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Monoidal closed categories naturally model NMILL, non-commutative multiplicative intuitionistic

linear logic: the monoidal unit and tensor interpret the multiplicative verum and conjunction; the

internal hom interprets linear implication. In recent years, the weaker notion of (left) skew monoidal

closed category has been proposed by Ross Street, where the three structural laws of left and right

unitality and associativity are not required to be invertible, they are merely natural transformations

with a specific orientation. A question arises: is it possible to find a logic which is naturally modelled

by skew monoidal closed categories? We answer positively by introducing a cut-free sequent calculus

for a skew version of NMILL that is a presentation of the free skew monoidal closed category. We

study the proof-theoretic semantics of the sequent calculus by identifying a calculus of derivations

in normal form, obtained from an adaptation of Andreoli’s focusing technique to the skew setting.

The resulting focused sequent calculus peculiarly employs a system of tags for keeping track of new

formulae appearing in the antecedent and appropriately reducing non-deterministic choices in proof

search. Focusing solves the coherence problem for skew monoidal closed categories by exhibiting

an effective procedure for deciding equality of maps in the free such category.

1 Introduction

It is a widely known fact from the late 80s/early 90s that symmetric monoidal closed categories model

MILL, multiplicative intuitionistic linear logic, whose logical connectives comprise multiplicative verum I

and conjunction ⊗ and linear implication ⊸ [18]. Probably lesser-known, though a quite straightforward

variation of this observation (which actually predated the inception of linear logic altogether) is the

fact that (not necessarily symmetric) monoidal biclosed categories provide a semantics for the non-

commutative variant of MILL (for which we use the abbreviation NMILL) [1], where the structural rule of

exchange is absent and there are two ordered implications ⊸ and

⊸

. The sequent calculus of NMILL

without verum is known as the Lambek calculus [16]. From the beginning, the Lambek calculus has

been employed in formal investigations of natural languages [15]. Lambek refers to the implications

⊸ and

⊸

as residuals, and monoidal biclosed categories without unit are therefore also called residual

categories. By dropping one of the ordered implications of NMILL, one obtains a fragment of the logic

interpretable in every monoidal closed category.

In recent years, Ross Street introduced the new notion of (left) skew monoidal closed categories [20].

These are a weakening of monoidal closed categories: their structure includes a unit I, a tensor ⊗, an

internal hom ⊸ and an adjunction relating the latter two operations, as in usual non-skew monoidal

closed categories. The difference lies in the three structural laws of left and right unitality, λA : I⊗A → A

and ρA : A → A⊗ I, and associativity, αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C), which are usually required to

be natural isomorphisms, but in the skew variant are merely natural transformations with the specified

orientation. Street originally proposed this weaker notion to reach better understanding of and to fix a

famous imbalance, first noticed by Eilenberg and Kelly [9], present in the adjunction relating monoidal
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and closed structures [20, 23]. In the last decade, skew monoidal closed categories, together with their

non-closed/non-monoidal variants, have been thoroughly studied, with applications ranging from algebra

and homotopy theory to programming language semantics [21, 13, 14, 2, 6, 4, 5, 22].

A question arises naturally: is it possible to characterize skew monoidal closed categories as categori-

cal models of (a deductive system for) a logic? This paper provides a positive answer to this question. We

introduce a cut-free sequent calculus for a skew variant of NMILL, which we name SkNMILL. Sequents are

peculiarly defined as triples S | Γ ⊢ A, where the succedent is a single formula A (as in intuitionistic linear

logic), but the antecedent is divided into two parts: an optional formula S, called the stoup [10], and an

ordered list of formulae Γ, the context. Inference rules are similar to the ones of NMILL but with specific

structural restrictions for accurately capturing the structural laws of skew monoidal closed categories and

nothing more. In particular, and in analogy with NMILL, the structural rules of weakening, contraction

and exchange are all absent. Sets of derivations are quotiented by a congruence relation ⊜, carefully

crafted to serve as the sequent-calculus counterpart of the equational theory of skew monoidal closed

categories. The design of the sequent calculus draws inspiration from, and further advance, the line of

work of Uustalu, Veltri and Zeilberger on proof systems for various categories with skew structure: skew

semigroup (a.k.a. the Tamari order) [28], skew monoidal (non-closed) [26, 25] and its symmetric variant

[27], skew prounital (non-monoidal) closed [24].

The metatheory of SkNMILL is developed in two different but related directions:

• We study the categorical semantics of SkNMILL, by showing that the cut-free sequent calculus

admits an interpretation of its formulae, derivations and equational theory ⊜ in any skew monoidal

closed category as soon as one fixes the intended interpretation in it of the atoms. Moreover, the

sequent calculus is the initial model in this semantics; it is a particular presentation of the free

skew monoidal closed category. This can be shown directly or by first introducing a Hilbert-

style calculus which directly presents the free skew monoidal closed category and proving that

derivations in the two calculi are in a bijective correspondence.

• We investigate the proof-theoretic semantics of SkNMILL, by defining a normalization strategy for

sequent calculus derivations wrt. the congruence ⊜, when the latter is considered as a locally con-

fluent and strongly normalizing reduction relation. The shape of normal forms is made explicit in

a new focused sequent calculus, whose derivations act as the target of the normalization procedure.

The sequent calculus is “focused” in the sense of Andreoli [3], as it describes a sound and complete

root-first proof search strategy for the original sequent calculus. The focused system in this pa-

per builds on and elaborates the previously developed normal forms for skew monoidal categories

[26] and skew prounital closed categories [24]. The presence of both positive (I,⊗) and negative

(⊸) connectives requires some extra care in the design of the proof search strategy, reflected in

the focused sequent calculus, in particular when aiming at removing all possible undesired non-

deterministic choices leading to ⊜-equivalent derivations that can arise during proof search. This

is technically realized in the focused sequent calculus by peculiar employment of a system of tags

for keeping track of new formulae appearing in the antecedent. The focused sequent calculus can

also be seen as an optimized presentation of the initial model for SkNMILL, and as such can be used

for solving the coherence problem in an effective way: deciding equality of two maps in this model

(or equality of two canonical maps in every model) is equivalent to deciding syntactic equality of

the corresponding focused derivations.

The equivalence between sequent calculus derivations, quotiented by the equivalence relation ⊜, and

focused derivations, that we present in Section 4, has been formalized in the Agda proof assistant. The

associated code is available at https://github.com/niccoloveltri/code-skewmonclosed.

https://github.com/niccoloveltri/code-skewmonclosed
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2 A Sequent Calculus for Skew Non-Commutative MILL

We begin by introducing a sequent calculus for a skew variant of non-commutative multiplicative intu-

itionistic linear logic (NMILL), that we call SkNMILL.

Formulae are inductively generated by the grammar A,B ::= X | I | A⊗B | A ⊸ B, where X comes

from a fixed set At of atoms, I is a multiplicative verum, ⊗ is a multiplicative conjunction and ⊸ is a

linear implication.

