ
⋆ w′1 . . .w′nw′);

3. if c has skeleton ⋆(c1, . . . ,cn) with ⋆ = (σ ,±,∀,k,(±1, . . . ,±n)) and we have wZcw′

and −R
′±σ
⋆ w′1 . . .w′nw′, then

∃w1w2 . . .wn (w1⋈c1
w′1∧w2⋈c2

w′2∧ . . .∧wn⋈cn w′n∧−R±σ
⋆ w1 . . .wnw);
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where for all j ∈ J1;nK, we have w j ⋈c j
w′ j ≜

⎧⎪⎪⎨⎪⎪⎩
w jZc j

w′ j if ± j = +

w′ jZc j
w j if ± j = −

.

When such a set of binary relations exists and is such that wZw′, we say that (M,w) and (M′,w′) are

C–bisimilar and we write it (M,w)→C (M′,w′). ⊣

Note that case 1. is a particular instance of cases 2. and 3. with n = 0.

Definition 12. Let C be a set of molecular connectives. For all c0 ∈C and all vertex c of the decomposi-

tion tree Tc0
, we define the language LcC as follows:

LcC ≜

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{c(ϕ1, . . . ,ϕn) ∣ ϕ1, . . . ,ϕn ∈ LC} if c is of arity n > 0

{p} if c = p is a propositional letter

LC if c is idk for some k ∈N∗.

Let (M,w) and (M′,w′) be two pointed C–models. We write (M,w)↝cC (M′,w′) when for all ϕ ∈ LcC,

(M,w) ϕ implies (M′,w′) ϕ . We also write (M,w)↝C (M′,w′) when for all ϕ ∈ LC, (M,w) ϕ

implies (M′,w′) ϕ . ⊣

Proposition 4. Let C be a set of molecular connectives and let M1 = (W1,R1) and M2 = (W2,R2) be

two C–models. Let C0 ⊆ C and for all c ∈ C0, let Vc be the vertices of the decomposition tree Tc. Let

{Z}∪ ⋃
c0∈C0

{Zc ∣ c ∈Vc0
} be a C0–bisimulation between M1 and M2. If {M,M′} = {M1,M2} then for all

c0 ∈C0 and all c ∈Vc0
, for all w ∈w(M,C) and all w′ ∈w(M′,C), if wZcw′ then (M,w)↝cC0

(M′,w′). In

particular, if wZw′ then (M,w)↝C0
(M′,w′).

Definition 13 (Uniform connective). A uniform connective is a molecular connective c whose skeleton

is of the form ⋆(c1, . . . ,cn) with ⋆ = (σ ,±,Æ,k,(±1, . . . ,±n)) ∈C such that

1. n ≥ 1 and c1, . . . ,cn are molecular skeletons of arity 1;

2. for all j ∈ J1;nK such that c j ≠ idk for all k ∈N∗, Æ(c j) =
⎧⎪⎪⎨⎪⎪⎩
∀ if ± j = +

∃ if ± j = −
;

3. if c0 is a molecular skeleton appearing in the decomposition tree of c of the form c0 =⋆0(c′1, . . . ,c′m)
such that the tonicity signature of ⋆0 is (±1, . . . ,±m), then for all i ∈ J1;mK, Æ(c′i) = ±iÆ(c0). ⊣

According to our definition, molecular connectives of the form ⋆(c(c′(c′1,c′2))) cannot be uniform

connectives, unless c′1 or c′2 is a propositional letter. This is due to our first condition: in that case,

c(c′(c′1,c′2)) should be of arity 1, which is possible only if c′1 or c′2 is a propositional letter. Hence, uni-

form connectives can be reduced to the composition of compound subconnectives c1
i , . . . ,c

mi

i , each of arity

1, so that molecular connectives are essentially of the form ⋆(c1
1(. . .cm1−1

1 (cm1

1 )), . . . ,c1
n(. . .cmn−1

n (cmn
n ))).

Basically, uniform connectives are such that the quantification patterns of their successive internal con-

nectives are essentially of the form ∃ . . .∃ . . . or ∀ . . .∀ . . .

Example 6 (Modal intuitionistic logic). Let C= {p,⊺,�,∧,∨,⇒,⋆,−⋆
′}where ⋆,⋆′ ∈C∗ are the molecu-

lar connectives c,c′ of Example 2 and where {p,⊺,�,∧,∨,⇒} are defined in Example 5. The connectives

of C are all uniform connectives. Note that ⋆′ is not a uniform connective and that is why we consider

−⋆
′ for the moment, which is a uniform connective. We are going to see that we can easily get the

bisimilarity condition for ⋆′ from the bisimilarity condition for −⋆′.

