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We summarize the main results proved in recent work on thanpeterized verification of safety
properties for ad hoc network protocols. We consider a miodehich the communication topology
of a network is represented as a graph. Nodes represert sfaitedividual processes. Adjacent
nodes represent single-hop neighbors. Processes arestatiteautomata that communicate via se-
lective broadcast messages. Reception of a broadcastristexsto single-hop neighbors. For this
model we consider a decision problem that can be expressibe agrification of the existence of
an initial topology in which the execution of the protocohdaad to a configuration with at least
one node in a certain state. The decision problem is paranetith on the size and on the form of
the communication topology of the initial configurationse \raw a complete picture of the decid-
ability and complexity boundaries of this problem accogdio various assumptions on the possible
topologies.

1 Introduction

Ad hoc networks consist of wireless hosts that, in the alsef@& fixed infrastructure, communicate
sending broadcast messages. In this context protocols/pieally supposed to work independently
from the communication topology and from the size (numbenaxdes) of the network. As suggested
in [3], 4], thecontrol state reachability problerfor coverability problem seems a particularly adequate
formalization of parameterized verification problems fdrhec networks. A network is represented as
a graph in which nodes are individual processes and edgessegpt communication links. Each node
executes an instance of the same protocol. A protocol isribestcby a finite state communicating
automaton. The control state reachability problem comsisthecking whether there exists an initial
graph (with unknown size and topology) that can evolve into@figuration in which at least one node
is in a given error state. Since the size of the initial conmfagjon is not fixed a priori, the state-space to
be explored is in general infinite.

In this paper we summarize the main results that we have griovewo recent publications [3] 4].
The first result is negative: control state reachability melecidable if we do not fix any restriction
on the possible topologies. As for other communication rw{lEg, [25], finding interesting classes
of network topologies for which verification is, at leastdhetically, possible is an important research
problem. As a first positive result, we have proved.in [3] tbantrol state reachability turns out to be
decidable for the class tdounded path graphsGraphs have bounded path if there exists a vilsich
that all simple paths in the considered graph have lengtilenthank. Although for a fixedk this
class of graphs is infinite, it appears of limited interesitatoes not include clique graphs. Cliques
are appealing for at least two reasons. First, they reprékerbest possible scenario for optimizing
broadcast communication (one broadcast to reach all no@=ond, when restricting configurations
only to cliques, control state reachability can be redugedoverability in a Broadcast Protocol, i.e.,
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in a model in which configurations are multisets of procesidmed by communicating automata [6].
Coverability is decidable in Broadcast Protocols in [8].

For these reasons, inl[4] we have decided to investigatsedasf graphs that at least include the
clique graphs. More precisely, we have considered netwiorkghich the underlying topology is in
between the class dafliquesand the strictly larger class dfounded diameter graphsGraphs have
bounded diameter if there exists a vakisuch that the minimal path between every pair of nodes of
the same graph has length smaller thanGraphs with bounded diameter (also called clusters) are
particularly relevant for the domain of ad hoc networks. yhee often used to partition a network in
order to increase the efficiency of broadcast communicgli@h

The restriction to bounded diameter follows the approakértdor point-to-point communication in
[16,[25]. Differently from [16| 25] we have proved that forranodel of selective broadcast control state
reachability is undecidable when restricting the topasgio graphs whose diameter is boundedkby
(for a fixedk > 0). Then, we have investigated further restrictions hainngind the constraint that they
must allow at least cliques of arbitrary order. By using agioal well-quasi ordering result, we have
proved that control state reachability becomes decidahkEnveonsidering a class of graphs in which the
corresponding maximal cliques are connected by paths aidemlilength. Furthermore, by exploiting
a recent result of Schnoebelén[21] and a reduction to cbilityan reset nets, we have shown that the
resulting decision procedure is Ackermann-hard. Interglst the same complexity result already holds
in the subclass of clique topologies.

