
H. Bordihn, G. Horváth, G. Vaszil (Eds.): 12th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2022)

EPTCS 367, 2022, pp. 112–125, doi:10.4204/EPTCS.367.8

© D. Klobučnı́ková, Z. Křivka & A. Meduna

This work is licensed under the

Creative Commons Attribution License.

Conclusive Tree-Controlled Grammars

Dominika Klobučnı́ková Zbyněk Křivka Alexander Meduna

Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech Republic

iklobucnikova@fit.vut.cz krivka@fit.vut.cz meduna@fit.vut.cz

This paper presents a new approach to regulation of grammars. It divides the derivation trees gener-

ated by grammars into two sections—generative and conclusive (the conclusion). The former encom-

passes generation of symbols up till the moment when the lowest rightmost terminal of the derivation

tree is generated, whereas the latter represents the final steps needed to successfully generate a sen-

tence. A control mechanism based on regulating only the conclusion is presented and subsequently

applied to tree-controlled grammars, creating conclusive tree-controlled grammars. As the main re-

sult, it is shown that the ratio between depths of generative and conclusive sections does not influence

the generative power. In addition, it is demonstrated that any recursively enumerable language is gen-

erated by these grammars possessing no more than seven nonterminals while the regulating language

is union-free.

1 Introduction

Derivation trees serve as a graph representation of derivations leading to specific sentential forms. Nat-

urally, since this notion corresponds to the rewriting process of a grammar in a deterministic manner, it

can be utilized to create a mechanism used to regulate formal grammars.

Such grammar types can be represented by tree-controlled grammars – a tree-controlled grammar is

defined as a pair (G,R), where G is an ordinary context-free grammar and R is a regular control language

(see [1]). The language generated by (G,R) is defined by this equivalence: this language contains a word

x if and only if x ∈ L(G) and there is a derivation tree for x in G such that R contains every word obtained

by concatenating the symbols labeling the nodes in the same level for all levels of the tree. Although

based upon context-free grammars, tree-controlled grammars are computationally complete—that is,

they characterize the family of the recursively enumerable languages. Considering this advantage, it

comes as no surprise that formal language theory intensively investigates these grammars (see [2, 7]).

However, a question presents itself: is it truly necessary to regulate all levels of a derivation tree

by the control language or would it be sufficient to verify only a few key moments of the derivation?

A similar notion has been utilized by scattered context grammars with a single context-sensitive rule

(see [5]) and by the Geffert normal form (see [3]), both of which are known to be equal to type-0

grammars, which are computationally complete.

Consequently, this paper presents the separation of derivation trees into two distinct parts—the gen-

erative part and the conclusive part (conclusion for short, see Figure 1). Intuitively, the former represents

the derivation tree starting from the start nonterminal and extending to the deepest level in the derivation

tree which still contains a terminal symbol, while the latter is in charge of verifying—or concluding—

the derivation and erasing the remaining auxiliary nonterminals.

The paper proposes a different approach of regulating the derivation tree compared to the classic

tree-controlled grammars: instead of regulating the entire tree, it focuses specifically on regulation of

the subtree forest found in the conclusion of the derivation tree.

http://dx.doi.org/10.4204/EPTCS.367.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Klobučnı́ková, Z. Křivka & A. Meduna 113

g
en

er
at

iv
e

p
ar

t

co
n
cl

u
si

v
e

p
ar

t

deepest

terminal

S

mT

nT

Figure 1: Separation of derivation tree, T , into the generative and conclusive part based on the deepest

(lowest rightmost) terminal; all symbols located to its right are nonterminal. The conclusive part starts

with the following level, and contains no terminals. No symbol belongs to both generative and conclusive

parts; mT and nT denote the depth of the generative and conclusive part, respectively.

This paper proves that these grammars are computationally complete even if their control languages

belong to the family of extended union-free regular languages (see [2]). We establish that any recursively

enumerable language is generated by a seven-nonterminal conclusive tree-controlled grammar (G,R),
where R is an extended union-free regular language, and in addition, R uses no more than seven iterations

(∗) and no more than ten concatenations.

The paper is organized as follows: first, an introduction to graph theory, derivation trees and their

anatomy is given. Then, the conclusive tree-controlled grammars and languages generated by them are

introduced, followed by a discussion on their generative power and a comparison with type-0 grammars.

At the end of the paper, an overview of the results is given and several open problems are listed.

2 Definitions

This paper assumes that the reader is familiar with language theory (see [4]).

For an alphabet, V , V ∗ represents the free monoid generated by V under the operation of concatena-

tion. The unit of V ∗ is denoted by ε . Set V+ = V ∗−{ε}; algebraically, V+ is thus the free semigroup

generated by V under the operation of concatenation. For w ∈V ∗, |w| denotes the length of w. Further-

more, suffix(w) denotes the set of all suffixes of w, and prefix(w) denotes the set of all prefixes of w.