Let M1 = (W1,{R1,R1,3,P}) and M2 = (W2,{R2,R2,3,P}) be two modal intuitionistic models. The set

of binary relations {Z,Z⋆⋆2
,Z−⋆

′

⋆3
} is a C–bisimulation iff for all M,M′ ∈ {M1,M2} with

M = (W,{R,R3,P}) and M′ = (W ′,{R′,R′3,P}), all w,v,u,w′,v′,u′ ∈ w(M,C)∪w(M′,C) and all p ∈ P,



G. Aucher 97

• if wZw′ and w ∈ JpK then w′ ∈ JpK (condition for p, like in Example 5);

• if vZv′ and R′v′w′ and R′u′w′ then there are u,w ∈W such that u′Zu, wZw′ and Rvw and Ruw

(condition for ⋆, like in Example 5);

• if R′w′v′ and wZw′ then there is v ∈W such that vZ⋆⋆2
v′ and Rwv,

if wZ⋆⋆2
w′ and R′3w′v′ then there is v ∈W such that vZv′ and Rwv

(condition for ⋆ = ⋆1(⋆2));
• if Rwv and wZw′ then there is v′ ∈W ′ such that v′Z−⋆

′

⋆3
v and R′w′v′,

if wZ⋆
′

⋆3
w′ and R3wv then there is v′ ∈W ′ such that vZv′ and Rw′v′

(condition for −⋆′ = −⋆1 (⋆3)).
To obtain the bisimilarity condition for ⋆′, it suffices to observe that for all c ∈ C∗, it holds that

(M,w)↝{−c} (M′,w′) iff (M′,w′)↝{c} (M,w). So, we just have to replace wZw′ by w′Zw in the condi-

tion above. We obtain:

(∗) if w′Zw and Rwv then there is v′ ∈W ′ such that v′Z⋆3
v and R′w′v′,

if wZ⋆3
w′ and R3wv then there is v′ ∈W ′ such that vZv′ and Rw′v′.

It turns out that the Conditions of (∗) are the conditions (diam–2(1)) and (diam–2(2)) of Olkhovikov

[19, Definition 9], as expected. ⊣

6 Ultrafilters and ultraproducts

In that section, we recall some key notions of model theory [10], ultrafilters and ultraproducts.

Definition 14 (Filter and ultrafilter). Let I be a non–empty set. A filter F over I is a set F ⊆ P(I) such

that I ∈ F; if X ,Y ∈ F then X ∩Y ∈ F; if X ∈ F and X ⊆ Z ⊆ I then Z ∈ F . A filter is called proper if

it is distinct from P(I). An ultrafilter over I is a proper filter U such that for all X ∈ P(I), X ∈U iff

I−X ∉U . ⊣

In the rest of this section, I is a non-empty set and U is an ultrafilter over I.

Definition 15 (Ultraproduct of sets). For each i ∈ I, let Wi be a non-empty set. For all (wi)i∈I ,(vi)i∈I ∈
∏i∈I Wi, we say that (wi)i∈I and (vi)i∈I are U-equivalent, written (wi)i∈I ∼U (vi)i∈I , if {i ∈ I ∣ wi = vi} ∈
U . Note that ∼U is an equivalence relation on ∏i∈I Wi. The equivalence class of (wi)i∈I under ∼U is

denoted ∏U wi ≜ {(vi)i∈I ∈∏i∈I Wi ∣ (vi)i∈I ∼U (wi)i∈I}. The ultraproduct of (Wi)i∈I modulo U is ∏U Wi ≜
{∏U wi ∣ (wi)i∈I ∈∏i∈I Wi}. ⊣

Definition 16 (Ultraproduct). Let (Mi,si)i∈I be a family of pointed structures. The ultraproduct

∏U(Mi,si) is the pointed structure (∏U Mi,∏U si) where ∏U si ∶ V →∏U Wi is the assignment such that

for all x ∈ V , (∏U si)(x) =∏U si(x) and∏U Mi = (WU ,RU) is defined as follows:

• WU =∏U Wi;