Related Work Ethernet-like broadcast communication has been analyyeerdsad[[18] using the
Calculus of Broadcasting Systems, in which all processasive a broadcast message at once. A similar
type of broadcast mechanism is used in the Broadcast Pistot&merson and Namjoshil[6]. In our
setting, this is similar to the case in which all nodes shaceramon group (the underlying graph is a
clique). Ene and Muntean presenteditmecalculus([7], an extension of threcalculus[[19] with a broad-
cast such that only nodes listening on the right channel@egive emitted messages. Wireless broadcast
communication has been investigated in the context of gsocalculi by Nanz and Hankin [17], Singh,
Ramakrishnan and Smolka [22,/23], Lanese and Sangiorgj (3ddiskesen [12], and Merrg [15]. In
particular Nanz and Hankin [17] consider a graph represientaf node localities to determine the re-
ceivers of a message, while Godskesen [12] makes use of labmeigrelation. On the contrary, Lanese
and Sangiorgi [14] and Merro [15] associate physical lacetito processes so that the receivers depend
on the location of the emitter and its transmission rangealfsady mentioned, we have been directly
inspired by thew-calculus of Singh, Ramakrishnan and Smolka [22, 23]. dkealculus is based on the
n-calculus. Therr-calculus [19] intermixes the communication and mobilifypoocesses by express-
ing mobility as change of interconnection structure amorag@sses through communication. In the
w-calculus mobility of processes is abstracted from themmemnication actions, i.e., mobility is spon-
taneous and it does not involve any communication/_In [2d]¢hme authors define a constraint-based
analysis for configurations with fixed topologies and a fixathber of nodes. The authors also mention
that checking reachability of a configuration from an inivae is decidable for the fragment without
restriction. This property is an immediate consequenclefdct that there is no dynamic generation or
deletion of processes (i.e. it boils down to a finite-statechability problem). The symbolic approach
in [24] seems to improve verification results obtained witbrenstandard model checking techniques.
For instance, in [9] model checking is used for automatidfieation of finite-state and timed models of
Ad Hoc Networks. In these works the number of nodes in th@irébnfigurations is known and fixed a
priori. In order to detect protocol vulnerabilities toalsd Uppaal are executed on all possible topologies
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(modulo symmetries) for a given number of nodes.[ I [20] $akset al. define a symbolic procedure
based on graph-transformations to analyze routing prbofocéd\d Hoc Networks. The symbolic repre-
sentation is based on upward closed sets of graphs orderedswbgraph inclusion. Their procedure is
not guaranteed to terminate. In our paper we consider a vl trlass of graphs (bounded path config-
urations) for which backward analysis with a similar syniboépresentation (upward closure of graphs
w.r.t. induced subgraph ordering) is guaranteed to termifa finite-state descriptions of individual
nodes.

Structure of the paper In Sectiori 2 we formally introduce our model for ad hoc netaanotocols, we
define the parametric version of the control state reaahapiloblem, and we recall the result from [3],
i.e. that control state reachability is undecidable if wendd impose any restriction on the class of
possible topologies, while it turns out to be decidable wiestricting to bounded path topologies. In
Sectiong B andl4 we consider other restricted classes tHatacliqgue graphs: bounded diameter and
bounded path on the maximal clique graph, respectively.thiase classes we report the results proved
in [4]: control state reachability is undecidable whenniettd to graphs with a bounded diameter (but it
turns out to be decidable if we additionally assume boundegples), while for the class of graphs having
a corresponding maximal clique graph with bounded pathpthblem is decidable. Sectiéh 5 contains
concluding remarks and directions for future work.