A sequent is a triple of the form S | Γ ⊢ A, where the succedent A is a single formula (as in NMILL)

and the antecedent is divided in two parts: an optional formula S, called stoup [10], and an ordered list

of formulae Γ, called context. The peculiar design of sequents, involving the presence of the stoup in the

antecedent, comes from previous work on deductive systems with skew structure by Uustalu, Veltri and

Zeilberger [26, 25, 24, 27]. The metavariable S always denotes a stoup, i.e., S can be a single formula or

empty, in which case we write S =−, and X ,Y,Z are always names of atomic formulae.

Derivations of a sequent S | Γ ⊢ A are inductively generated by the following rules:

A | ⊢ A
ax

A | Γ ⊢C

− | A,Γ ⊢C
pass

− | Γ ⊢ A B | ∆ ⊢C

A ⊸ B | Γ,∆ ⊢C
⊸L

S | Γ,A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R

− | Γ ⊢C

I | Γ ⊢C
IL

A | B,Γ ⊢C

A⊗B | Γ ⊢C
⊗L

− | ⊢ I
IR

S | Γ ⊢ A − | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

(1)

The inference rules in (1) are reminiscent of the ones in the sequent calculus for NMILL [1], but there

are some crucial differences.

1. The left logical rules IL, ⊗L and ⊸L, read bottom-up, are only allowed to be applied on the for-

mula in the stoup position. In particular, there is no general way to remove a unit I nor decompose

a tensor A⊗B if these formulae are located in the context and not in the stoup (we will see in (5)

that something can actually be done to deal with implications A ⊸ B in the context).

2. The right tensor rule ⊗R, read bottom-up, splits the antecedent of the conclusion between the two

premises whereby the formula in the stoup, in case such a formula is present, has to be moved to

the stoup of the first premise. In particular, the stoup formula of the conclusion cannot be moved

to the antecedent of the second premise even if Γ is chosen to be empty.

3. The presence of the stoup implies a distinction between antecedents of forms A | Γ and − | A,Γ.

The structural rule pass (for ‘passivation’), read bottom-up, allows the moving of the leftmost

formula in the context to the stoup position whenever the stoup is initially empty.

4. The logical connectives of NMILL typically include two ordered implications ⊸ and

⊸

, which are

two variants of linear implication arising from the removal of the exchange rule from intuitionistic

linear logic. In SkNMILL only one of the ordered implications (the left implication ⊸) is present.

It is currently not clear to us whether the inclusion of the second implication to our logic is a

meaningful addition and whether it corresponds to some particular categorical notion.

The restrictions in 1–4 are essential for precisely capturing all the features of skew monoidal closed

categories and nothing more, as we discuss in Section 3. Notice also that, similarly to the case of NMILL,

all structural rules of weakening, contraction and exchange are absent. We give names to derivations and

we write f : S | Γ ⊢ A when f is a particular derivation of the sequent S | Γ ⊢ A.
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Examples of valid derivations in the sequent calculus, corresponding to the structural laws λ , ρ and

α of skew monoidal closed categories (see Definition 3.1) are given below.

(λ ) (ρ) (α)

A | ⊢ A
ax

− | A ⊢ A
pass

I | A ⊢ A
IL

I⊗A | ⊢ A
⊗L

A | ⊢ A
ax

− | ⊢ I
IR

A | ⊢ A⊗ I
⊗R

A | ⊢ A
ax

B | ⊢ B
ax

C | ⊢C
ax

− |C ⊢C
pass

B |C ⊢ B⊗C
⊗R

− | B,C ⊢ B⊗C
pass

A | B,C ⊢ A⊗ (B⊗C)
⊗R

A⊗B |C ⊢ A⊗ (B⊗C)
⊗L

(A⊗B)⊗C | ⊢ A⊗ (B⊗C)
⊗L

(2)

Examples of non-derivable sequents include the “inverses” of the conclusions in (2), obtained by swap-

ping the stoup formula with the succedent formula. More precisely, the three sequents X | ⊢ I⊗X ,

X ⊗ I | ⊢ X and X ⊗ (Y ⊗ Z) | ⊢ (X ⊗Y )⊗ Z do not have any derivation. All possible attempts of

constructing a valid derivation for each of them end in failure.

(λ−1) (ρ−1) (α−1)

??
X | ⊢ I

??
− | ⊢ X

X | ⊢ I⊗X
⊗R

??
X | I ⊢ X

X ⊗ I | ⊢ X
⊗L

??
X | Y ⊗Z ⊢ (X ⊗Y)⊗Z

X ⊗ (Y ⊗Z) | ⊢ (X ⊗Y )⊗Z
⊗L

(⊗R sends X to 1st premise) (IL does not act on I in context) (⊗L does not act on ⊗ in context)

Analogously, the sequents I⊸A | ⊢A and (A⊗B)⊸C | ⊢A⊸ (B ⊸C) are derivable, while generally

their “inverses” are not. Also, a derivation of A | ⊢ B always yields a derivation of I | ⊢ A ⊸ B, but

there are A, B such that I | ⊢ A ⊸ B is derivable while A | ⊢ B is not (take, e.g., A = X , B = I⊗X ).

Sets of derivations are quotiented by a congruence relation ⊜, generated by the following pairs of

derivations.

axI ⊜ IL (IR)
axA⊗B ⊜⊗L (⊗R (axA,pass axB))
axA⊸B ⊜⊸R (⊸L (pass axA,axB))

⊗R (pass f ,g) ⊜ pass (⊗R ( f ,g)) f : A′ | Γ ⊢ A,g : − | ∆ ⊢ B

⊗R (IL f ,g) ⊜ IL (⊗R ( f ,g)) f : − | Γ ⊢ A,g : − | ∆ ⊢ B

⊗R (⊗L f ,g) ⊜⊗L (⊗R ( f ,g)) f : A′ | B′
,Γ ⊢ A,g : − | ∆ ⊢ B

⊗R (⊸L ( f ,g),h) ⊜⊸L ( f ,⊗R (g,h)) f : − | Γ ⊢ A,g : B | ∆ ⊢C,h : − | Λ ⊢ D

pass (⊸R f ) ⊜⊸R (pass f ) f : A′ | Γ,A ⊢ B

IL (⊸R f ) ⊜⊸R (IL f ) f : − | Γ,A ⊢ B

⊗L (⊸R f ) ⊜⊸R (⊗L f ) f : A | B,Γ,C ⊢ D

⊸L ( f ,⊸R g) ⊜⊸R (⊸L ( f ,g)) f : − | Γ ⊢ A′
,g : B′ | ∆,A ⊢ B

(3)

The first three equations above are η-conversions, completely characterizing the ax rule on non-atomic

formulae. The remaining equations are permutative conversions. The congruence ⊜ has been carefully

chosen to serve as the proof-theoretic counterpart of the equational theory of skew monoidal closed

categories, introduced in Definition 3.1. The subsystem of equations involving only (I,⊗) originated in

[26] while the subsystem involving only ⊸ is from [24].

Theorem 2.1. The sequent calculus enjoys cut admissibility: the following two cut rules are admissible.

S | Γ ⊢ A A | ∆ ⊢C

S | Γ,∆ ⊢C
scut

− | Γ ⊢ A S | ∆0,A,∆1 ⊢C

S | ∆0,Γ,∆1 ⊢C
ccut
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The two cut rules satisfy a large number of ⊜-equations, see e.g, [26, Figures 5 and 6] for the list

of such equations not involving ⊸. In particular, the cut rules respect ⊜, in the sense that scut( f ,g) ⊜
scut( f ′,g′) whenever f ⊜ f ′ and g ⊜ g′, and similarly for ccut.