• for all n+1–ary relations Ri
⋆ of Mi, the n+1–ary relation ∏U R⋆ ∈RU is defined for all∏U w1

i , . . . ,

∏U wn+1
i ∈WU by∏U R⋆∏U w1

i . . .∏U wn+1
i iff {i ∈ I ∣ Ri

⋆w
1
i . . .w

n+1
i } ∈U . ⊣

Definition 17 (Closure under ultraproducts). Let K be a class of pointed structures. We say that K is

closed under ultraproducts when for all non-empty sets I, if for all i ∈ I (Mi,si) ∈ K then ∏U(Mi,si) ∈ K

for all ultraproducts U over I. ⊣
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7 A generic van Benthem characterization theorem

In this section we generalize the van Benthem characterization theorem for modal logic [9, Theo-

rem 2.68] to molecular logics. We first show how atomic and molecular logics can be naturally embedded

into first–order logic.

Definition 18 (Translation from atomic and molecular logics to FOL). Let C be a set of atomic connec-

tives.

Syntax. For all k ∈N∗ and all x ∈ (V ∪C)k, we define the mappings STx ∶L
k
C
→LP

FOL
(x), whereLk

C
is the set

of formulas of LC of type k, as follows: for all atoms p ∈C, all ⋆ ∈C of skeleton (σ ,±,Æ,(k,k1, . . . ,kn),
(±1, . . . ,±n)) and all ϕ1, . . . ,ϕn ∈ LC,

STx(p) ≜ P(x)
STx(ϕ ∧k ψ) ≜ STx(ϕ)∧STx(ψ)
STx(ϕ ∨k ψ) ≜ STx(ϕ)∨STx(ψ)

STx(⋆(ϕ1, . . . ,ϕn)) ≜ Æx1 . . .xn (∗1STx1
(ϕ1)× . . .×∗nSTxn

(ϕn)×R
±σ

⋆ x1 . . .xnx)
where x1, . . . ,xn are tuples of free variables of size k1, . . . ,kn,

× =

⎧⎪⎪⎨⎪⎪⎩
∧ if Æ = ∃

∨ if Æ = ∀
and for all j ∈ J1;nK, ∗ j =

⎧⎪⎪⎨⎪⎪⎩
¬ if ± j = −

empty if ± j = +
.

Semantics. Let (M,w) be a pointed C–model of type k with w = (w1, . . . ,wk). Let x = (x1, . . . ,xk) ∈
(V ∪C)k. A pointed structure associated to (M,w) and x is a pointed structure (M,sw

x ) (the set of

predicates P considered are a copy of the relations of M) where the assignment sw
x is such that sw

x (x1) =
w1,. . . , sw

x (xk) = wk.

The above translations canonically extend to molecular logics. Indeed, if C is a set of molecular

connectives, every molecular formula of LC can be viewed as a formula of LC
′ , where C

′
is the set of

atomic connectives associated to C. Likewise, any pointed C-model can also be viewed as a pointed

C
′
-model. Then, we apply the above translations to obtain the translation of molecular formulas or

C-models into FOL. ⊣

The following proposition follows straightforwardly from the truth conditions of Definition 4.

Proposition 5. Let C be a set of molecular connectives, let (M,w) be a pointed C–model, let ϕ ∈ LC of

type k and let x ∈ Vk. Then, (M,w) ϕ iff (M,sw
x ) STx(ϕ).

Theorem 1 (Characterization theorem). Let C be a set of uniform connectives complete for conjunction

and disjunction. Let ϕ(x) ∈ LP
FOL
(x) with k free variables x = (x1, . . . ,xk) and let (LC,EC, ) be a

molecular logic such that all models of EC contain relations {R⋆ ∣ ⋆ ∈C} interpreting all the predicates

occuring in ϕ(x). Let STx(EC) ≜ {(M,sw
x ) ∣ (M,w) ∈ EC of type k} and assume that STx(EC) is closed

under ultraproducts. The two following statements are equivalent:

1. There exists a formula ψ ∈ LC such that ϕ(x)↔ STx(ψ) is valid on STx(EC);
2. ϕ(x) is invariant for C–bisimulations on EC, that is, for all pointed C–models (M,w),(M′,w′) of

EC of type k such that (M,w)→C (M′,w′), we have that (M,sw
x
) ϕ(x) implies (M′,sw′

x ) ϕ(x).
Remark 2. The assumption that STx(EC) is closed under ultraproducts is not really demanding since any

class of structures definable by a set of first–order sentences is closed under ultraproducts by Keisler

theorem [10, Corollary 6.1.16]. For example, the class of (modal) intuitionistic models is closed under

ultraproducts since it is definable by a set of first–order sentences (we only need to impose the reflexivity

and transitivity on the binary relations by means of the validity of corresponding sentences). So, our

generic theorem applies to these logics. It also applies to modal logic and to many others since the class

of all Kripke models is definable by an empty set of sentences and therefore is closed under ultraproducts.
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8 Related work