2 Ad Hoc Network Protocols

2.1 Preliminaries on Graphs

In this section we assume th@tis a finite set of elements. ®-labeled undirected grap(shortly Q-
graph or graph) is a tupké = (V,E,L), whereV is a finite set ofvertices(sometimes calledode$, and
E CV xV is a finite set ofedges andL :V — Q is a labeling function. We consider here undirected
graphs, i.e., such thau,v) € E iff (vu) € E. We denote by¥, the set ofQ-graphs. For an edge
(u,v) € E, uandv are called iteendpointsand we say thati andv are adjacent vertices. For a node
we callvicinity the set of its adjacent nodes (neighbors). Given a verte¥, thedegreeof v is the size
of the set{u eV | (vu) € E}. The degree of a graph is the maximum degree of its verticeswilV
sometimes denotie(G) the setl(V) (which is a subset o). A path in a graph is a finite sequence
V1,Vo,...,Vy Of vertices such that for £ i <m—1, (v;,vi;1) € E and the integem—1 (i.e. its number
of edges) is called the length of the pathdenoted byirr. A pathm=va,...,vy, is simple if for all
1<ih, ) <mwith i # |, vi #vj, in other words each vertex of the graph occurs at most once iA
cycleis a pathrr = vy, ..., vy, such that; = v, A graphG = (V,E, L) is connectedf for all u,v eV
with u # v, there exists a path fromto vin G. A cliquein an undirected grap& = (V,E,L) is a subset
C CV of vertices, such that for everyv € C with u# v, (u,v) € E. A cliqueC is said to bemaximal
if there exists no verten € V \ C such thalCU {u} is a clique. If the entire set of nod¥sis a clique,
we say thatG is a clique graph. Aipartite Q-graphis a tuple(Vy,V,, E, L) such thatV; UV, E L) is a
Q-graph V1NV, =0 andE C (Vq x Vo) U (Vo x Vy).

The diameterof a graphG = (V,E, L) is the length of thdongest shortest simple pabietween any
two vertices ofG. Hence, the diameter of a clique graph is always one. We a@sd to define some
graph orderings. Given two grapl&= (V,E,L) andG = (V',E’,L’), G is in the subgraphrelation
with G/, written G <4 G/, whenever there exists an injective functibnV — V'’ such that, for every
v,V eV, if (vV) € E, then(f(v), f(V)) € E’ and for everyv € V, L(v) = L'(f(v)). FurthermoreG is
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in the induced subgraphelation withG’, written G <; G/, whenever there exists an injective function
f :V — V' such that, for every,V €V, (v,V) € E if and only if (f(v), f(V')) € E' and for everw € V,
L(v) =L'(f(v)). As an example, a path with three nodes is a subgraph, butirintiaced subgraph, of
a ring of the same order. Finally, we recall the notionnadl-quasi-ordering(wgo for short). A quasi
order (A, <) is a wqo if for every infinite sequence of elemeaisay,...,a,... in A, there exist two
indicesi < j s.t.a < aj. Examples of wqo’s are the sub-multiset relation, and begtstibgraph and the
induced subgraph relation over graphs with simple path®ohded length [5].

2.2 Ad Hoc Networks

In our model of ad hoc networks a configuration is simply a grapd we assume that each node of the
graph is a process that runs a common predefined protocolotaqml is defined by a communicating
automaton with a finite sé of control states. Communication is achieved via seledirgadcast. The
effect of a broadcast is in fact local to the vicinity of thender. The initial configuration is any graph
in which all the nodes are in an initial control state. Renthdt even ifQ is finite, there are infinitely
many possible initial configurations. We next formalize #v®ve intuition.

Individual BehaviorThe protocol run by each node is defined via a procgss: (Q,2,R,Qp), where

Q is a finite set of control stateg, is a finite alphabetRC Q x ({t}u{!'a,??a|ac 2}) x Q is the
transition relation, an@o C Q is a set of initial control states. The labetepresents the capability of
performing an internal action, and the labe (?2) represents the capability of broadcasting (receiving)
amessagac 2.

Network SemanticAn AHN associated ta” = (Q,%,R, Qo) is defined via a transition systemi, =
(¢,=,%0), Where¥ = %5 (undirected graphs with labels @) is the set of configurations;p = %,
(undirected graphs with labels @) is the subset of initial configurations, arglC % x € is the transi-
tion relation defined next. Fare Q anda € Z, we define the se€®,(q) = {q € Q| (9,77, () € R} that
contains states that can be reached from the gtap®n reception of message ForG = (V,E,L) and
G' = (V/,E',Ll'), G= G holds iff G andG’ have the same underlying structure, Ne= V' andE = E/,
and one of the following conditions dnandL’ holds:

e dveV s.t.(L(v),1,L'(v)) € R andL(u) = L'(u) foralluin V\ {v};

e dveV s.t.(L(v),!'a L'(v)) € Rand for everyu € V \ {v}

— if (v,u) € E andR,(L(u)) # 0 (reception ofain u is enabled), theh'(u) € Ry(L(u)).