For w ∈ V ∗ and T ⊆ V , occur(w,T) denotes the number of occurrences of symbols from T in w. For

instance, occur(abdabc,{a,d}) = 3. If T = {a}, where a ∈V , we simplify occur(w,{a}) to occur(w,a).
For a sequence, x = (a1,a2, . . . ,an), where ai ∈ V for 1 ≤ i ≤ n, |x| = n denotes the length of x. By N,

we denote the set of all positive integers. Let I ⊂ N be a finite nonempty set. Then, max(I) denotes

the maximum of I.

Definition 2.1. Union-free regular languages (UFRL for short) over an alphabet Σ are defined recur-

sively as follows:

114 Conclusive Tree-Controlled Grammars

(i) {ε}, /0 are UFRL over Σ;

(ii) for every a ∈ Σ, {a} is an UFRL over Σ;

(iii) let X ,Y be UFRL, then,

(a) XY is an UFRL (concatenation),

(b) X∗ is an UFRL (iteration).

The family of UFRL is denoted by UFREG.

Definition 2.2. Extended union-free regular languages (EUFRL for short) over an alphabet Σ are defined

recursively as follows:

(i) {ε}, /0 are EUFRL over Σ;

(ii) for every X ⊆ Σ, X is an EUFRL over Σ;

(iii) let X ,Y be EUFRL, then,

(a) XY is an EUFRL (concatenation),

(b) X∗ is an EUFRL (iteration).

The family of EUFRL is denoted by EUFREG.

Observe that {a,b} ∈ EUFREG−UFREG but {a,b}∗ = {a∗b∗}∗ ∈ UFREG.

A type-0 grammar is a quadruple G = (N,Σ,P,S), where N and Σ are the finite alphabets of nonter-

minals and terminals, respectively, such that N ∩Σ = /0, S ∈ N is the start nonterminal, and P is the set of

productions in the form of x → y, where x,y ∈ (N ∪Σ)∗, x 6∈ Σ∗. Let V = N ∪Σ. For some p = x → y ∈ P

(a production labeled by p), lhs(p) denotes x as the left-hand side of p and rhs(p) denotes y as the right-

hand side of p. The direct derivation relation over V ∗, denoted by ⇒, is defined as follows: uxv ⇒ uyv [p]
in G, or simply uxv ⇒ uyv, if and only if u,v ∈ V ∗ and p : x → y ∈ P. Let ⇒n and ⇒∗ denote the nth

power of ⇒, for some n ≥ 0, and the reflexive-transitive closure of ⇒, respectively. The language gener-

ated by G is denoted by L(G) and defined as L(G) = {x : S ⇒∗ x,x ∈ Σ∗}. Two grammars are equivalent

if both generate the same language. The family of languages generated by type-0 grammars (also known

as the family of recursively enumerable languages) is denoted by RE.

Both, right-linear grammars and context-free grammars are type-0 grammars, G=(N,Σ, P,S), where

N, Σ, and S have the same meaning as in the previous definition, and P is the set of productions in the

form of A → w, where A ∈ N, w ∈ Σ∗(N ∪{ε}) and A ∈ N, w ∈ (N ∪Σ)∗, respectively.

Definition 2.3. A type-0 grammar, G = ({S,S′,A,B},Σ,P ∪ {ABBBA → ε},S) is said to be in the third

Geffert normal form if every production, p ∈ P, has one of the following forms:

(i) S → uSa,

(ii) S → S′,

(iii) S′ → uS′v,

(iv) S′ → uv,

where u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗, and a ∈ Σ.

Recall that type-0 grammars are computationally complete [6].

Lemma 2.4 (Geffert normal form [3]). For every type-0 grammar, G, there exists an equivalent grammar

in the third Geffert normal form.

D. Klobučnı́ková, Z. Křivka & A. Meduna 115

Let H = (A,ρ) be a directed graph, where A is the set of nodes and ρ is a relation on A consisting

of edges. A sequence of nodes, (a0,a1, . . . ,an) for some n ≥ 1, is a path of length n from a0 to an if

(ai−1,ai) ∈ ρ for all 1 ≤ i ≤ n. If a0 = an, the path is a cycle; H is acyclic if it contains no cycles. For

a path (a0,a1, . . . ,an), a0 is the ancestor of an and an is the descendant of a0. A tree is an acyclic graph

T = (A,ρ) such that A contains a specific node, called the root of T and denoted by root(T) and every

a ∈ A−{root(T)} is a descendant of root(T). If a node a has no descendants, it is a leaf. Otherwise, it

is an interior node. We shall consider T to be an ordered tree, causing every interior node a ∈ A to have

all its direct descendants b1 · · ·bn ordered from left to right. The frontier of T , denoted as frontier(T), is

the sequence of all leaves of T ordered from left to right. The length of the longest path from root(T)
in T is referred to as the depth of T , denoted by depth(T). For 0 ≤ i ≤ depth(T), the i-th level of T ,

denoted as level(T, i), is the sequence of nodes of T in the order defined by the ordered tree with a path

of length i from root(T). A tree S = (B,ν) is a subtree of T if /0 ⊂ B ⊆ A, ν ⊆ ρ ∩ (B×B), and no

node in A−B is a descendant of a node in B. The tree S is considered to be an elementary subtree of

T if depth(S) = 1. All trees in this paper are considered to be directed in top-down manner (so called

out-degree tree) and ordered from left to right.

