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We summarize the main results proved in recent work on the parameterized verification of safety
properties for ad hoc network protocols. We consider a modelin which the communication topology
of a network is represented as a graph. Nodes represent states of individual processes. Adjacent
nodes represent single-hop neighbors. Processes are finitestate automata that communicate via se-
lective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this
model we consider a decision problem that can be expressed asthe verification of the existence of
an initial topology in which the execution of the protocol can lead to a configuration with at least
one node in a certain state. The decision problem is parametric both on the size and on the form of
the communication topology of the initial configurations. We draw a complete picture of the decid-
ability and complexity boundaries of this problem according to various assumptions on the possible
topologies.

1 Introduction

Ad hoc networks consist of wireless hosts that, in the absence of a fixed infrastructure, communicate
sending broadcast messages. In this context protocols are typically supposed to work independently
from the communication topology and from the size (number ofnodes) of the network. As suggested
in [3, 4], thecontrol state reachability problem(or coverability problem) seems a particularly adequate
formalization of parameterized verification problems for ad hoc networks. A network is represented as
a graph in which nodes are individual processes and edges represent communication links. Each node
executes an instance of the same protocol. A protocol is described by a finite state communicating
automaton. The control state reachability problem consists in checking whether there exists an initial
graph (with unknown size and topology) that can evolve into aconfiguration in which at least one node
is in a given error state. Since the size of the initial configuration is not fixed a priori, the state-space to
be explored is in general infinite.

In this paper we summarize the main results that we have proved in two recent publications [3, 4].
The first result is negative: control state reachability is undecidable if we do not fix any restriction
on the possible topologies. As for other communication models [16, 25], finding interesting classes
of network topologies for which verification is, at least theoretically, possible is an important research
problem. As a first positive result, we have proved in [3] thatcontrol state reachability turns out to be
decidable for the class ofbounded path graphs. Graphs have bounded path if there exists a valuek such
that all simple paths in the considered graph have length smaller than k. Although for a fixedk this
class of graphs is infinite, it appears of limited interest asit does not include clique graphs. Cliques
are appealing for at least two reasons. First, they represent the best possible scenario for optimizing
broadcast communication (one broadcast to reach all nodes). Second, when restricting configurations
only to cliques, control state reachability can be reduced to coverability in a Broadcast Protocol, i.e.,
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in a model in which configurations are multisets of processesdefined by communicating automata [6].
Coverability is decidable in Broadcast Protocols in [8].

For these reasons, in [4] we have decided to investigate classes of graphs that at least include the
clique graphs. More precisely, we have considered networksin which the underlying topology is in
between the class ofcliquesand the strictly larger class ofbounded diameter graphs. Graphs have
bounded diameter if there exists a valuek such that the minimal path between every pair of nodes of
the same graph has length smaller thank. Graphs with bounded diameter (also called clusters) are
particularly relevant for the domain of ad hoc networks. They are often used to partition a network in
order to increase the efficiency of broadcast communication[10].

The restriction to bounded diameter follows the approach taken for point-to-point communication in
[16, 25]. Differently from [16, 25] we have proved that for our model of selective broadcast control state
reachability is undecidable when restricting the topologies to graphs whose diameter is bounded byk
(for a fixedk> 0). Then, we have investigated further restrictions havingin mind the constraint that they
must allow at least cliques of arbitrary order. By using an original well-quasi ordering result, we have
proved that control state reachability becomes decidable when considering a class of graphs in which the
corresponding maximal cliques are connected by paths of bounded length. Furthermore, by exploiting
a recent result of Schnoebelen [21] and a reduction to coverability in reset nets, we have shown that the
resulting decision procedure is Ackermann-hard. Interestingly, the same complexity result already holds
in the subclass of clique topologies.

