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The intrinsic non-locality of correlations in Quantum Mechanics allow us to certify the behaviour of

a quantum mechanism in a device independent way. In particular, we present a new protocol that

allows an unbounded amount of randomness to be certified as being legitimately the consequence of

a measurement on a quantum state. By using a sequence of non-projective measurements on single

state, we show a more robust method to certify unbounded randomness than the protocol of [5], by

moving to a one-sided device independent scenario. This protocol also does not assume any specific

behaviour of the adversary trying to fool the participants in the protocol, which is an advantage

over previous steering based protocols. We present numerical results which confirm the optimal

functioning of this protocol in the ideal case. Furthermore, we also study an experimental scenario

to determine the feasibility of the protocol in a realistic implementation. The effect of depolarizing

noise is examined, by studying a potential state produced by a networked system of ion traps.

1 Introduction

Quantum mechanics is a theory that can exhibit, in some sense, fundamental randomness. This random-

ness can be extracted by measurements on a quantum system, but if the party preparing the quantum state

and/or measurement apparatus is untrusted, how can we verify that a true measurement is occurring on

a real quantum state? The seed of the answer was discovered by Bell in [1] in the form of Bell inequali-

ties. The violation of these inequalities by certain quantum systems proved, along with the argument of

Einstein, Podolsky and Rosen in 1935, [6], that quantum mechanics must be a non-local theory. Using

these inequalities and non-local properties, it is possible to test the following about a process. If we

acquire statistics produced by some procedure, and it can be shown that the statistics violate these Bell

inequalities, then those statistics cannot have been produced by a local hidden variable theory. Using

these ideas, it is possible to determine if randomness produced by a given apparatus was in fact the result

of measurements on a quantum system, as opposed to being the result of a deterministic process. This

‘Bell non-locality’ has been utilized extensively in a situation referred to as device independence, where

it is possible to certify quantum behaviours, even in a scenario where the party producing the device is

untrusted, [13, 4].

In [5], the authors propose a scenario to generate and certify an unbounded amount of randomness
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using a sequence of non-projective measurements on a single quantum state. Non-projectivity is required

to preserve some entanglement in the quantum state after the measurement, which is an essential resource

in determining non-locality. In this scenario, Alice (A), and Bob (B), share an entangled state, possibly

produced by a third party eavesdropper, Eve (E). Both halves of this state are contained in two separate

devices and each sent to one of Alice or Bob. Alice (Bob) then chooses to measure in a particular basis,

x (y), and record their measurement outcome, a (b). The randomness of one (local randomness), or both

(global randomness) outcomes can be certified using a violation of a particular Bell inequality. Both

inputs, x,y and outcomes a,b are assumed to be binary variables for simplicity, such that:

Measurements:
︷ ︸︸ ︷

x ∈ {0,1}
y ∈ {0,1}

Outcomes:
︷ ︸︸ ︷

a ∈ {1,−1}
b ∈ {1,−1}

Figure 1: Illustration of Protocol 1. Bob makes a sequence of measurements on his state in a black box,

and Alice certifies the randomness of the outcomes using the assemblage, {σ~bn|~yn
}

It is also possible to lift the trust restrictions on one of the parties, Alice say, so that she has full

autonomy over her half of the shared state and measurement apparatus. This means that at any stage in

the process, she has the ability to do quantum state tomography to determine the state she possesses and

she is able to directly control her measurements. This is referred to as the steering or one-sided device

independent scenario, because the results of Bob’s measurements on his side of the shared state cause

Alice to be ‘steered’ into a certain state, which is dependent on Bob’s measurement choice. Typically,

in the fully device independent scenario, the joint probability distribution between Alice and Bob’s out-

comes given their measurement choices, P(ab|xy), is the relevant quantity studied to enable certification

of randomness. However, in the one-sided case, this is no longer relevant because we are not inter-

ested in Alice’s measurement outcomes. Instead, we study the assemblage, {σb|y}, [14], which is the

set of conditional unnormalized quantum states that one party can be steered into, given measurement

choices of the other. In this paper, we will keep the convention of [5], where Bob makes measurements

on his state, and Alice’s state is the one which is steered. These assemblage elements, σb|y, are con-

ditional on Bob’s outcome, b, and his choice of measurement basis, y. The elements are defined by:

σb|y = p(b|y)ρb|y = trB[(1A ⊗Mb|y)ρAB], where ρAB = trE ρABE is the state prepared by Eve and sent to

Alice and Bob, and ρb|y is the state that Alice is steered into conditional on Bob’s input, y, and measure-

ment outcome, b. Mb|y are the POVM elements Bob expects to be able to measure by choosing his input

y, such that Mb|y ≥ 0 ∀b,y, and ∑b Mb|y = 1,∀y.
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In the steering scenario, the certification of the local randomness of Bob’s outcomes can be done

by examining the assemblage elements, and their violation of ‘steering inequalities’, analogous to the

violation of Bell inequalities by the non-local probability distributions, P(ab|xy). A maximal violation

of steering inequalities corresponds to a maximally steerable state. The idea of producing certifiable

randomness using steering was first studied by Law et al. [9], and then with the assistance of semi-

definite programming by Passaro et al. [12]. Given an assemblage, a method was derived to determine

the steerability of the assemblage via semi-definite programs (SDPs) by Skrzypczyk et. al., [15]. The

steering weight (SW) is given to be the solution to the following SDP, (1), and its dual program, (2):