Here are some other interesting admissible rules relevant for the metatheory of this calculus.

• The left rules for I and ⊗ are invertible up to ⊜, and similarly the right rule for ⊸. No other rule

is invertible; in particular, the passivation rule pass is not.

• Applications of the invertible left logical rules can be iterated, and similarly for the invertible right

⊸R rule, resulting in the two admissible rules

S | Γ,∆ ⊢C

[[S | Γ]]⊗ | ∆ ⊢C
L⋆

S | Γ,∆ ⊢C

S | Γ ⊢ [[∆ |C]]⊸
⊸R⋆

(4)

The interpretation of antecedents [[S | Γ]]⊗ in (4) is the formula obtained by substituting the sep-

arator | and the commas with tensors, [[S | A1, . . . ,An]]⊗ = (. . . (([[S〈〈⊗A1)⊗A2) . . . )⊗An, where

the interpretation of stoups is defined by [[−〈〈= I and [[A〈〈= A. Dually, the formula [[∆ | C]]⊸ in

(4) is obtained by substituting | and commas with implications: [[A1, . . . ,An |C]]⊸ = A1 ⊸ (A2 ⊸

(. . .⊸ (An ⊸C))).

• Another left implication rule, acting on a formula A ⊸ B in the context, is derivable using cut:

f

− | Γ ⊢ A

g

S | ∆0,B,∆1 ⊢C

S | ∆0,A ⊸ B,Γ,∆1 ⊢C
⊸LC

=

f

− | Γ ⊢ A B | ⊢ B
ax

A ⊸ B | Γ ⊢ B
⊸L

− | A ⊸ B,Γ ⊢ B
pass g

S | ∆0,B,∆1 ⊢C

S | ∆0,A ⊸ B,Γ,∆1 ⊢C
ccut

(5)

SkNMILL as a Logic of Resources Similarly to other substructural logics like MILL and NMILL,

SkNMILL can be understood as a logic of resources. Under this perspective, formulae of the sequent

calculus in (1) correspond to resources: atomic formulae are primitive resources; the formula A⊗B is

read as “resource A before resource B”; I is “nothing”; the formula A ⊸ B can be described as a method

for turning the resource A into the resource B (if A ⊸ B is provided before A). As in other substructural

systems lacking the structural rules of weakening and contraction, all resources are one-time usable.

The antecedent of a sequent contains the resources at hand, while the succedent contains the resource

that needs to be produced. A derivation is then a particular procedure for turning the available resources

into the goal resource. Under this interpretation, derivations are naturally read and built from the con-

clusion to the premises. Resources in the antecedent are ordered, meaning that they need to be utilized

in the order they appear. If a resource A precedes another resource B in the antecedent, then A must be

consumed before B. The stoup position, when it is non-empty, contains the resource that is immediately

usable. The resources in the context can only be spent after the resource in the stoup has been used. Time

flows bottom-up in proof trees, from conclusion to premises, and the proof of a left premise always takes

place before the proof of the right premise.

The context shares similarities with the stack (and also the queue) data structure. If, at some moment,

there is no resource immediately consumable, as stoup is empty, then the next available resource can be

promoted to this status: the top (left-most position) of the context can be popped and moved to the stoup

by the pass rule. A new resource can be pushed to the bottom (right-most position) of the context using

the ⊸R rule. Using the ⊗L rule, the immediately usable resource A⊗B can be decomposed into two

parts A and B; the resource A becomes immediately usable (remains in the stoup) while B will become
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usable next (is pushed to the top of the context). The resource I, if immediately usable, can be disposed

by the rule IL, making it possible to pop the next available resource from the context. The resource I can

always be produced free-of-charge with the rule IR.

In the rule ⊸L, we have a resource A ⊸ B immediately usable and need to produce C. This gives

us access to the resource B, but only after we have produced A by spending a part of the other resources

available. The context is split into two parts Γ and ∆. The first part Γ is used to make A. Once this has

been accomplished, production of C can continue with B immediately usable and ∆ usable thereafter.

The succedent of the rule ⊗R is of the form A⊗B, which implies that first A and then B need to be

produced. This justifies the splitting of the context into two parts again: the first part Γ, consisting of

resources that can be spent sooner, is used to produce A in the left premise, while the second part ∆ is

spent subsequently for production of B in the right premise. Crucially, and this is one central “skew”

aspect of SkNMILL, if we have a resource immediately usable in the stoup S, this must be spent for the

construction of the first resource we are required to produce, namely A; it cannot be saved for producing

B even if producing A needs no resources at all.

The other central “skew” aspect of SkNMILL is that the left rules only act on stoup formulae. This

can be understood under the resources-as-formulae correspondence to say that we are only allowed to

decompose an available resource when it has become immediately consumable (has entered the stoup).

We are precluded from decomposing the resources in the context ahead of their time.

3 Categorical Semantics via Skew Monoidal Closed Categories

Next we present a categorical semantics for the sequent calculus of SkNMILL.

Definition 3.1. A (left) skew monoidal closed category C is a category with a unit object I and two

functors ⊗ : C×C → C and ⊸: Cop×C → C forming an adjunction −⊗B ⊣ B ⊸ − for all B, and

three natural transformations λ , ρ , α typed λA : I⊗A → A, ρA : A → A⊗ I and αA,B,C : (A⊗B)⊗C →
A⊗ (B⊗C), satisfying the following equations due to Mac Lane [17]:

I⊗ I

I I

ρI λI

(A⊗ I)⊗B A⊗ (I⊗B)

A⊗B A⊗B

ρA⊗B A⊗λB

αA,I,B

(I⊗A)⊗B I⊗ (A⊗B)

A⊗B

αI,A,B

λA⊗BλA⊗B

(A⊗B)⊗ I A⊗ (B⊗ I)

A⊗B

αA,B,I

A⊗ρBρA⊗B

(A⊗ (B⊗C))⊗D A⊗ ((B⊗C)⊗D)

((A⊗B)⊗C)⊗D (A⊗B)⊗ (C⊗D) A⊗ (B⊗ (C⊗D))

αA,B⊗C,D

A⊗αB,C,D

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗D

The notion of skew monoidal closed category admits other equivalent characterizations [20, 23].

Tuples of natural transformations (λ ,ρ ,α) are in bijective correspondence with tuples of (extra)natural

transformations ( j, i,L) typed jA : I→ A ⊸ A, iA : I⊸ A → A, LA,B,C : B ⊸C → (A ⊸ B)⊸ (A ⊸C).
Moreover, α and L are interdefinable with a natural transformation p typed pA,B,C : (A⊗B) ⊸ C →
A ⊸ (B ⊸C), embodying an internal version of the adjunction between ⊗ and ⊸.