— L(u) =L'(u), otherwise.
An execution is a sequen€G; ... such thaiGy € %o, andG; = G4 fori > 0. We use=-" to denote
the reflexive and transitive closure f.

Observe that a broadcast messagent byv is delivered only to the subset of neighbors interested in
it. Such a neighbou updates its state with a new state taken fiRfa(u)). All the other nodes (including
neighbors not interested &) simply ignore the message. Also notice that the topologyatc, i.e., the
set of nodes and edges remain unchanged during a run.

Finally, for a set ofQ-graphs.7 C ¥q, the AHN Ag, restricted to.7 is defined by the transition
system(¢' N.7,= 7,%0N .7) where the relations 7 is the restriction o= to (¢ N.7) x (¢N.7).

2.3 Example of Ad Hoc Network Protocol

As an example of an ad hoc network protocol and of its semrgrttnsider a protocol consisting of the
following rules: (A, 1,C), (C,!!'m,D), (B,?n,C), and(A,?™,C). As shown in Fig[lL, starting from a
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Figure 1: Example of execution

configuration with onlyA andB nodes, aA node first moves t€ and then sendhto his/her neighbors.
In turn, they forward the messageto their neighbors, and so on.

2.4 Decision problem

We define the decision problem adntrol state reachabilitfcoVER) as follows:
Input: A process? = (Q,Z,R,Qp) with &7» = (¢,=,%0) and a control statg € Q;
Output: Yes, if there exist$& € 4o andG’ € ¢ such thag € L(G') andG =* G/, no otherwise.

Control state reachability is strictly related to paramietal verification of safety properties. The input
control stateg can in fact be seen as an error state for the execution of tteqml in some node of the
network. If the answer tGOVER s yes, then there exists a sufficient number of procesdesteaiuting
the same protocol, and an initial topology from which we caneagate a configuration in which the error
is exposed. Under this perspectig)VER can be viewed as instance of a parameterized verification
problem.

In [3] we have proved thatoveRis undecidable. The proof is by reduction from the haltingigbem
for two-counter Minsky machines. A Minsky machine manipesgatwo integer variableg andc,, which
are called counters, and it is composed of a finite set oftiotms. Each of the instuction is either of
the form (1)L : ¢ :=c +1; goto L' or (2)L:if ¢, =0thengoto L’ else ¢ :=¢ —1; goto L” where
i € {1,2} andL,L’,L" are labels preceding each instruction. Furthermore tisaaespecial labdlr from
which nothing can be done. The halting problem consists itheleciding whether or not the execution
that starts fromg with counters equal to O reachkg.

The intuition behind the reduction is as follows. In a firsapl we exploit an exploration protocol
to impose a logical topology on top of the actual physicalenodnnections. This logical topology is
composed by a control node which is connected to two didliststof nodes used to simulate the content
of the counters. Each node in the list associated to counisreither in stateZ; or NZ. The current
value of the countec; equals the number dfiZ nodes in the list. The length of each list is guessed
non-deterministically during the execution of the first ghdi.e. before starting the simulation) and it
corresponds to the maximum value store in a counter for thelation to succeed. Initially, all nodes
must encode zero (staZg).

In the second phase the control node starts the simulatitredhstructions. It operates by sending
requests that are propagated back and forth a list by usoaglbast sent by a node to its (unique) single-
hop successor/predecessor node. The effect of these tedgi&s change the state of one node in zero
stateZ; to the non-zero statdZ in case of increment, or the vice versa in the case of decreriée
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Figure 2: Butterfly-shaped induced subgraph needed to atmalMinsky machine.

test-for-zero instruction on the countgiis simply simulated by checking whether there are no nodes in
the zero stat@; in the i-th list.

2.5 Configurations with Bounded Path

In [3] we have proved thatOVER turns out to be decidable if we restrict the possible topewgo the
class of graphs whose path is boundedligfor a fixedk > 0). The proof is based on the theory of Well
Structured Transition Systems [1,/2]11] (WSTS). A WSTS isadition system equipped with a well-
guasi ordering on states and a monotonicity property: ifrfigarationc; smaller than a configuration
¢z has a transition to a configuratiaf), then alsac; has a transition to a configuratieh which is greater
thanc;. Coverability turns out to be decidable in WSTSs by usingbaed analysis, if it is possible to
compute the predecessors of a given state.