Related Work Ethernet-like broadcast communication has been analyzed by Prasad [18] using the
Calculus of Broadcasting Systems, in which all processes receive a broadcast message at once. A similar
type of broadcast mechanism is used in the Broadcast Protocols of Emerson and Namjoshi [6]. In our
setting, this is similar to the case in which all nodes share acommon group (the underlying graph is a
clique). Ene and Muntean presented thebπ-calculus [7], an extension of theπ-calculus [19] with a broad-
cast such that only nodes listening on the right channel can receive emitted messages. Wireless broadcast
communication has been investigated in the context of process calculi by Nanz and Hankin [17], Singh,
Ramakrishnan and Smolka [22, 23], Lanese and Sangiorgi [14], Godskesen [12], and Merro [15]. In
particular Nanz and Hankin [17] consider a graph representation of node localities to determine the re-
ceivers of a message, while Godskesen [12] makes use of a neighbour relation. On the contrary, Lanese
and Sangiorgi [14] and Merro [15] associate physical locations to processes so that the receivers depend
on the location of the emitter and its transmission range. Asalready mentioned, we have been directly
inspired by theω-calculus of Singh, Ramakrishnan and Smolka [22, 23]. Theω-calculus is based on the
π-calculus. Theπ-calculus [19] intermixes the communication and mobility of processes by express-
ing mobility as change of interconnection structure among processes through communication. In the
ω-calculus mobility of processes is abstracted from their communication actions, i.e., mobility is spon-
taneous and it does not involve any communication. In [24] the same authors define a constraint-based
analysis for configurations with fixed topologies and a fixed number of nodes. The authors also mention
that checking reachability of a configuration from an initial one is decidable for the fragment without
restriction. This property is an immediate consequence of the fact that there is no dynamic generation or
deletion of processes (i.e. it boils down to a finite-state reachability problem). The symbolic approach
in [24] seems to improve verification results obtained with more standard model checking techniques.
For instance, in [9] model checking is used for automatic verification of finite-state and timed models of
Ad Hoc Networks. In these works the number of nodes in the initial configurations is known and fixed a
priori. In order to detect protocol vulnerabilities tools like Uppaal are executed on all possible topologies
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(modulo symmetries) for a given number of nodes. In [20] Saksena et al. define a symbolic procedure
based on graph-transformations to analyze routing protocol for Ad Hoc Networks. The symbolic repre-
sentation is based on upward closed sets of graphs ordered w.r.t. subgraph inclusion. Their procedure is
not guaranteed to terminate. In our paper we consider a non trivial class of graphs (bounded path config-
urations) for which backward analysis with a similar symbolic representation (upward closure of graphs
w.r.t. induced subgraph ordering) is guaranteed to terminate for finite-state descriptions of individual
nodes.

Structure of the paper In Section 2 we formally introduce our model for ad hoc network protocols, we
define the parametric version of the control state reachability problem, and we recall the result from [3],
i.e. that control state reachability is undecidable if we donot impose any restriction on the class of
possible topologies, while it turns out to be decidable whenrestricting to bounded path topologies. In
Sections 3 and 4 we consider other restricted classes that include clique graphs: bounded diameter and
bounded path on the maximal clique graph, respectively. Forthese classes we report the results proved
in [4]: control state reachability is undecidable when restricted to graphs with a bounded diameter (but it
turns out to be decidable if we additionally assume bounded degree), while for the class of graphs having
a corresponding maximal clique graph with bounded path, theproblem is decidable. Section 5 contains
concluding remarks and directions for future work.

2 Ad Hoc Network Protocols

2.1 Preliminaries on Graphs

In this section we assume thatQ is a finite set of elements. AQ-labeled undirected graph(shortly Q-
graph or graph) is a tupleG= (V,E,L), whereV is a finite set ofvertices(sometimes callednodes), and
E ⊆ V ×V is a finite set ofedges, andL : V → Q is a labeling function. We consider here undirected
graphs, i.e., such that〈u,v〉 ∈ E iff 〈v,u〉 ∈ E. We denote byGQ the set ofQ-graphs. For an edge
〈u,v〉 ∈ E, u andv are called itsendpointsand we say thatu andv are adjacent vertices. For a nodeu
we callvicinity the set of its adjacent nodes (neighbors). Given a vertexv∈V, thedegreeof v is the size
of the set{u ∈ V | 〈v,u〉 ∈ E}. The degree of a graph is the maximum degree of its vertices. We will
sometimes denoteL(G) the setL(V) (which is a subset ofQ). A path π in a graph is a finite sequence
v1,v2, . . . ,vm of vertices such that for 1≤ i ≤ m−1, 〈vi ,vi+1〉 ∈ E and the integerm−1 (i.e. its number
of edges) is called the length of the pathπ, denoted by|π|. A path π = v1, . . . ,vm is simple if for all
1 ≤ i, j ≤ m with i 6= j, vi 6= v j , in other words each vertex of the graph occurs at most once inπ. A
cycle is a pathπ = v1, . . . ,vm such thatv1 = vm. A graphG = 〈V,E,L〉 is connectedif for all u,v ∈ V
with u 6= v, there exists a path fromu to v in G. A clique in an undirected graphG= 〈V,E,L〉 is a subset
C ⊆V of vertices, such that for everyu,v ∈C with u 6= v, 〈u,v〉 ∈ E. A cliqueC is said to bemaximal
if there exists no vertexu∈V \C such thatC∪{u} is a clique. If the entire set of nodesV is a clique,
we say thatG is a clique graph. Abipartite Q-graphis a tuple〈V1,V2,E,L〉 such that〈V1∪V2,E,L〉 is a
Q-graph,V1∩V2 = /0 andE ⊆ (V1×V2)∪ (V2×V1).