Example 3.1 (from [23]). This example explains how to turn every categorical model of MILL extended

with a �-like modality of necessity (or something like the exponential modality ! of linear logic) into a
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model of SkNMILL. Let (C, I,⊗,⊸) be a (possibly symmetric) monoidal closed category and let (D,ε ,δ )
be a comonad on C, where εA : DA → A and δA : DA → D(DA) are the counit and comultiplication of

D. Suppose the comonad D to be lax monoidal, i.e., coming with a map e : I → DI and a natural

transformation m typed mA,B : DA⊗DB→D(A⊗B) cohering suitably with λ , ρ , α , ε and δ . Then C has

also a skew monoidal closed structure (I,⊗D
,

D
⊸) given by A⊗D B = A⊗DB and B D

⊸C = DB ⊸C.

The adjunction −⊗DB ⊣ DB ⊸− yields an adjunction −⊗D B ⊣ B D
⊸−. The structural laws are

λ D
A = I⊗DA

I⊗εA
// I⊗A

λA
// A ρD

A = A
ρA

// A⊗ I
A⊗e

// A⊗D I

αD
A,B,C = (A⊗DB)⊗DC

(A⊗DB)⊗δC
// (A⊗DB)⊗D(DC)

αA,DB,D(DC)
// A⊗ (DB⊗D(DC))

A⊗mB,DC
// A⊗D(B⊗DC)

(C, I,⊗D
,

D
⊸) is a “genuine” skew monoidal closed category, in the sense that λ D, ρD and αD are all

generally non-invertible.

Definition 3.2. A (strict) skew monoidal closed functor F : C → D between skew monoidal closed

categories (C, I,⊗,⊸) and (D, I′,⊗′
,⊸

′) is a functor from C to D satisfying FI = I′, F(A ⊗ B) =
FA⊗′ FB and F(A ⊸ B) = FA ⊸

′ FB, also preserving the structural laws λ , ρ and α on the nose.

The formulae, derivations and the equivalence relation ⊜ of the sequent calculus for SkNMILL deter-

mine a skew monoidal closed category FSkMCl(At).

Definition 3.3. The skew monoidal closed category FSkMCl(At) has as objects formulae; the operations

I, ⊗ and ⊸ are the logical connectives. The set of maps between objects A and B is the set of derivations

A | ⊢ B quotiented by the equivalence relation ⊜. The identity map on A is the equivalence class of axA,

while composition is given by scut. The structural laws λ , ρ , α are given by derivations in (2).

This is a good definition since all equations of a skew monoidal closed category turn out to hold.

Skew monoidal closed categories with given interpretations of atoms into them constitute models of

the sequent calculus of SkNMILL, in the sense specified by the following theorem.

Theorem 3.1. Let D be a skew monoidal closed category. Given FAt : At→ |D| providing evaluation of

atomic formulae as objects of D, there exists a skew monoidal closed functor F : FSkMCl(At)→ D.

Proof. Let (D, I′,⊗′
,⊸

′) be a skew monoidal closed category. The action on object F0 of the functor F

is defined by induction on the input formula:

F0X = FAtX F0I= I′ F0(A⊗B) = F0A⊗′ F0B F0(A ⊸ B) = F0A ⊸
′ F0B

The encoding of antecedents as formulae [[S | Γ]]⊗, introduced immediately after (4), can be replicated

also in D by simply replacing I and ⊗ with I′ and ⊗′ in the definition, where now S is an optional object

and Γ is a list of objects of D. Using this encoding, it is possible to show that each rule in (1) is derivable

in D. As an illustrative case, consider the rule pass. Assume given a map f : [[A | Γ]]⊗′ →C in D. Then,

assuming Γ = A1, . . . ,An, we can define the passivation of f typed [[− | A,Γ]]⊗′ →C as

(. . . ((I′⊗′ A1)⊗
′ A2) . . . )⊗

′ An

(...(λ ′
A1
⊗′A2)...)⊗

′An
// (. . . (A1 ⊗

′ A2) . . . )⊗
′ An

f
// C

This implies the existence of a function F1, sending each derivation f : S | Γ ⊢ A to a map F1 f :

F0([[S | Γ]]⊗) → FA in D, defined by induction on the derivation f . When restricted to sequents of the

form A | ⊢ B, the function F1 provides the action on maps of F . It is possible to show that F preserves

the skew monoidal closed structure, so it is a skew monoidal closed functor.
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Moreover, the sequent calculus as a presentation of a skew monoidal closed category is the initial

one among these models, or, equivalently, FSkMCl(At) is the free such category on the set At.

Theorem 3.2. The skew monoidal closed functor F constructed in Theorem 3.1 is the unique one for

which F0X = FAtX for any atom X.

Alternatively, following the strategy of our previous papers [26, 25, 24, 27], this result can be shown

by going via a Hilbert-style deductive system that directly presents the free skew monoidal closed cate-

gory on At. Its formulae are the same of the sequent calculus, its sequents are pairs A ⇒ B, with A and

B single formulae. Derivations are generated by the following rules, in which one can recognize all the

structure of Definition 3.1 (in particular π and π−1 are the adjunction data).

A ⇒ A
id

A ⇒ B B ⇒C
A ⇒C

comp A ⇒C B ⇒ D
A⊗B ⇒C⊗D

⊗ C ⇒ A B ⇒ D
A ⊸ B ⇒C ⊸ D

⊸

I⊗A ⇒ A
λ

A ⇒ A⊗ I
ρ

(A⊗B)⊗C ⇒ A⊗ (B⊗C)
α A⊗B ⇒C

A ⇒ B ⊸C
π A ⇒ B ⊸C

A⊗B ⇒C π−1

There exists a congruence relation
.
= on each set of derivations A ⇒ B with generators directly encoding

the equations of the theory of skew monoidal closed categories. With the Hilbert-style calculus in place,

one can show that there is a bijection between the set of derivations of the sequent A | ⊢ B modulo ⊜

and the set of derivations of the sequent A ⇒ B modulo
.
=.

4 Proof-Theoretic Semantics via Focusing

The equivalence relation ⊜ from (3) can also be viewed as an abstract rewrite system, by orienting every

equation from left to right. The resulting rewrite system is locally confluent and strongly normalizing,

thus confluent with unique normal forms. Derivations in normal form thus correspond to canonical

representatives of ⊜-equivalence classes. These representatives can be organized in a focused sequent

calculus in the sense of [3], which describes, in a declarative fashion, a root-first proof search strategy

for the (original, unfocused) sequent calculus.

4.1 A First (Naı̈ve) Focused Sequent Calculus

As a first attempt to focusing, we naı̈vely merge together the rules of the focused sequent calculi of skew

monoidal categories [26] and skew prounital closed categories [24]. In the resulting calculus, sequents

have one of 4 possible subscript annotations, corresponding to 4 different phases of proof search: RI for

‘right invertible’, LI for ‘left invertible‘, P for ‘passivation‘ and F for ‘focusing‘. We will see soon that

this focused sequent calculus is too permissive, in the sense that two distinct derivations in the focused

system can correspond to ⊜-equivalent sequent calculus derivations.