Let G = (N,Σ,P,S) be a context-free grammar and A → x ∈ P be a production. Let T be the elemen-

tary tree satisfying root(T) = A and frontier(T) = x such that either root(T) has ε as its only descendant,

or x = a1 . . .an, n ≥ 1 with root(T) having a1 · · ·an as its descendants; then, T is considered the produc-

tion tree representing A → x. A derivation tree is any tree such that its root belongs to N and each of

its elementary subtrees is a production tree representing a rule p ∈ P. The set of all derivation trees, T ′,

such that root(T) = S and frontier(T ′) = x is denoted by ∆G(x); by extension, the set of all derivation

trees generating a language, L, is denoted by ∆G(L).
The generative part of T is the subtree whose root is S and the lowest level is the last level containing

a terminal in T , whereas the conclusive part (or conclusion) contains the remaining portion of the tree;

observe that all leaves in the conclusive part are ε . Let mT be the depth of the generative part of T and nT

be the maximum depth of subtrees from the conclusion of T (see Figure 1). If mT ≥ nT , T is said to

have a short conclusion; otherwise, it is said to have a long conclusion. The depth of conclusion of T is

the maximum depth of a derivation tree located in the conclusive part of T .

Definition 2.5. Let G = (N,Σ,P,S) be a context-free grammar and x ∈ Σ∗ be a string. The set of all

derivation trees, derivation trees with short conclusion and long conclusion is, respectively, defined as

c∆G(x) = ∆G(x),

sc∆G(x) = {t ∈ ∆G(x) : mt ≥ nt}, and

lc∆G(x) = {t ∈ ∆G(x) : mt < nt},

such that mt ,nt are the depths of the generative and conclusive part of the derivation tree t of x.

A tree-controlled grammar (TCG for short) is a pair H = (G,R), where G = (N,Σ,P,S) is a context-

free grammar and R ⊆ (N ∪Σ)∗ is a regular control language. The language generated by H is denoted

by L(H) and defined by

L(H) = {x : x ∈ L(G),∃t ∈ ∆G(x) such that

for all 0 ≤ i < depth(t), level(t, i) ∈ R}.

Example 2.6. Let H = (G,R) with G = ({S,A,B,C},{a,b},P,S) be a TCG, where P contains

1: S → AB, 2: A → AA, 3: A → a, 4: B → bB,

5: B → BC, 6: B → ε , 7: C → ε ,

116 Conclusive Tree-Controlled Grammars

S

A

A

a

A

a

B

b B

b B

B

ε

C

ε
g
en

er
at

iv
e

p
ar

t

co
n
cl

u
si

v
e

p
ar

t

Figure 2: Derivation tree T of H for aabb where the root is S

with the regular control language R = {S} ∪ {A}∗{b}∗{B}∗{C}∗ ∪ {a}∗{b}∗{B}∗{C}∗. In this way, we

can generate aabb in a successful derivation depicted by the derivation tree, T , in Figure 2.

The rules of G are applied in an arbitrary order until the rule A → a is applied on a nonterminal A on

level 2 of the derivation tree, effectively forcing the other instances of A to be rewritten to a as well; note

that the derivation tree does not necessarily reflect the order in which the individual nonterminals were

rewritten.

Observe that L(H) = {a2i

b j : i, j ≥ 0}, which is a non-context-free language. The deepest (low-

est and rightmost) terminal, b, is located on level 3, which marks the end of the generative part of

the derivation tree; during the conclusive part, the remaining nonterminals B and C are erased. Conse-

quently, mT = max({|w|−1: w ∈ {(S,A,A,a),(S,B,b),(S,B,B,B)}}) = 3, and nT = max({|w|−1: w ∈
{(B,ε),(C,ε)}}) = 1, making T a derivation tree with a short conclusion as mT ≥ nT .

Now, we introduce a modification of tree-controlled grammars that utilizes a level-controlling con-

dition only for the conclusive part of the derivation tree.

Definition 2.7. Let H = (G,R) be a TCG and T ∈ ∆G(L(G)). Then, the conclusive condition (CC(T))
holds if and only if for all mT < i ≤ depth(T), level(T, i) ∈ R.

Definition 2.8. Let H = (G,R) be a TCG. The conclusive, short-conclusive, and long-conclusive lan-

guage generated by H is defined by

cL(H) = {x ∈ L(G) : t ∈ c∆G(x) and CC(t) holds},

scL(H) = {x ∈ L(G) : t ∈ sc∆G(x) and CC(t) holds}, and

lcL(H) = {x ∈ L(G) : t ∈ lc∆G(x) and CC(t) holds},

respectively.

The family of conclusive, short-conclusive, and long-conclusive languages generated by tree-con-

trolled grammars are denoted by CTC, sCTC, and lCTC, respectively.

D. Klobučnı́ková, Z. Křivka & A. Meduna 117

For brevity, a TCG generating conclusive, short-conclusive, or long-conclusive language is referred

to as a conclusive tree-controlled grammar (CTCG for short).