8.1 Comparison with Olkhovikov’s work

The closest work to ours is by Olkhovikov [18, 19, 20] who investigates generalizations of the van Ben-

them characerization theorm. The publications [18] and [19] deal in particular with (modal) intuitionistic

(predicate) logic. Following our methodology, we have rediscovered Olkhovikov’s definitions in Exam-

ples 5, 2 and 6. In particular, we have the following result.

Fact 1. Let M = (W,{R,P}) and M′ = (W ′,{R′,P′}) be two ω–saturated intuitionistic models and let Z

be the maximal C–bisimulation between M and M′ for set inclusion (C is defined in Example 5). Then,

the following two conditions are equivalent:

1. Condition (∗∗) of Example 5: for all v ∈W and all w′,v′,u′ ∈W ′, if vZv′ and R′v′w′ and R′u′w′

then there are u,w ∈W such that u′Zu, wZw′ and Rvw and Ruw;

2. Condition “step” of [19, Definition 1]: for all v ∈W and all w′,v′ ∈W ′, if vZv′ and R′v′w′ then

there is w ∈W such that wZw′ and w′Zw and Rvw.

In [19], Olkhovikov also provides a generic van Benthem style characterization theorem for a number

of logics defined by specific kinds of connectives. He introduces a normal form for connectives in terms

of formulas of FOL that he calls k–ary guarded x–connectives. A k–ary guarded x–connective of degree

0 µ =ψ(P1(x), . . . ,Pk(x)) is a Boolean combination of the unary predicates P1(x), . . . ,Pk(x). A k–ary

∀–guarded x1–connective of degree n+ 1 is a formula of the form ∀x2 . . .xm+1 (⋀m
i=1 Si(xi,xi+1)→ µ

−)
where S1, . . . ,Sm are binary predicates and µ

− is a k–ary guarded xm+1–connective of degree n (provided

that formula is not equivalent to k–ary guarded x1–connective of a smaller degree). k–ary ∃–guarded

x1–connectives are defined similarly. If one sets Rx1 . . .xmxm+1 for ⋀m
i=1 Si(xi,xi+1) then ∀x2 . . .xm+1

(⋀m
i=1 Si(xi,xi+1)→ µ

−) can be viewed as the first–order formula with free variable x1 defining a molec-

ular connective: ∀x2 . . .xm+1 (x2 ∈ J�K∨ . . .∨xm ∈ J�K∨xm+1 ∈ Jµ
−K∨−Rx1 . . .xmxm+1). Hence, guarded

connectives of degree not exceeding 1 are captured by specific molecular connectives. It is unclear

whether Olkhovikov’s regular connectives of degree 2 are also captured by uniform connectives.

In any case, our results strictly extend those of Olkhovikov because we are able to provide a van

Benthem characterization for connectives defined by formulas of FOL with multiple free variables. It is

this feature that plays a key role for first-order logic [6]. It is also made more clear and explicit than in

Olkhovikov’s publication how the suitable notions of bisimulation are defined from logics given by their

set of connectives. Finally, we showed in Examples 2 and 6 how his results about (modal) intuitionistic

logic [18, 19] can be recovered in our setting as specific instances of our general results.

8.2 Other related work

Van Benthem theorems have been proved for many non–classical logics, such as (modal) intuitionis-

tic logic [19], intuitionistic predicate logic [18], temporal logic [15], sabotage modal logic [7], graded

modal logic [22], fuzzy modal logic [25], coalgebraic modal logics [24], neighbourhoud semantics of

modal logic [13], the modal mu–calculus [14], hybrid logic [2]. We showed that our generic Theorem 1

subsumes some of them [19, 18, 15]. However, some others are not in the scope of our theorem because

the correspondence language to which they refer extends first–order logic. For example, the van Ben-

them theorem for coalgebric modal logic [24] is w.r.t. coalgebric predicate logic, fuzzy modal logic [25]

w.r.t. first–order fuzzy predicate logic and the modal mu–calculus [14] w.r.t. monadic second–order logic.

Acknowledgments. I thank two anonymous reviewers for helpful comments.
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