Thediameterof a graphG= 〈V,E,L〉 is the length of thelongest shortest simple pathbetween any
two vertices ofG. Hence, the diameter of a clique graph is always one. We also need to define some
graph orderings. Given two graphsG = 〈V,E,L〉 andG′ = 〈V ′,E′,L′〉, G is in thesubgraphrelation
with G′, written G �s G′, whenever there exists an injective functionf : V → V ′ such that, for every
v,v′ ∈V, if 〈v,v′〉 ∈ E, then〈 f (v), f (v′)〉 ∈ E′ and for everyv∈V, L(v) = L′( f (v)). Furthermore,G is
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in the induced subgraphrelation withG′, written G �i G′, whenever there exists an injective function
f : V →V ′ such that, for everyv,v′ ∈V, 〈v,v′〉 ∈ E if and only if 〈 f (v), f (v′)〉 ∈ E′ and for everyv∈V,
L(v) = L′( f (v)). As an example, a path with three nodes is a subgraph, but not an induced subgraph, of
a ring of the same order. Finally, we recall the notion ofwell-quasi-ordering(wqo for short). A quasi
order (A,≤) is a wqo if for every infinite sequence of elementsa1,a2, . . . ,ai , . . . in A, there exist two
indicesi < j s.t. ai ≤ a j . Examples of wqo’s are the sub-multiset relation, and both the subgraph and the
induced subgraph relation over graphs with simple paths of bounded length [5].

2.2 Ad Hoc Networks

In our model of ad hoc networks a configuration is simply a graph and we assume that each node of the
graph is a process that runs a common predefined protocol. A protocol is defined by a communicating
automaton with a finite setQ of control states. Communication is achieved via selectivebroadcast. The
effect of a broadcast is in fact local to the vicinity of the sender. The initial configuration is any graph
in which all the nodes are in an initial control state. Remarkthat even ifQ is finite, there are infinitely
many possible initial configurations. We next formalize theabove intuition.

Individual BehaviorThe protocol run by each node is defined via a processP = 〈Q,Σ,R,Q0〉, where
Q is a finite set of control states,Σ is a finite alphabet,R⊆ Q× ({τ} ∪ {!!a,??a | a ∈ Σ})×Q is the
transition relation, andQ0 ⊆ Q is a set of initial control states. The labelτ represents the capability of
performing an internal action, and the label !!a (??a) represents the capability of broadcasting (receiving)
a messagea∈ Σ.

Network SemanticsAn AHN associated toP = 〈Q,Σ,R,Q0〉 is defined via a transition systemAP =
〈C ,⇒,C0〉, whereC = GQ (undirected graphs with labels inQ) is the set of configurations,C0 = GQ0

(undirected graphs with labels inQ0) is the subset of initial configurations, and⇒⊆ C ×C is the transi-
tion relation defined next. Forq∈ Q anda∈ Σ, we define the setRa(q) = {q′ ∈ Q | 〈q,??a,q′〉 ∈ R} that
contains states that can be reached from the stateq upon reception of messagea. ForG= 〈V,E,L〉 and
G′ = 〈V ′,E′,L′〉, G⇒ G′ holds iff G andG′ have the same underlying structure, i.e.,V =V ′ andE = E′,
and one of the following conditions onL andL′ holds:

• ∃v∈V s.t. (L(v),τ ,L′(v)) ∈ R, andL(u) = L′(u) for all u in V \{v};

• ∃v∈V s.t. (L(v), !!a,L′(v)) ∈ Rand for everyu∈V \{v}

– if 〈v,u〉 ∈ E andRa(L(u)) 6= /0 (reception ofa in u is enabled), thenL′(u) ∈ Ra(L(u)).
– L(u) = L′(u), otherwise.

An execution is a sequenceG0G1 . . . such thatG0 ∈ GQ0 andGi ⇒ Gi+1 for i ≥ 0. We use⇒∗ to denote
the reflexive and transitive closure of⇒.