(right invertible)
S | Γ,A ⊢RI B

S | Γ ⊢RI A ⊸ B
⊸R

S | Γ ⊢LI P

S | Γ ⊢RI P
LI2RI

(left invertible)
− | Γ ⊢LI P

I | Γ ⊢LI P
IL

A | B,Γ ⊢LI P

A⊗B | Γ ⊢LI P
⊗L

T | Γ ⊢P P

T | Γ ⊢LI P
P2LI

(passivation)
A | Γ ⊢LI P

− | A,Γ ⊢P P
pass

T | Γ ⊢F P

T | Γ ⊢P P
F2P

(focusing)

X | ⊢F X
ax

− | ⊢F I
IR

T | Γ ⊢RI A − | ∆ ⊢RI B

T | Γ,∆ ⊢F A⊗B
⊗R

− | Γ ⊢RI A B | ∆ ⊢LI P

A ⊸ B | Γ,∆ ⊢F P
⊸L

(6)
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In the rules above and the rest of the paper, the metavariable P denotes a positive formula, i.e. P 6=A⊸B,

while metavariable T indicates a negative stoup, i.e. T 6= I and T 6= A⊗B (T can also be empty).

We explain the rules of the focused sequent calculus from the perspective of root-first proof search.

The starting phase is ‘right invertible‘ RI.

(⊢RI) We repeatedly apply the right invertible rule ⊸R with the goal of reducing the succedent to a

positive formula P. When the succedent formula becomes positive, we move to phase LI via

LI2RI.

(⊢LI) We repeatedly destruct the stoup formula via application of left invertible rules ⊗L and IL with the

goal of making it negative. When this happens, we move to phase P via P2LI.

(⊢P) We have the possibility of applying the passivation rule and move the leftmost formula A in the

context to the stoup when the latter is empty. This allows us to start decomposing A using left

invertible rules in phase LI. Otherwise, we move to phase F via F2P.

(⊢F) We apply one of the four remaining rules ax, IR, ⊗R or ⊸L. The premises of ⊗R are both in phase

RI since A and B are generic formulae, in particular they could be implications. The first premise

of ⊸L is in phase RI for the same reason while the second premise is in LI because the succedent

formula P is positive.

The focused calculus in (6) is sound and complete wrt. the sequent calculus in (1) in regards to

derivability, but not equationally complete, i.e., there exist ⊜-equivalent sequent calculus derivations

which have multiple distinct derivations using the rules in (6). In other words, the rules in (6) are too

permissive. They facilitate two forms of non-determinism in root-first proof search that should not be

there.

(i) The first premise of the ⊗R rule is in phase RI, since A is potentially an implication which the

invertible right rule ⊸R could act upon. Proof search for the first premise eventually hits phase

P, when we have the possibility of applying the pass rule if the stoup is empty. This implies the

existence of situations where either of the rules ⊗R and pass can be applied first, in both cases

resulting in valid focused derivations. As an example, consider the two distinct derivations of

− | X ,Γ,∆ ⊢P P⊗C under assumptions f : X | Γ ⊢LI P and g : − | ∆ ⊢RI C.

f

X | Γ ⊢LI P

X | Γ ⊢RI P
sw g

− | ∆ ⊢RI C

X | Γ,∆ ⊢F P⊗C
⊗R

X | Γ,∆ ⊢LI P⊗C
sw

− | X ,Γ,∆ ⊢P P⊗C
pass

f

X | Γ ⊢LI P

− | X ,Γ ⊢P P
pass

− | X ,Γ ⊢RI P
sw g

− | ∆ ⊢RI C

− | X ,Γ,∆ ⊢F P⊗C
⊗R

− | X ,Γ,∆ ⊢P P⊗C
sw

(7)

Here and in the rest of the paper the rule sw above stands for a sequence of (appropriately typed)

phase switching inferences by LI2RI, P2LI and F2P. The corresponding sequent calculus deriva-

tions are equated by congruence relation ⊜ because of the 4th equation from (3), i.e., the permu-

tative conversion involving ⊗R and pass.

(ii) Rules ⊗R and ⊸L appear in the same phase F, though there are situations where both rules can

be applied first, which can lead to two distinct focused derivations. More precisely, there are cases

when ⊗R and ⊸L can be interchangeably applied. As an example, consider the following two

valid derivations of A⊸ X | Γ,∆,Λ⊢F P⊗D under the assumption of f :− | Γ ⊢RI A, g : X | ∆⊢LI P
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and h : − | Λ ⊢RI D.

f

− | Γ ⊢RI A

g

X | ∆ ⊢LI P

X | ∆ ⊢RI P
sw h

− | Λ ⊢RI D

X | ∆,Λ ⊢F P⊗D
⊗R

X | ∆,Λ ⊢LI P⊗D
sw

A ⊸ X | Γ,∆,Λ ⊢F P⊗D
⊸L

f

− | Γ ⊢RI A

g

X | ∆ ⊢LI P

A ⊸ X | Γ,∆ ⊢F P
⊸L

A ⊸ X | Γ,∆ ⊢RI P
sw h

− | Λ ⊢RI D

A ⊸ X | Γ,∆,Λ ⊢F P⊗D
⊗R

(8)

The corresponding sequent calculus derivations, at the same time, are ⊜-equivalent because of the

7th equation from (3), the permutative conversion for ⊗R and ⊸L.

To get rid of type (i) undesired non-determinism, one might try an idea similar to the one that works in

the skew monoidal non-closed case [26], namely, to prioritize pass over ⊗R by requiring the first premise

of the latter to be a sequent in phase F. But this does not do the right thing in the skew monoidal closed

case. E.g., the sequent − | Y ⊢F (X ⊸ X)⊗Y becomes underivable while its counterpart is derivable in

(1).

??
− | ⊢F X ⊸ X

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− |Y ⊢P Y
pass

− | Y ⊢RI Y
sw

− |Y ⊢F (X ⊸ X)⊗Y
⊗R

An impulsive idea for eliminating undesired non-determinism of type (ii) is to prioritize the applica-

tion of ⊸L over ⊗R, e.g., by forcing the application of ⊸L in phase F whenever the stoup formula is an

implication and restricting the application of ⊗R to sequents where the stoup is empty or atomic. This

too leads to an unsound calculus, since the sequent X ⊸ Y | Z ⊢F (X ⊸ Y )⊗Z, which has a derivable

correspondent in (1), would not be derivable by first applying the ⊸L rule.

??
− | ⊢RI X

??
Y | X ⊢RI Y

Y | ⊢RI X ⊸Y
⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢P Z
pass

− | Z ⊢RI Z
sw

Y | Z ⊢F (X ⊸Y )⊗Z
⊗R

Y | Z ⊢LI (X ⊸Y )⊗Z
sw

X ⊸Y | Z ⊢F (X ⊸Y )⊗Z
⊸L

Dually, prioritizing the application of ⊗R over ⊸L leads to similar issues, e.g., the sequent X ⊸ (Y ⊗Z) |
X ⊢F Y ⊗Z would not be derivable by first applying the ⊗R rule while its counterpart is derivable in (1).

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢P X
pass

− | X ⊢RI X
sw

??
Y | Z ⊢LI Y

Y ⊗Z | ⊢LI Y
⊗L

X ⊸ (Y ⊗Z) | X ⊢F Y
⊸L

X ⊸ (Y ⊗Z) | X ⊢RI Y
sw ??