Example 2.9. Consider the TCG, H = (G,R), from Example 2.6. Let H ′ = (G,R′) be a CTCG such

that R′ = {B}∗{C}∗. Observe that since the regulation has been reduced only to the conclusion of

the derivation tree, L(H ′) = {a}+{b}∗.

3 Results

It has been established that tree-controlled grammars are computationally complete even if their control

set is restricted to a subregular language (see [2, 8]). This section extends the principles to conclusive

tree-controlled grammars and establishes their computational completeness using an extended union-free

regular control language.

First, the equality of languages generated by subtypes of conclusive tree-controlled grammars is

established.

Theorem 3.1. Let H = (G,R), where G = (N,Σ,P,S), be a conclusive tree-controlled grammar. Then,

lcL(H)⊆ scL(H).

Proof. Introduce a conclusive tree-controlled grammar, H∆ = (G∆,R) such that G∆ = (N,Σ,P∪{S →
S},S). Then, let m and n be the maximum height of generative part and minimum height of conclusion

in ∆G(L(G∆)), respectively. It is apparent that by (m− n) applications of the rule S → S, all sentences

x ∈ L(G) can be generated with a short conclusion. Thus, the theorem holds.

Next, we present the basic idea describing how to convert a type-0 grammar Q = ({S,S′,A,B},T,P∪
{ABBBA → ε},S) in the third Geffert normal form to an equivalent conclusive tree-controlled grammar

H = (G,R). The idea consists in the creation of a derivation in G by context-free productions in an utterly

arbitrary way, after which precisely the substring ABBBA located in the middle of the sentential form is

erased repeatedly during the conclusion—that is, the controlled part of the derivation tree. In this way,

the correctness of the derivation is verified.

More precisely, G generates every w ∈ lcL(H) by performing three consecutive phases: (I), (II),

and (III). First, by using context-free productions, the sentential form uSw is derived, where u is a string

over {AB, ABB}∗, and w is a terminal string, w ∈ Σ∗. Considering w, phase (I) is not regulated by

the control language R.

Phase (II) starts with application of the production S → S′, which marks the beginning of the con-

clusion. In this phase, G rewrites the sentential form uu′S′v′w, where v′ is a string over {BA,BBA}∗

representing the nonterminal counterparts of u,u′ ∈ {AB,ABB}∗. Phase (III) is entered upon replacing

the nonterminal S′ in the sentential form, as its presence is required to generate any additional symbols.

Finally, the substring ABBBA found in the middle of the sentential form is repeatedly activated and erased

in accordance with the control language using the following rules:

A → Ā, B → B̄, Ā → ε , B̄ → ε .

To summarize the rewriting process, every sentence w ∈ L(G,R) is generated by the following se-

quence of steps as:

S ⇒∗
(I) uSw ⇒∗

(II) uu′S′vw ⇒∗
(III) u′′ĀB̄B̄B̄Āv′′w ⇒∗ w,

where u′′ ∈ {AB,ABB}∗ and v′′ ∈ {BA,BBA}∗ such that u′′ ∈ prefix(u′) and v′′ ∈ suffix(v′).

118 Conclusive Tree-Controlled Grammars

Now, using the third Geffert normal form, the section demonstrates that for every type-0 grammar,

Q, there exists an equivalent conclusive tree-controlled grammar, H = (G,R), where G = (N, Σ, P, S)
and R is an extended union-free regular control language.

Theorem 3.2. Let L be a recursively enumerable language. Then, there exists a conclusive tree-con-

trolled grammar, H = (G,R), where R ∈ EUFREG such that L = cL(H).

Proof. Let Q = (NQ,Σ,PQ,S) be a type-0 grammar such that L(Q) = L. Without any loss of generality,

assume that Q conforms to the third Geffert normal form (see Definition 2.3), and that NQ ∩{Ā, B̄} =
/0. Let us introduce a conclusive tree-controlled grammar, G = (NG,Σ,PG,S), and extended union-free

regular control language, R.

Construction. Introduce a conclusive tree-controlled grammar H = (G,R) where G = (NQ ∪ {Ā, B̄},

Σ, PG, S) with VG = NG ∪Σ and VQ = NQ ∪Σ. Let PG = PGen ∪PAct ∪PPro ∪PEra be constructed in the

following way:

PGen = {p ∈ PQ : occur(rhs(p),S′)≥ 1},

PAct = {S′ → uĀB̄B̄B̄Āv : S′ → uv ∈ PQ,u ∈ {AB,ABB}∗,v ∈ {BA,BBA}∗},

PPro = {A → A,B → B},

PEra = {A → Ā,B → B̄, Ā → ε , B̄ → ε}.

Set the partial control languages, R2 and R3, as extended union-free regular languages (see Defini-

tion 2.2) as

R2 = {S′}N∗
Q,

R3 = {ĀB̄B̄B̄Ā}N∗
Q,

and the control language, R, an extended union-free regular language, as

R = N∗
QR2

∗R∗
3.

Observe that R2 ⊆ R, and R3 ⊆ R without need of union operation, and that R2 and R3 correspond to

the phases (II) and (III) of conclusion, respectively.

The control language, R, assures that both context-free phases of the rewriting process proceed with-

out any restrictions, and that the final phase is only finished successfully if the generated sentence belongs

to L(Q).