In [3] we have observed that ad hoc network protocols are tooimwith respect to the induced
subgraph ordering relation, while this is not the case fesstibgraph ordering relation. This is already an
interesting observation that distinguishes selectivadhcast from point-to-point communication, which
is monotonic with respect to the usual subgraph orderinge froof of decidability is completed by
defining how to compute the predecessors, and by obsenéng¢hilninduced subgraph ordering is a wqo
for the class of graphs for which the length of simple pathsoisnded by a constant (i.e. bounded path
graphs). This result is known as Ding’s Theorérn [5].

3 Configurations with Bounded Diameter

As mentioned in the introduction, restricting protocol lgsss to configurations with bounded path seems
to have a limited application in a communication model wélestive broadcast. For these reasons,lin [4]
we have investige OVER for restricted classes of graphs that at least include tesaf clique graphs.
The first class we have consider is that of graphs with bounitetdeter. Fixedk > 0, a graphG has a
k-bounded diameter if and only if its diameter is smaller tbarqual tak. Observe that for every > 0,
clique graphs belong to the class of graphs with a diametended byk. Furthermore, givek > 0 the
class of graphs with path bounded kis included in the class of graphs with a diameter boundek by
Graphs withk-bounded diameter coincide with the so calkedusters used in partitioning algorithm for
ad hoc networks [10]. Thus, this class is of particular retee for the analysis of selective broadcast
communication. Intuitively, the diameter correspondditorhinimal number of broadcasts (hops) needed
to send a message to all nodes connected by a path with thersend
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ThecoVERproblem restricted to configurations wkkounded diameter turns out to be undecidable
for k> 1. The proof is similar to the proof of undecidability for tigeneral case reported inl[3]: by
reduction from the halting problem for two-counter Minskwchines.

The main difference is that the logical topology to be imgbsethe first phase of the simulation
of the Minsky machines should be with bounded diameter (hardeameter 2). The topology that we
have considered is a sort of butterfly (see Figire 2) congistf two lists (to represent the counters) and
in which all nodes in the lists are connected to a monitor ngaleepresent the program counter). The
second phase of the simulation, i.e. the actual executidheofnstructions, proceeds similarly to the
protocol described above. The unique difference is that seeaudistinctfirstZ; node to distinguish the
initial node of each list (this is needed as now all the lislemare connected to the program counter
node).

Note that if we restrict our attention to graphs with a disendtounded by 1, the above encoding
does not work anymore. The class of graphs with diameterregponds to the set of clique graphs and,
as said above; OVER turns out to be decidable when restricting to clique topeleg

Bounded diameter and bounded degree.

From a non trivial result on bounded diameter graphs [13]hawe obtained in_[4] an interesting de-
cidable subclass. Indeed, in [13] the authors show thagngtwo integerk,d > 0, the number of
graphs whose diameter is smaller theand whose degree is smaller thais finite. The Moore bound
M(k,d) = (k(k—1)9 —2)/(k—2) is an upper bound for the size of the largest undirected graphch

a class. It follows that, fok,d > 0, and an ad hoc protocol withstates, if we restrict to configurations
with a diameter bounded Hyand a degree bounded bly the state space is bounded m¥{k9) | thus

it is polynomial in the size of the protocol. Consequently gam conclude thatOVER restricted to
configurations wittk-bounded diameter arttbounded degree is indPACE

4 Maximal Clique Graphs with Bounded Paths

In this section we describe classes of graphs that strictiseases both the classes of clique graphs and
the classes of bounded path graphs, for which we have prov&d that coveris decidable. We have
called these classes of gra@BG, (n-Bounded Path maximal Cliques graphs). Namelynfor0 BPG,
contains botm-bounded path graphs and any clique graph, while beinglgtgontained in the class

of graphs with B-bounded diameter. These classes are defined on top of fiom wdmaximal clique
graphsassociated to a configuration.

Definition 4.1 Given a connected undirected gra@h= (V,E,L) ande ¢ L(V), the maximal clique
graph Ks is the bipartite graptX,W,E’,L’) in which

e X =V,

e W C 2V is the set of maximal cliques @3;

e ForveV,weW, (vw) e E'iff vew;

L'(v) = L(v) forve V, andL'(w) = e for we W.