Observe that a broadcast messagea sent byv is delivered only to the subset of neighbors interested in
it. Such a neighboru updates its state with a new state taken fromR(L(u)). All the other nodes (including
neighbors not interested ina) simply ignore the message. Also notice that the topology isstatic, i.e., the
set of nodes and edges remain unchanged during a run.

Finally, for a set ofQ-graphsT ⊆ GQ, the AHN AT
P

restricted toT is defined by the transition
system〈C ∩T ,⇒T ,C0∩T 〉 where the relation⇒T is the restriction of⇒ to (C ∩T )× (C ∩T ).

2.3 Example of Ad Hoc Network Protocol

As an example of an ad hoc network protocol and of its semantics, consider a protocol consisting of the
following rules: (A,τ ,C), (C, !!m,D), (B,??m,C), and(A,??m,C). As shown in Fig. 1, starting from a
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A A B

B A B

⇒
C A B

B A B

⇓

D C B

C A B

∗⇐
D D D

D D D

Figure 1: Example of execution

configuration with onlyA andB nodes, anA node first moves toC and then sendm to his/her neighbors.
In turn, they forward the messagem to their neighbors, and so on.

2.4 Decision problem

We define the decision problem ofcontrol state reachability(COVER) as follows:

Input: A processP = 〈Q,Σ,R,Q0〉 with AP = 〈C ,⇒,C0〉 and a control stateq∈ Q;

Output: Yes, if there existsG∈ C0 andG′ ∈ C such thatq∈ L(G′) andG⇒∗ G′, no otherwise.

Control state reachability is strictly related to parameterized verification of safety properties. The input
control stateq can in fact be seen as an error state for the execution of the protocol in some node of the
network. If the answer toCOVER is yes, then there exists a sufficient number of processes, all executing
the same protocol, and an initial topology from which we can generate a configuration in which the error
is exposed. Under this perspective,COVER can be viewed as instance of a parameterized verification
problem.

In [3] we have proved thatCOVER is undecidable. The proof is by reduction from the halting problem
for two-counter Minsky machines. A Minsky machine manipulates two integer variablesc1 andc2, which
are called counters, and it is composed of a finite set of instructions. Each of the instuction is either of
the form (1)L : ci := ci +1; goto L′ or (2)L : if ci = 0 then goto L′ else ci := ci −1; goto L′′ where
i ∈ {1,2} andL,L′,L′′ are labels preceding each instruction. Furthermore there is a special labelLF from
which nothing can be done. The halting problem consists thenin deciding whether or not the execution
that starts fromL0 with counters equal to 0 reachesLF .

The intuition behind the reduction is as follows. In a first phase we exploit an exploration protocol
to impose a logical topology on top of the actual physical node connections. This logical topology is
composed by a control node which is connected to two distinctlists of nodes used to simulate the content
of the counters. Each node in the list associated to counterci is either in stateZi or NZi. The current
value of the counterci equals the number ofNZi nodes in the list. The length of each list is guessed
non-deterministically during the execution of the first phase (i.e. before starting the simulation) and it
corresponds to the maximum value store in a counter for the simulation to succeed. Initially, all nodes
must encode zero (stateZi).

In the second phase the control node starts the simulation ofthe instructions. It operates by sending
requests that are propagated back and forth a list by using broadcast sent by a node to its (unique) single-
hop successor/predecessor node. The effect of these requests is to change the state of one node in zero
stateZi to the non-zero stateNZi in case of increment, or the vice versa in the case of decrement. The
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L0

f irstZ1 Z1 Z1 Z1 Z1 Z1. . .

f irstZ2 Z2 Z2 Z2 Z2 Z2. . .

Figure 2: Butterfly-shaped induced subgraph needed to simulate a Minsky machine.

test-for-zero instruction on the counterci is simply simulated by checking whether there are no nodes in
the zero stateZi in the i-th list.

2.5 Configurations with Bounded Path

In [3] we have proved thatCOVER turns out to be decidable if we restrict the possible topologies to the
class of graphs whose path is bounded byk (for a fixedk> 0). The proof is based on the theory of Well
Structured Transition Systems [1, 2, 11] (WSTS). A WSTS is a transition system equipped with a well-
quasi ordering on states and a monotonicity property: if a configurationc1 smaller than a configuration
c2 has a transition to a configurationc′1, then alsoc2 has a transition to a configurationc′2 which is greater
thanc′1. Coverability turns out to be decidable in WSTSs by using backward analysis, if it is possible to
compute the predecessors of a given state.