Basic Idea. Next, we sketch the reason why L(Q) = cL(H). H simulates the derivation steps of Q

by using a combination of context-free productions and the subregular control language. Phase (I) is

completely contained in the generative part of ∆G(x). As phase (II) generates new nonterminals and phase

(III) propagates the existing nonterminals at the beginning of a conclusive sentential form, the overall

control language contains the prefix from N∗
Q.

All context-free productions found originally in Q are represented by the sets PGen and PAct . The

former set consists of all productions of form (iii) of Q (see Definition 2.3) with the purpose of generating

the terminal string and surrounding nonterminals, whereas the latter set represents the productions of

form (iv), which may be used to effectively activate the central substring, ĀB̄B̄B̄Ā, and subsequently start

the erasing phase.

Similarly, the purpose of sets PPro and PEra is to assure proper generation of the derivation tree; PPro

serves to propagate the corresponding nonterminals A and B to the lower level of the derivation tree,

D. Klobučnı́ková, Z. Křivka & A. Meduna 119

while PEra is responsible for simulation of the sole context-sensitive rule ABBBA → ε from PQ used to

erase the current center of the sentential form.

Partial control language R2 simulates the use of context-free productions of form (iii) so it is respon-

sible for the generation of the nonterminal suffix needed to generate a sentence. Finally, once S′ has been

erased from the sentential form, only the partial control language R3 may be matched. Thanks to the

properties of the Geffert normal form, the activation and subsequent erasing process may occur only at

one position in the sentential form at a time. Providing by G, the core substrings, S′ and ĀB̄B̄B̄Ā, of any

partial control language may only appear at most once in the entire sentential form, and their appearance

is mutually exclusive; therefore, R2 and R3 may be iterated without disrupting the consistency of the

rewriting process. In this way, the equivalence of L(Q) and cL(H) is maintained.

In the following claims (If) and (Only if), using proof by induction on the number of derivation steps,

we prove formally that L(Q)⊆ cL(H) and cL(H)⊆ L(Q), respectively.

Define the homomorphism h from VG to VQ as h(X) = X for all X ∈ VG −{Ā, B̄} and h(X) = ε for

X ∈ {Ā, B̄}. Furthermore, define homomorphism h′ from VG to VQ as h′(X) = X for X ∈VG −{Ā, B̄} and

h′(X̄) = X for X̄ ∈ {Ā, B̄}.

Claim (If). S ⇒n
Q x implies that S ⇒∗

H x′, where x = h(x′) or x = h′(x′), x ∈ V ∗
Q, x′ ∈V ∗

G for some n ≥ 0

and if x represents a level in conclusive part of ∆G(x
′), then x′ ∈ R.

Proof. Induction Basis: Let n = 0. The only possible x is equal to S, as S ⇒0
Q S. Similarly, S ⇒0

H S,

where S = h(S).
Induction Hypothesis: Suppose that the claim holds for all derivations of length j for some j ≥ 0.

Induction Step: Consider a derivation of the form

S ⇒ j+1
Q x.

Then, there also exists y ∈V ∗
Q such that

S ⇒ j
Q y ⇒Q x [p].

By the induction hypothesis, there exists a derivation

S ⇒∗
H y′ where y = h(y′) or y = h′(y′).

Considering Q conforms to the third Geffert normal form, the production p ∈ PQ has one of the

following forms (see Definition 2.3):

1. a context-free production in accordance with one of forms (i) through (iii),

2. a context-free production in form (iv),

3. the context-sensitive erasing production ABBBA → ε .

The possibilities that may occur in H based on the production form are the following.

1. The production p is present in H; y′ ⇒H x′ [p], where x = h(x′). This means that the level the pro-

duction is applied on either is not regulated or it corresponds to the partial control language N∗
QR∗

2,

depending on whether S or S′ is in the middle of x′.

120 Conclusive Tree-Controlled Grammars

2. Let p = S′ → uv ∈ PQ and p′ = S′ → uĀB̄B̄B̄Āv ∈ PG for some u ∈ {AB,ABB}∗, v ∈ {BA,BBA}∗.
The production p serves as a transition between generating and erasing phases (II) and (III) in Q,

which are regulated by partial control languages N∗
QR∗

2 and N∗
QR∗

3, respectively.

y = αS′β ⇒Q αuvβ = x = h(x′) [p]
y′ = αS′β ⇒H αuĀB̄B̄B̄Āvβ = x′ [p′]

for some α ∈ N∗
Q, and β ∈ N∗

QΣ∗. In H , the ĀB̄B̄B̄Ā substring is erased immediately after being

generated together with the generation of another activated substring ĀB̄B̄B̄Ā in the next level of

the derivation tree.

3. The context-sensitive production ABBBA → ε ∈ PQ is simulated by consecutive application of

context-free productions, X → X̄ , X̄ → ε for X ∈ {A,B}, to select the ABBBA substring and sub-

sequently erase it. In Q, this erasure is performed in one derivation step and it is sufficient to mark

the ensuing ĀB̄B̄B̄Ā substring in H .

y = αABBBAβ ⇒Q αβ = x = h(x′)
y′ = αĀB̄B̄B̄Āβ ⇒0

H x′

for some α ∈ N∗
Q, and β ∈ N∗

QΣ∗.