− | ⊢RI Z

X ⊸ (Y ⊗Z) | X ⊢F Y ⊗Z
⊗R
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4.2 A Focused System with Tag Annotations

In order to eliminate undesired non-determinism of type (i) between pass and ⊗R, we need to restrict

applications of pass in the derivation of the first premise of an application of ⊗R. One way to achieve

this is to force that such an application of pass is allowed only if the leftmost formula of the context is

new, in the sense that it was not already present in the context before the ⊗R application. For example,

with this restriction in place, the application of pass in the 2nd derivation of (7) would be invalid, since

the formula X was already present in context before the application of ⊗R.

Analogously, undesired non-determinism of type (ii) between ⊸L and ⊗R can be eliminated by

restricting applications of ⊸L after an application of ⊗R. This can be achieved by forcing the subsequent

application of ⊸L to split the context into two parts Γ,∆ in such a way that Γ, i.e., the context of the first

premise, necessarily contains some new formula occurrences that were not in the context before the first

⊗R application. Under this restriction, the application of ⊸L in the 2nd derivation of (8) would become

invalid, since all formulae in Γ are already present in context before the application of ⊗R.

One way to distinguish between old and new formulae occurrences in the above cases is to mark with

a tag • each new formula appearing in context during the building of a focused derivation. We christen

a formula occurrence “new” whenever it is moved from the succedent to the context via an application

of the right implication rule ⊸R. In order to remember when we are building a derivation of a sequent

arising as the first premise of ⊗R, in which the distinction between old and new formula is relevant, we

mark such sequents with a tag • as well. More generally, we write S | Γ ⊢x
ph C for a sequent that can be

untagged or tagged, i.e., the turnstile can be of the form ⊢ph or ⊢•
ph, for ph ∈ {RI,LI,P,F}. This implies

that there are a total of eight sequent phases, corresponding to the possible combinations of four subscript

phases with the untagged/tagged state. In tagged sequents S | Γ ⊢•
ph C, the formulae in the context Γ can

be untagged or tagged, i.e., they can be of the form A or A•; to be precise, all untagged formulae in

Γ must precede all tagged formulae (i.e., the context splits into untagged and tagged parts and, instead

of possibly tagged formulae, we could alternatively work with contexts with two compartments). The

formulae in the context of an untagged sequent S | Γ ⊢ph C must all be untagged (or, alternatively, the

tagged compartment must be empty). Given a context Γ, we write Γ◦ for the same context where all tags

have been removed from the formulae in it.

Derivations in the focused sequent calculus with tag annotations are generated by the rules

(right invertible)
S | Γ,Ax ⊢x

RI B

S | Γ ⊢x
RI A ⊸ B

⊸R
S | Γ ⊢x

LI P

S | Γ ⊢x
RI P

LI2RI

(left invertible)
− | Γ ⊢LI P

I | Γ ⊢LI P
IL

A | B,Γ ⊢LI P

A⊗B | Γ ⊢LI P
⊗L

T | Γ ⊢x
P P

T | Γ ⊢x
LI P

P2LI

(passivation)
A | Γ◦ ⊢LI P

− | Ax
,Γ ⊢x

P P
pass

T | Γ ⊢x
F P

T | Γ ⊢x
P P

F2P

(focusing) X | ⊢x
F X

ax
− | ⊢x

F I
IR

T | Γ◦ ⊢•
RI A − | ∆◦ ⊢RI B

T | Γ,∆ ⊢x
F A⊗B

⊗R
− | Γ◦ ⊢RI A B | ∆◦ ⊢LI P x = • ⊃ • ∈ Γ

A ⊸ B | Γ,∆ ⊢x
F P

⊸L

(9)

Remember that P is a positive formula and T is a negative stoup. The side condition in rule ⊸L reads: if

x = •, then some formula in Γ must be tagged. For the rule pass notice that, if x = •, it is actually forced

that all formulae of Γ are tagged since the preceding context formula A• is tagged. For the rules ⊗R and

⊸L similarly notice that, if some formula of Γ is tagged, then all formulae of ∆ must be tagged.
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The rules in (9), when stripped of all the tags, are equivalent to the rules in the naı̈ve calculus (6).

When building a derivation of an untagged sequent S | Γ ⊢RI A, the only possible way to enter a tagged

phase is via an application of the ⊗R rule, so that sequents with turnstile marked ⊢•
ph denote the fact that

we are performing proof search for the first premise of an ⊗R inference (and the stoup is negative). The

search for a proof of a tagged sequent T | Γ◦ ⊢•
RI A proceeds as follows:

(⊢•
RI) We eagerly apply the right invertible rule ⊸R with the goal of reducing A to a positive formula P.

All formulae that get moved to the right end of the context are “new”, and are therefore marked

with •. When the succedent formula becomes positive, we move to the tagged LI phase via LI2RI.

(⊢•
LI) Since T is a negative stoup, we can only move to the tagged P phase via P2LI.

(⊢•
P) If the stoup is empty, we have the possibility of applying the pass rule and move the leftmost

formula A in the context to the stoup, but only when this formula is marked by •. This restriction

makes it possible to remove undesired non-determinism of type (i). We then strip the context of

all tags and jump to the untagged LI phase. If we do not (or cannot) apply pass, we move to the

tagged F phase via F2P.

(⊢•
F) The possible rules to apply (depending on the stoup and succedent formula) are ax, IR, ⊗R or

⊸L. If we apply ⊗R, we remove all tags from the context Γ,∆ and move the first premise to the

tagged RI phase again. The tags are removed from the context in order to reset tracking of new

formulae. The most interesting case is ⊸L, which can only be applied if the Γ part of the context

Γ,∆ contains at least one tagged formula. This side condition implements the restriction allowing

the elimination of undesired non-determinism of type (ii). All tags are removed from Γ,∆ and

proof search continues in the appropriate untagged phases.

The employment of tag annotations eliminates the two types of undesired non-determinism. For

example, only one of the two derivations in (7) is valid using the rules in (9), and similarly for (8).

f

X | Γ ⊢•
LI P

X | Γ ⊢•
RI P

g

− | ∆ ⊢RI C

X | Γ,∆ ⊢F P⊗C
⊗R

X | Γ,∆ ⊢LI P⊗C
sw

− | X ,Γ,∆ ⊢P P⊗C
pass

??
− | X ,Γ ⊢•

P P

− | X ,Γ ⊢•
RI P

sw g

− | ∆ ⊢RI C

− | X ,Γ,∆ ⊢F P⊗C
⊗R

− | X ,Γ,∆ ⊢P P⊗C
sw

(same derivation as in (7)) (pass not applicable since X is not tagged)

f

− | Γ ⊢RI A

g

X | ∆ ⊢•
LI P

X | ∆ ⊢•
RI P

sw h
− | Λ ⊢RI D

X | ∆,Λ ⊢F P⊗D
⊗R

X | ∆,Λ ⊢LI P⊗D
sw

A ⊸ X | Γ,∆,Λ ⊢F P⊗D
⊸L

??
A ⊸ X | Γ,∆ ⊢•

F P

A ⊸ X | Γ,∆ ⊢•
RI P

sw h
− | Λ ⊢RI D

A ⊸ X | Γ,∆,Λ ⊢F P⊗D
⊗R

(same derivation as in (8)) (⊸L not applicable since Γ is tag-free)

The extra restrictions on sequents and formulae that the rules in (9) impose in comparison to those in

(6) do not reduce derivability, e.g., the sequents − |Y ⊢F (X ⊸ X)⊗Y , whose proof requires passivation

of a new formula in the derivation of the first premise of a ⊗R application, X ⊸Y | Z ⊢RI (X ⊸Y )⊗Z,

whose proof requires application of ⊗R before ⊸L, and X ⊸ (Y ⊗Z) | X ⊢F Y ⊗Z, which needs ⊸L
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invoked before ⊗R, are all derivable.