Note that for each connected gra@nthere exists a unique maximal clique gragg. An example of
construction is given by Figutd 3. One can also easily prhaeif G is a clique graph then iKg there
is no path of length strictly greater than 3. Furthermoremfthe maximality of the cliques i if two
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G Ke

Figure 3: A graphG and its associated cliqgue graih.

nodesvy, Vo €V are connected both w; andw, € W, thenw; andw, are distinct cliques. We use the
notationv, ~y, V» to denote thavy, v, belong to the same clique.

Definition 4.2 Forn > 1, the clas8PG, consists of the set of configurations whose associate maxima
clique graph has-bounded paths (i.e. the length of the simple pathis®fs at mostn).

The proof of decidability ofcoveR for BPG, graphs is based on an ordering defined on maximal
clique graphs that corresponds to the induced subgraphimgdeefined on the corresponding graphs.
Such a new ordering is defined as follows.

Definition 4.3 AssumeG; = (Vl, E1, L1> with KGl = <X1,W1, Ei, L€|_>, andG, = (Vz, Ep, L2> with KG2 =
(X2, Wb, ES, LY) with G1 and G, both connected graphs. The@; C G iff there exist two injective
functionsf : X; — X, andg: Wy — W5, such that

(i) foreveryve X;, andC e Wy, ve Ciff f(v) € g(C);

(i) foreveryvy,v, € X3, andC e Wb, if f(v1) ~c f(v2), then there exist§8’ e Wy s.t. f(v1) ~g(C) f(v2);
(iii) for everyve X, Li(v) =L5(f(v));

(iv) foreveryCe W, Lj(C) = L5(g(C)).

The first condition ensures that (dis)connected nodes refd&)connected inside the image®fIn-
deed, from point (i) it follows that, for evemy, v, € Xy, andC € Wy, vy ~c V2 iff (V1) ~gc) f(Vv2). The
second condition ensures that disconnected nodes rensaiondiected outside the imagegof

By condition (i) in the definition ofZ, we also have thab; C G; (via f andg) implies thatKg, is
in the induced subgraph relation wiky, (via f Ug). The relation between this new relation and the
induced subgraph ordering is even stronger, in fact we hamesd in [4] that the two coincideG; C G,
iff Gy is an induced subgraph .

The main theorem iri_[4] states that for amy> 1, (BPG,,C) is a well-quasi ordering. In the light
of the correspondance result betwéemand the induced subgraph ordering, and the monotonicitg of a
hoc network protocol with respect to the induced subgraplerang relation (and the computability of
the predecessors) discussed the previous section, we baweable to prove in [4] the decidability of
COVER for topologies restricted to graphsBPG, (for a fixedn > 0).

In [4] we have investigated also the complexity of the decigprocedure focOVER restricted to
topologies iNBPG,. We have found that this problem is not primitive recursiVie proof is by reduction
from the coverability problem for reset nets, which is knaeme an Ackermann-hard problem [21].

5 Conclusions

In this paper we have reported the main result that we haeatiygroved in[[3], 4] about the decidability
and complexity boundaries for the decidability and the clexity of the parametric verification of safety
properties in ad hoc networks. Namely, given an ad hoc nétwortocol expressed as a finite state
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communicating automaton, we are interested in checkingifstence of an initial network configuration
that can generate a computation leading to a configuratiamich at least one node is in a given (error)
State.

The problem is undecidable if no restrictions are imposetthéopossible initial configurations, but
it turns out to be decidable for interesting classes of ggaphvhich the corresponding maximal cliques
are connected by paths of bounded length. These graphsiébhth cliques and bounded path graphs.
The problem returns to be undecidable for bounded diameaphg.

As a future work, we plan to study decidability and comphgxsisues in presence of communication
and node failures. In particular, an interesting case ofroanication failure in the context of ad hoc
networks is due taonflictsderiving form the contemporaneous emission of signals fe@mdistinct
nodes that share some neighbors. We plan to move to a truguoemt semantics for ad hoc network
protocols in order to faithfully represent this specific pbeenon.
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