To assure that all required nonterminals placed next to each other are affected, the level of the

derivation tree is regulated by the partial control language N∗
QR∗

3. Notice that all terminals occurred

in the previous levels of ∆G(x
′) so we have only nonterminal strings in the conclusive levels to

control by N∗
QR∗

3.

Thus, this claim conforms to the rules of induction.

Claim (Only if). S ⇒n
H x implies that S ⇒∗

Q x′, where x ∈V ∗
G, x′ ∈V ∗

Q, such that x′ = h(x) or x′ = h′(x) for

some n ≥ 0 and if x represents a level in conclusive part of ∆G(x), then x ∈ R.

Proof. Induction Basis: S ⇒∗
H S = x implies S ⇒0

Q S = x′ where x = h(x′).
Induction Hypothesis: Suppose that the claim holds for all derivations of length j for some j ≥ 0.

Induction Step: Consider a derivation of the form

S ⇒ j+1
H x.

Then, there also exists y ∈V ∗
G, such that

S ⇒ j
H y ⇒H x.

By the induction hypothesis, there exists a derivation

S ⇒∗
Q y′, where h(y) = y′ or h′(y) = y′.

According to the subsets of PG to which the used production, p, belongs to, four cases in Q follow.

1. Production p ∈ PGen containing S′ in rhs(p).

(a) The form of p depends on the moment of the rewriting when it is applied at; it either serves

as the entry point of the conclusion, by using the production p = S → S′, or it is used to

generate nonterminals to the right of S′ and p = S′ → uS′v, v ∈ {BA,BBA}∗. The production

S′ → uS′v is used on the level described by the partial control language N∗
QR∗

2.

D. Klobučnı́ková, Z. Křivka & A. Meduna 121

In this case, the production may be applied in Q in a way analogous to H ,

y′ ⇒Q x′ [p], where h(x) = x′.

Considering the structure of the production, it is clear that

occur(lhs(p),S′) = occur(rhs(p),S′) = 1

for all p∈PGen; thus, no extra S′ symbols are generated. The nonterminals that were not affected by

the production, and are already present in the sentential form, are nondeterministically propagated

using the productions of PPro; otherwise, the application of productions of PEra would cause the

rewriting process to halt in the future.

Consequently, the corresponding partial control language, R∗
2, is iterated precisely once while

the nonterminal S′ is present in the sentential form, as each iteration must contain one of the

aforementioned nonterminals.

2. Production p ∈ PPro serves to propagate the corresponding nonterminal to the following level of

the derivation tree while not affecting the sentential form. Because of this, application of p in Q is

equal to

y′ ⇒0
Q y′ = x′.

Considering the production p ∈ PPro works with nonterminals {A,B} ⊂ NQ, its application is al-

lowed at any place of the control language, N∗
Q, R∗

2, and R∗
3.

3. Production p ∈ PAct provides the transition between phases (II) and (III) of the rewriting process,

which are described by partial control languages R∗
2 and R∗

3, respectively. Necessarily, p has the

form of S′ → uĀB̄B̄B̄Āv, where u ∈ {AB, ABB}∗, v ∈ {BA,BBA}∗. This process may be described

as

y = αS′β ⇒H αuĀB̄B̄B̄Āvβ = x [p],

with h(x) = h(αuĀB̄B̄B̄Āvβ) = h(αuvβ) for some α ∈ N∗
Q, β ∈ N∗

QΣ∗, and

y′ = αS′β ⇒Q h(αuvβ) = x′ = h(x) [S′ → uv].

Subsequently, the ĀB̄B̄B̄Ā substring is removed in H using the productions of PEra.

4. Productions p ∈ PEra are used to repeatedly select nonterminals of the ABBBA substring and erase

them in an inside-out way. The initial place of erasure is determined by the location of the nonter-

minal S′.

(a) Let pX = X → X̄ , X ∈ {A,B}. Production pX nondeterministically marks the nonterminal

to be erased. However, this step is only required to simulate the context-sensitive production

in H , and therefore application of pX does not affect the sentential form of Q. Production pX

may be applied in the following way:

y = αuXvβ ⇒H αuX̄vβ = x [pX]

with uXv ∈ {A, Ā}{B, B̄}3{A, Ā} and X ∈ {A,B}, and whose equivalent in Q would be as

follows:

y′ = αABBBAβ ⇒0
Q αABBBAβ = h′(x).

122 Conclusive Tree-Controlled Grammars

S

· · ·

· · ·

A

Ā

B

B̄

Ā

ε

B̄

ε

B̄

ε

B̄

ε

Ā

ε

B

B̄

B

B̄

A

Ā

· · ·

· · ·

. .
. .

.

.
. . .

Figure 3: Derivation tree reflecting phase (III) of the rewriting process. Productions of PEra are applied

repeatedly on the same level to simulate application of ABBBA → ε .