In [3] we have observed that ad hoc network protocols are monotonic with respect to the induced
subgraph ordering relation, while this is not the case for the subgraph ordering relation. This is already an
interesting observation that distinguishes selective broadcast from point-to-point communication, which
is monotonic with respect to the usual subgraph ordering. The proof of decidability is completed by
defining how to compute the predecessors, and by observing that the induced subgraph ordering is a wqo
for the class of graphs for which the length of simple paths isbounded by a constant (i.e. bounded path
graphs). This result is known as Ding’s Theorem [5].

3 Configurations with Bounded Diameter

As mentioned in the introduction, restricting protocol analysis to configurations with bounded path seems
to have a limited application in a communication model with selective broadcast. For these reasons, in [4]
we have investigeCOVER for restricted classes of graphs that at least include the class of clique graphs.
The first class we have consider is that of graphs with boundeddiameter. Fixedk > 0, a graphG has a
k-bounded diameter if and only if its diameter is smaller thanor equal tok. Observe that for everyk> 0,
clique graphs belong to the class of graphs with a diameter bounded byk. Furthermore, givenk> 0 the
class of graphs with path bounded byk is included in the class of graphs with a diameter bounded byk.
Graphs withk-bounded diameter coincide with the so calledk-clusters used in partitioning algorithm for
ad hoc networks [10]. Thus, this class is of particular relevance for the analysis of selective broadcast
communication. Intuitively, the diameter corresponds to the minimal number of broadcasts (hops) needed
to send a message to all nodes connected by a path with the sender.
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TheCOVERproblem restricted to configurations withk-bounded diameter turns out to be undecidable
for k > 1. The proof is similar to the proof of undecidability for thegeneral case reported in [3]: by
reduction from the halting problem for two-counter Minsky machines.

The main difference is that the logical topology to be imposed in the first phase of the simulation
of the Minsky machines should be with bounded diameter (namely, diameter 2). The topology that we
have considered is a sort of butterfly (see Figure 2) consisting of two lists (to represent the counters) and
in which all nodes in the lists are connected to a monitor node(to represent the program counter). The
second phase of the simulation, i.e. the actual execution ofthe instructions, proceeds similarly to the
protocol described above. The unique difference is that we use a distinctf irstZi node to distinguish the
initial node of each list (this is needed as now all the list nodes are connected to the program counter
node).

Note that if we restrict our attention to graphs with a diameter bounded by 1, the above encoding
does not work anymore. The class of graphs with diameter 1 corresponds to the set of clique graphs and,
as said above,COVER turns out to be decidable when restricting to clique topologies.

Bounded diameter and bounded degree.

From a non trivial result on bounded diameter graphs [13], wehave obtained in [4] an interesting de-
cidable subclass. Indeed, in [13] the authors show that, given two integersk,d > 0, the number of
graphs whose diameter is smaller thank and whose degree is smaller thand is finite. The Moore bound
M(k,d) = (k(k−1)d −2)/(k−2) is an upper bound for the size of the largest undirected graphin such
a class. It follows that, fork,d > 0, and an ad hoc protocol withn states, if we restrict to configurations
with a diameter bounded byk and a degree bounded byd, the state space is bounded bynM(k,d), thus
it is polynomial in the size of the protocol. Consequently wecan conclude thatCOVER restricted to
configurations withk-bounded diameter andd-bounded degree is in PSPACE.

4 Maximal Clique Graphs with Bounded Paths

In this section we describe classes of graphs that strictly increases both the classes of clique graphs and
the classes of bounded path graphs, for which we have proved in [4] that COVER is decidable. We have
called these classes of graphsBPCn (n-Bounded Path maximal Cliques graphs). Namely, forn> 0 BPCn

contains bothn-bounded path graphs and any clique graph, while being strictly contained in the class
of graphs with 2n-bounded diameter. These classes are defined on top of the notion of maximal clique
graphsassociated to a configuration.

Definition 4.1 Given a connected undirected graphG = 〈V,E,L〉 and• 6∈ L(V), the maximal clique
graph KG is the bipartite graph〈X,W,E′,L′〉 in which

• X =V;

• W ⊆ 2V is the set of maximal cliques ofG;

• Forv∈V,w∈W, 〈v,w〉 ∈ E′ iff v∈ w;

• L′(v) = L(v) for v∈V, andL′(w) = • for w∈W.