X | ⊢F X
ax

X | ⊢LI X
sw

− | X• ⊢•
P X

pass

− | X• ⊢•
RI X

sw

− ⊢ ⊢•
RI X ⊸ X

⊸R

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢P Y
pass

− | Y ⊢RI Y
sw

− |Y ⊢F (X ⊸ X)⊗Y
⊗R

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢P X
pass

− | X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸ Y | X• ⊢•
F Y

⊸L

X ⊸ Y | X• ⊢•
RI Y

sw

X ⊸ Y | ⊢•
RI X ⊸ Y

⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢P Z
pass

− | Z ⊢RI Z
sw

X ⊸ Y | Z ⊢F (X ⊸Y )⊗Z
⊗R

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢P X
pass

− | X ⊢RI X
sw

Y | ⊢•
F Y

ax

Y | ⊢•
RI Y

sw

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢P Z
pass

− | Z ⊢RI Z
sw

Y | Z ⊢F Y ⊗Z
⊗R

Y | Z ⊢LI Y ⊗Z
sw

Y ⊗Z | ⊢LI Y ⊗Z
⊗L

X ⊸ (Y ⊗Z) | X ⊢F Y ⊗Z
⊸L

We should point out that although the focused calculus is free of the undesired non-determinism that

the naı̈ve attempt (6) suffered from, it is still non-deterministic and this has to be so. In particular, the

focused calculus (9) keeps the following two types of non-determinism of the focused calculus of [26]

(see the analysis in [25]). We call these types of non-determinism essential because they reflect the fact

that there are sequents with multiple derivations in SkNMILL that are not ⊜-equivalent.

1. In phase P, when the stoup is empty, there is a choice of whether to apply pass or F2P and

sometimes both options lead to a derivation. For example, the sequent X | I⊗Y ⊢F X ⊗ (I⊗Y ) has

two distinct derivations in the focused system and the corresponding derivations in SkNMILL are

not ⊜-equivalent.

X | ⊢•
F X

ax

X | ⊢•
RI X

sw

− | ⊢•
F I

IR

− | ⊢•
RI I

sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− |Y ⊢P Y
pass

− |Y ⊢RI Y
sw

− |Y ⊢F I⊗Y
⊗R

− |Y ⊢LI I⊗Y
sw

I | Y ⊢LI I⊗Y
IL

I⊗Y | ⊢LI I⊗Y
⊗L

− | I⊗Y ⊢P I⊗Y
pass

− | I⊗Y ⊢RI I⊗Y
sw

X | I⊗Y ⊢F X ⊗ (I⊗Y )
⊗R

X | ⊢•
F X

ax

X | ⊢•
RI X

sw

− | ⊢•
F I

IR

− | ⊢•
RI I

sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− |Y ⊢P Y
pass

− | Y ⊢LI Y
sw

I |Y ⊢LI
IL

I⊗ | ⊢LI Y
⊗L

I⊗Y | ⊢LI Y
sw

− | I⊗Y ⊢P Y
pass

− | I⊗Y ⊢RI Y
sw

− | I⊗Y ⊢F I⊗Y
⊗R

− | I⊗Y ⊢RI I⊗Y
sw

X | I⊗Y ⊢F X ⊗ (I⊗Y )
⊗R

2. In phase F, if the succedent formula is A⊗B, and the rule ⊗R is to be applied, the context can

be split anywhere. Sometimes several of these splits can lead to a derivation. For example, the
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sequent X | I,Y ⊢F (X ⊗ I)⊗Y has two distinct derivations.

X | ⊢•
F X

ax

X | ⊢•
RI X

sw

− | ⊢F I
IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢P I
pass

− | I ⊢RI I
sw

X | I ⊢•
F X ⊗ I

⊗R

X | I ⊢•
RI X ⊗ I

sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

− | Y ⊢P Y
pass

− |Y ⊢RI Y
sw

X | I,Y ⊢F (X ⊗ I)⊗Y
⊗R

X | ⊢•
F X

ax

X | ⊢•
RI X

sw
− | ⊢F I

ax

− | ⊢RI I
sw

X | ⊢•
F X ⊗ I

⊗R

X | ⊢•
RI X ⊗ I

sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

Y | ⊢P Y
pass

− |Y ⊢LI Y
sw

I |Y ⊢LI Y
IL

− | I,Y ⊢P Y
pass

− | I,Y ⊢RI Y
sw

X | I,Y ⊢F (X ⊗ I)⊗Y
⊗R

The presence of ⊸ adds two further types of essential nondeterminism.

3. This type is similar to type 2. In phase F, if the stoup formula is A ⊸ B, and the rule ⊸L is to

be applied, the context can be split anywhere. Again, sometimes several of these splits lead to a

derivation. For example, the sequent I⊸ (X ⊸Y ) | I,X ⊢F Y has two derivations.

− | ⊢F I
IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢P I
pass

− | I ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢P X
pass

− | X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸Y | X ⊢F Y
⊸L

X ⊸ Y | X ⊢LI Y
sw

I⊸ (X ⊸ Y ) | I,X ⊢F Y
⊸L

− | ⊢F I
IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
sw

− | X ⊢P X
pass

− | X ⊢LI X
sw

I | X ⊢LI X
IL

− | I,X ⊢P X
pass

− | I,X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ⊸ Y | I,X ⊢F Y
⊸L

X ⊸Y | I,X ⊢LI Y
sw

I⊸ (X ⊸ Y ) | I,X ⊢F Y
⊸L

4. Finally, in phase F, if the succedent formula is A⊗B and the stoup formula is A′
⊸ B′, then both

⊗R and ⊸L can be applied first and sometimes both options lead to a derivation. For example,

the sequent I⊸ I | Z ⊢F (I⊸ I)⊗Z has two derivations.

− | ⊢F I
IR

− | ⊢LI I
sw

I | ⊢LI I
IL

− | I ⊢P I
pass

− | I ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI I
sw

I | ⊢LI I
IL

I⊸ I | I• ⊢•
F I

⊸L

I⊸ I | I• ⊢•
RI I

sw

I⊸ I | ⊢•
RI I⊸ I

⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢P Z
pass

− | Z ⊢LI Z
sw

I⊸ I | Z ⊢F (I⊸ I)⊗Z
⊗R

− | ⊢F I
IR

− | ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI

sw

I | ⊢LI I
IL

I | ⊢LI I
sw

− | I• ⊢•
P I

pass

− | I• ⊢•
RI I

sw

− | ⊢•
RI I⊸ I

⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
sw

− | Z ⊢P Z
pass

− | Z ⊢LI Z
sw

− | Z ⊢F (I⊸ I)⊗Z
⊗R

− | Z ⊢LI (I⊸ I)⊗Z
sw

I | Z ⊢LI (I⊸ I)⊗Z
IL

I⊸ I | Z ⊢F (I⊸ I)⊗Z
⊸L

Note that, in the second derivation, the rule pass applies to the sequent − | I• ⊢•
P I only because the

context formula I• is tagged.