(b) Let pX̄ = X̄ → ε , X ∈ {A,B}. Production pX̄ erases the previously selected nonterminal

to simulate the production ABBBA → ε ∈ P. It can be applied either immediately after the

application of a production from PAct , or as the follow-up of productions from PPro to generate

the next level of the derivation tree. Considering the ĀB̄B̄B̄Ā substring only serves as an

intermediary in the erasing process, it may be ignored in Q completely;

y = α ūX̄ v̄β ⇒H α ūv̄β = x

y′ = αβ ⇒0
Q x′ = y′

where X̄ ∈ {Ā, B̄}, ū, v̄ ∈ {Ā, B̄}∗ such that ūX̄ v̄ ∈ {Āi′ B̄ j′Āk′ : i′ ∈ {0,1}, j′ ∈ {0,1,2,3},k′ ∈
{0,1}}, occur(α ,{Ā, B̄}) = occur(β ,{Ā, B̄}) = 0 and h(y) = y′.

These productions may only be applied during phase (III) of the rewriting process, which is regu-

lated by the partial control language N∗
QR∗

3. Because of this, the productions pX and pX̄ have to be

applied on all nonterminals of the ABBBA and ĀB̄B̄B̄Ā substrings, respectively, as seen in Figure 3.

Selection of any other symbols would cause the rewriting process to halt on the following level of

the derivation tree.

Because of the properties of the Geffert normal form, the sentential form will always contain at

most one occurrence of the substring ABBBA. Therefore, the partial control language R∗
3 is always

iterated precisely once as long as the sentential form contains some Ās or B̄s.

It is clear that p∈P−PPro can only be used during a specific phase of the rewriting process controlled

by the corresponding expression. If this were to be violated, a sentential form not described by R would

arise, resulting in blocking the derivation in H .

It is important to note that iteration of partial control language R2 and R3 depends on the presence of

their core substring, S′ and ĀB̄B̄B̄Ā, in their respective order. To generate a sentence, x, it is necessary

that TCG H goes through all of the following sentential forms.

S ⇒∗
H α1Sx α1 ∈ N∗

Q,x ∈ Σ∗

⇒H α1S′x

⇒∗
H α1α2S′β2x α2,β2 ∈ N∗

Q

⇒∗
H α3ĀB̄B̄B̄Āβ3x α3,β3 ∈ N∗

Q

⇒∗
H x

This implies that the presence of the individual core substrings is mutually exclusive. As a result, only

one of the partial control languages, R2, R3, may be positively iterated at a time; in that case, it is iterated

precisely once. Thus, cL(H)⊆ L(Q).

D. Klobučnı́ková, Z. Křivka & A. Meduna 123

Claim (Long-conclusiveness). cL(H) is also long-conclusive.

Proof. Let x = a1a2 · · ·an where ai ∈ Σ for all 1 ≤ i ≤ n generated as

S ⇒∗
H α1Sx ⇒H α1S′x ⇒∗

H α1α2S′β2x ⇒∗
H α3ĀB̄B̄B̄Āβ3x ⇒∗

H x

where αi,β j ∈ N∗
Q for all 1 ≤ i ≤ 3,2 ≤ j ≤ 3 and x ∈ Σ∗. The depth of the generative part for any

T ∈ ∆G(x) is n+ 1 because of the properties of the Geffert normal form. Subsequently, the conclusion

has the minimum depth of k+m+1, where k ≥ 1 represents the number of levels needed to generate β2,

and m ≥ 1 is the number of levels needed to verify the derivation or, in other words, erase the substrings

ĀB̄B̄B̄Ā located in the middle of the sentential form. Since α1 contains at least n occurrences of A, m ≥ n,

so k+m+1 > n+1 and the theorem holds.

Claim (Iff). S ⇒∗
Q x if and only if S ⇒∗

H x where x ∈ Σ∗.

Proof. Consider x ∈ Σ∗ in Claims (If) and (Only if) of the previous proof. Since x = x′ as h and h′ for

terminal symbols is the identity, thus this claim holds.

By Claims (Iff) and (Long-conclusiveness), L(Q) = lcL(H), and Theorem 3.2 holds.

Corollary 3.3. CTC = sCTC = lCTC = RE.

Proof. By Theorem 3.2, lCTC = RE. Every CTCG can be simulated by a Turing machine, so sCTC ⊆
RE. By Theorem 3.1, lCTC ⊆ sCTC, so sCTC = RE.

Observe that the control language R can be replaced by a union-free language R̂ = (A∗B∗S′∗)∗

({ĀB̄B̄B̄Ā}∗(A∗B∗S′∗)∗)∗ while the previous proof technique still works.

Lemma 3.4. The union-free regular language, R̂, can be generated by a right-linear grammar, GR̂, with

the nonterminal complexity of 1.

Proof. Recall that NG = {S,S′,A,B, Ā, B̄}. Let GR̂ = ({Ŝ},NG,PR̂, Ŝ) be a right-linear grammar, where

PR̂ is defined as follows:

PR̂ = {Ŝ → xŜ : x ∈ {A,B,S′}}∪{Ŝ → ĀB̄B̄B̄ĀŜ, Ŝ → ε}.

It can easily be verified that L(GR̂) = R̂, and therefore Lemma 3.4 holds.