Note that for each connected graphG there exists a unique maximal clique graphKG. An example of
construction is given by Figure 3. One can also easily prove that if G is a clique graph then inKG there
is no path of length strictly greater than 3. Furthermore, from the maximality of the cliques inW if two
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G KG

Figure 3: A graphG and its associated clique graphKG.

nodesv1,v2 ∈V are connected both tow1 andw2 ∈W, thenw1 andw2 are distinct cliques. We use the
notationv1 ∼w v2 to denote thatv1,v2 belong to the same cliquew.

Definition 4.2 Forn≥ 1, the classBPCn consists of the set of configurations whose associate maximal
clique graph hasn-bounded paths (i.e. the length of the simple paths ofKG is at mostn).

The proof of decidability ofCOVER for BPCn graphs is based on an ordering defined on maximal
clique graphs that corresponds to the induced subgraph ordering defined on the corresponding graphs.
Such a new ordering is defined as follows.

Definition 4.3 AssumeG1 = 〈V1,E1,L1〉 with KG1 = 〈X1,W1,E′
1,L

′
1〉, andG2 = 〈V2,E2,L2〉 with KG2 =

〈X2,W2,E′
2,L

′
2〉 with G1 and G2 both connected graphs. Then,G1 ⊑ G2 iff there exist two injective

functions f : X1 → X2 andg : W1 →W2, such that

(i) for everyv∈ X1, andC∈W1, v∈C iff f (v) ∈ g(C);

(ii) for everyv1,v2 ∈X1, andC∈W2, if f (v1)∼C f (v2), then there existsC′ ∈W1 s.t. f (v1)∼g(C′) f (v2);

(iii) for everyv∈ X1, L′
1(v) = L′

2( f (v));

(iv) for everyC∈W1, L′
1(C) = L′

2(g(C)).

The first condition ensures that (dis)connected nodes remain (dis)connected inside the image ofg. In-
deed, from point (i) it follows that, for everyv1,v2 ∈ X1, andC∈W1, v1 ∼C v2 iff f (v1)∼g(C) f (v2). The
second condition ensures that disconnected nodes remain disconnected outside the image ofg.

By condition (i) in the definition of⊑, we also have thatG1 ⊑ G2 (via f andg) implies thatKG1 is
in the induced subgraph relation withKG2 (via f ∪ g). The relation between this new relation and the
induced subgraph ordering is even stronger, in fact we have proved in [4] that the two coincide:G1 ⊑ G2

iff G1 is an induced subgraph ofG2.
The main theorem in [4] states that for anyn ≥ 1, (BPCn,⊑) is a well-quasi ordering. In the light

of the correspondance result between⊑ and the induced subgraph ordering, and the monotonicity of ad
hoc network protocol with respect to the induced subgraph ordering relation (and the computability of
the predecessors) discussed the previous section, we have been able to prove in [4] the decidability of
COVER for topologies restricted to graphs inBPCn (for a fixedn> 0).

In [4] we have investigated also the complexity of the decision procedure forCOVER restricted to
topologies inBPCn. We have found that this problem is not primitive recursive.The proof is by reduction
from the coverability problem for reset nets, which is knownto be an Ackermann-hard problem [21].

5 Conclusions

In this paper we have reported the main result that we have recently proved in [3, 4] about the decidability
and complexity boundaries for the decidability and the complexity of the parametric verification of safety
properties in ad hoc networks. Namely, given an ad hoc network protocol expressed as a finite state
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communicating automaton, we are interested in checking theexistence of an initial network configuration
that can generate a computation leading to a configuration inwhich at least one node is in a given (error)
state.

The problem is undecidable if no restrictions are imposed tothe possible initial configurations, but
it turns out to be decidable for interesting classes of graphs in which the corresponding maximal cliques
are connected by paths of bounded length. These graphs include both cliques and bounded path graphs.
The problem returns to be undecidable for bounded diameter graphs.

As a future work, we plan to study decidability and complexity issues in presence of communication
and node failures. In particular, an interesting case of communication failure in the context of ad hoc
networks is due toconflictsderiving form the contemporaneous emission of signals fromtwo distinct
nodes that share some neighbors. We plan to move to a truly concurrent semantics for ad hoc network
protocols in order to faithfully represent this specific phenomenon.
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[1] P. A. Abdulla, C.Čer̄ans, B. Jonsson & Y.-K. Tsay (1996):General decidability theorems for infinite-state
systems. In: LICS’96, IEEE Computer Society, pp. 313–321.
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