Theorem 4.1. The focused sequent calculus is sound and complete wrt. the sequent calculus of Section

2: there is a bijective correspondence between the set of derivations of S | Γ ⊢ A quotiented by ⊜ and the

set of derivations of S | Γ ⊢RI A.
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Soundness is immediate: there exist functions embph : S |Γ⊢x
ph A→ S |Γ⊢A, for all ph∈{RI,LI,P,F},

which simply erase all phase annotations and tags. Completeness follows from the fact that the following

rules are all admissible:

− | Γ ⊢RI C

I | Γ ⊢RI C
ILRI

A | B,Γ ⊢RI C

A⊗B | Γ ⊢RI C
⊗LRI

A | Γ ⊢RI C

− | Γ ⊢RI C
passRI

A | ⊢RI A
axRI

− | ⊢RI I
IRRI

− | Γ ⊢RI A B | ∆ ⊢RI C

A ⊸ B | Γ,∆ ⊢RI C
⊸LRI

S | Γ,Γ′ ⊢RI A − | ∆ ⊢RI B

S | Γ,∆ ⊢RI [[Γ
′ | A]]⊸⊗B

⊗RRI
Γ′

(10)

The interesting one is ⊗RRI
Γ′ . The tensor right rule ⊗RRI, with premises and conclusion in phase RI, is

an instance of the latter with empty Γ′. Without this generalization including the extra context Γ′, one

quickly discovers that finding a proof of ⊗RRI, proceeding by induction on the structure of the derivation

of the first premise, is not possible when this derivation ends with an application of ⊸R:

f

S | Γ,A′ ⊢RI B′

S | Γ ⊢RI A′
⊸ B′ ⊸R

g

− | ∆ ⊢RI B

S | Γ,∆ ⊢RI (A
′
⊸ B′)⊗B

⊗RRI

= ??

The inductive hypothesis applied to f and g would produce a derivation of the wrong sequent. The use

of Γ′ in the generalized rule ⊗RRI
Γ′ is there to fix precisely this issue.

The admissibility of the rules in (10) allows the construction of a function focus : S | Γ ⊢ A →
S | Γ ⊢RI A, replacing applications of each rule in (1) with inferences by the corresponding admissi-

ble focused rule in phase RI. It is possible to prove that the function focus maps ⊜-equivalent derivations

in the sequent calculus for SkNMILL to syntactically identical derivations in focused sequent calculus.

One can also show that focus is the inverse of embRI, i.e. focus (embRI f ) = f for all f : S | Γ ⊢RI A and

embRI (focus g)⊜ g for all g : S | Γ ⊢ A. In other words, each ⊜-equivalence class in the sequent calculus

corresponds uniquely to a single derivation in the focused sequent calculus.

The focused sequent calculus solves the coherence problem for skew monoidal closed categories.

As proved in Theorems 3.1, 3.2, the sequent calculus for SkNMILL is a presentation of the free skew

monoidal closed category FSkMCl(At) on the set At. The coherence problem is the problem of deciding

whether two parallel maps in FSkMCl(At) are equal. This is equivalent to deciding whether two sequent

calculus derivations f ,g : A | ⊢ B are in the same ⊜-equivalence class. But that in turn is the same as

deciding whether focus f = focus g in the focused sequent calculus, and deciding syntactic equality of

focused derivations is straightforward. The Hilbert-style calculus is a direct presentation of FSkMCl(At),
but thanks to the bijection (up to

.
= resp. ⊜) between Hilbert-style and sequent calculus derivations, we

can also decide if two Hilbert-style derivations f ,g : A ⇒ B are in the same
.
=-equivalence class.

5 Conclusion

The paper describes a sequent calculus for SkNMILL, a skew variant of non-commutative multiplicative

intuitionistic linear logic. The introduction of the logic SkNMILL via this sequent calculus is motivated by

the categorical notion of skew monoidal closed category, which yields the intended categorical semantics

for the logic. Sequent calculus derivations admit unique normal forms wrt. a congruence relation ⊜ cap-

turing the equational theory of skew monoidal closed categories at the level of derivations. Normal forms

can be organized in a focused sequent calculus, where each focused derivation uniquely corresponds to

(and so represents) a ⊜-equivalence class in the unfocused sequent calculus. In order to deal with all the
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permutative conversions of ⊜ and to consequently eliminate the related sources of non-determinism in

root-first proof search, the focused sequent calculus employs a system of tags for keeping track of the

new formulae occurring in the context while building a derivation. The focused sequent calculus solves

the coherence problem for skew monoidal closed categories: deciding if a canonical diagram commutes

in every skew monoidal closed category reduces to deciding equality of focused derivations.

We plan to investigate alternative presentations of SkNMILL, such as natural deduction. Analogously

to the case of the sequent calculus studied in this paper, we expect natural deduction derivation to be

strongly normalizing wrt. an appropriately defined βη-conversion. We are interested in directly compar-

ing the resulting βη-long normal forms with the focused derivations of Section 4.

The system of tags in focused proofs, used for taming the non-deterministic choices arising in proof

search to be able to canonically represent each equivalence class of ⊜, appears to be a new idea. There

exist other techniques for drastically reducing non-determinism in proof search, such as multi-focusing

[7] and saturated focusing [19], and we wonder if our system of tags is in any way related to these. As

a general disclaimer, we should state that we have interpreted focusing broadly as the idea of root-first

proof search defining a normal form, based on a careful discipline of application of invertible and non-

invertible rules to reduce non-determinism, but not necessarily driven by a polarity-centric analysis. In

this respect, our approach is similar in spirit to, e.g., [8].

This paper represents the latest installment of a large project aiming at the development of the proof

theory of categories with skew structure. So far the project, promoted and advanced by Uustalu, Veltri

and Zeilberger, has investigated proof systems for skew semigroup categories [28], (non-symmetric and

symmetric) skew monoidal categories [26, 25, 27] and skew prounital closed categories [24]. From a

purely proof-theoretic perspective, the main lesson gained from the study of these skew systems consists

in first insights into ways of modular construction of focusing calculi. This is particularly highlighted in

Uustalu et al.’s study of partially normal skew monoidal categories [25], where one or more structural

laws among λ , ρ and α can be required to be invertible. The focused sequent calculus of partially normal

skew monoidal categories is obtained from the focused sequent calculus of skew monoidal categories by

modularly adding new rules for each enforced normality condition. We expect similar modularity to

show up in the case of partially normal skew monoidal closed categories.

We are also planning to develop an extension of SkNMILL with an exponential modality !. This in

turns requires the study of linear exponential comonads on skew monoidal closed categories, extending

the work of Hasegawa [11]. We would also like to consider modalities for exchange [12] and associativ-

ity/unitality.
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