It has already been shown that any recursively enumerable language can be generated by a tree-

controlled grammar with a regular control language whose nonterminal complexity is equal to 7 (see [7]);

however, the result uses the union operations in the control language. Our regular expression for the

control language uses 5 iterations and 8 concatenations.

Theorem 3.5. Any recursively enumerable language, L, can be generated by a conclusive tree-controlled

grammar controlled by a union-free regular language using seven nonterminals.

Proof. Let Q′ be a type-0 grammar such that L = L(Q′) and construct H ′ = (G′, R̂) as a conclusive tree-

controlled grammar such that L(Q′) = L(H ′), where G′ is constructed in accordance with the proof of

Theorem 3.2. G′ = ({S,S′,A,B, Ā, B̄},ΣG′ ,PG′ ,S); similarly, let GR̂ be a right-linear grammar constructed

in accordance with the proof of Lemma 3.4, such that L(GR̂)= R̂ and GR̂ =({Ŝ}, {S,S′,A,B, Ā, B̄}, PR̂, Ŝ).
Clearly, the nonterminal complexity of grammars G′ and GR̂ is 6 and 1, respectively, bringing the overall

nonterminal complexity of H ′ to 7.

124 Conclusive Tree-Controlled Grammars

4 Conclusion and Open Problems

We conclude this paper by remarking on some of the properties of conclusive tree-controlled grammars.

Although this modification is based upon the same principle as the original tree-controlled grammars,

its main advantage lies in the fact that until all terminals have been generated, the derivation tree is

not regulated, and thus, the modification offers significantly lower descriptional complexity. Observe

that all families of languages generated by conclusive tree-controlled grammars are equivalent, meaning

the length of the conclusion should not affect the generative power in any way.

Finally, we propose four open problems regarding the conclusive modification of tree-controlled

grammars:

1. Consider conclusive tree-controlled grammars with a short conclusion. What is the minimum

depth of conclusion needed to maintain the computational completeness of the grammars or the

minimum ratio of the depths of the generative and conclusive parts?

2. What is the minimum possible nonterminal complexity of conclusive tree-controlled grammars?

Can it be further restricted beyond seven nonterminals?

3. Introduce a modification of conclusive tree-controlled grammars whose core grammar is at most

linear. Does this modification affect the generative power of conclusive tree-controlled grammars?

4. Study other formal grammars working in a conclusive way, where generative and conclusive parts

of the derivation tree can be distinguished.

Acknowledgment

This work was supported by the Ministry of Education, Youth and Sports of Czech Republic project ERC.CZ no.

LL1908 and the BUT grant FIT-S-20-6293.

References

[1] Karel Culik II & Hermann A. Maurer (1977): Tree controlled grammars. Computing 19(2), pp. 129–139,

doi:10.1007/BF02252350.

[2] Jürgen Dassow & Bianca Truthe (2008): Subregularly Tree Controlled Grammars and Languages. In Erzsébet

Csuhaj-Varjú & Zoltán Ésik, editors: Automata and Formal Languages, 12th International Conference, AFL

2008, Balatonfüred, Hungary, May 27-30, 2008, Proceedings, pp. 158–169.

[3] Viliam Geffert (1991): Normal forms for phrase-structure grammars. RAIRO - Theoretical Informat-

ics and Applications - Informatique Théorique et Applications 25(5), pp. 473–496, doi:10.1051/ita/

1991250504731.

[4] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2007): Introduction to Automata Theory, Languages,

and Computation, 3rd edition. Pearson.

[5] Zbyněk Křivka & Alexander Meduna (2021): Scattered Context Grammars with One Non-Context-Free

Production are Computationally Complete. Fundamenta Informaticae 179(4), pp. 361–384, doi:10.3233/

FI-2021-2028.

[6] Alexander Meduna (2000): Automata and Languages: Theory and Applications. Springer, London, doi:10.

1007/978-1-4471-0501-5.

[7] Sherzod Tuarev, Jürgen Dassow & Mohd H. Selamat (2011): Nonterminal complexity of tree controlled gram-

mars. Theoretical Computer Science 412, pp. 5789–5795, doi:10.1016/j.tcs.2011.06.033.

https://doi.org/10.1007/BF02252350
https://doi.org/10.1051/ita/1991250504731
https://doi.org/10.1051/ita/1991250504731
https://doi.org/10.3233/FI-2021-2028
https://doi.org/10.3233/FI-2021-2028
https://doi.org/10.1007/978-1-4471-0501-5
https://doi.org/10.1007/978-1-4471-0501-5
https://doi.org/10.1016/j.tcs.2011.06.033

D. Klobučnı́ková, Z. Křivka & A. Meduna 125

[8] Sherzod Turaev, Jürgen Dassow, Florin Manea & Mohd H. Selamat (2012): Language classes generated by

tree controlled grammars with bounded nonterminal complexity. Theoretical Computer Science 449, pp. 134–

144, doi:10.1016/j.tcs.2012.04.013.

https://doi.org/10.1016/j.tcs.2012.04.013

	1 Introduction
	2 Definitions
	3 Results
	4 Conclusion and Open Problems