SW = min 1− tr∑
λ

σλ

s.t. σb|y −∑
λ

D(b|y,λ )σλ ≥ 0 ∀b,y

σλ ≥ 0, ∀λ

(1)

SW = max 1− tr∑
by

Fb|yσb|y

s.t. ∑
by

D(b|y,λ )Fb|y −1≥ 0 ∀λ

Fb|y ≥ 0, ∀b,y

(2)

The dual program, (2), is the most relevant for this paper because, as shown in [15], the dual variables

of the SDP, (2), in fact define a steering inequality, {Fb|y}, for which the assemblage, {σb|y}, produces

a maximal violation. {σλ} is an assemblage that Eve could produce for Alice using hidden variables,

λ , and the SDPs, (1), (2), test for the existence of such an assemblage. In the case where certifiable

randomness is produced as a result of Bob’s measurement, we want no such local hidden state (LHS)

assemblages to exist. If Eve had the ability to reproduce the assemblage that Alice receives, by using her

knowledge of these hidden variables then, from Eve’s point of view, the outcomes that Bob receives are

in fact deterministic, and not random.

The scenario that this work is presented in is similar to that of [5], where we assume Bob can imple-

ment non-projective measurements in rotated versions of the Pauli-X and Z bases, however Alice only

needs the functionality to implement projective Pauli-X and Z basis measurements, since it is sufficient

for her to do quantum state tomography to certify Bob’s random outcomes. Also, [5] only considers the

X basis measurement to be non-projective, and hence the random outcomes are obtained from a sequence

of these X measurements. However, in this case, it is possible for Bob to also to choose to measure in

a non-projective Z basis also. The motivation for this is the following. If Bob has the following state:

|0〉, and makes a measurement in the Pauli-X basis, |±〉= 1√
2
(|0〉+ |1〉), he will get one of the outcomes

b1 =±1, each with probability 1/2. If he then makes a second measurement on the state, this time in the

Pauli-Z basis, he will get one of the outcomes b2 = ±1 each with probability 1/2. However, if he had

chosen his second measurement to be in the X basis, he would not get a random result, but a determin-

istic one. This example illustrates that measuring in (almost) orthogonal bases should give the maximal

amount of randomness and will be further reinforced by numerical evidence shown in Figures (2c) and

(3b) in Section 3.1 .

The following non-projective Kraus operators, Π
x(θ )
b|y are defined in [5]:

Π
x(θ )
±1|1 = cos(θ) |±〉〈±|+ sin(θ) |∓〉〈∓| (3)

These Kraus operators, which will be denoted by a measurement in the Xθ basis, reduce to the usual

Pauli-X basis measurement operators for θ = 0.

Introducing non-projective Z basis measurements corresponds to defining the following operators,

denoted by Zφ , which again reduce to the usual computational basis measurements for φ = 0. The Kraus
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operators for these non-projective measurements are given by:

Π
z(φ)
1|0 = cos(φ) |0〉 〈0|+ sin(φ) |1〉 〈1| Π

z(φ)
−1|0 = cos(φ) |1〉 〈1|+ sin(φ) |0〉〈0| (4)

Therefore, the POVM that Bob implements on his half of the shared state is:

M
x(θ )/z(φ)
b|y = (Π

x(θ )/z(φ)
b|y )†(Π

x(θ )/z(φ)
b|y ) (5)

with y = 1 indicating that he has chosen to measure in the non-projective Xθ basis, and y = 0 indi-

cates a measurement in the Zφ basis. For a single measurement, if Alice wants to certify the randomness

produced by Bob’s non-projective Xθ measurements, the protocol should be repeated, with the same state

produced by Eve, but in this ‘test’ run, Bob will choose to measure in the Z0 basis. Alice will then do

state tomography on the resulting states to determine them, and repeats until she has gathered enough

statistics to reproduce the full assemblage with high enough confidence.

The quantifier of certifiable randomness that will be used is the guessing probability (GP), PG. This

quantifier was first discussed in [13] and was used in [5] for fully device-independent randomness cer-

tification. The SDP used in Protocol 1 is similar to that of [12], where the authors define the guessing

probability in terms of the local hidden state (LHS) strategies that Eve could use to produce set of states

for Alice and Bob which are determined by local hidden variables known only to her. However, this

method uses an assumption about the fact that Eve creates these assemblage elements using local mea-

surements on her side of the entangled state, effectively steering Alice and Bob into a given state, about

which she could deduce certain properties. The ability for Eve to do this is clearly undesirable as this

would enable her to have extra information about Bob’s random outcomes. Essentially, this means his

outcomes would be reproducible by some local hidden state model that Eve is using, as described above.

However, the results of this paper make no assumptions about the specific actions of Eve. For clarity, we

will study the case of a single measurement before giving the results for a sequence of measurements.

With just a single measurement, the GP is given as the solution to the following SDP:

PG(y = y∗) = max
{σE

b|y}b,y

trA[σ
E
b|y∗ ]

s.t. ∑
b,y

Fb|yσ E
b|y = v

∑
b

σ E
b|y = ∑

b

σ E
b|y′ ∀e,y 6= y′

σ E
b|y � 0 ∀y,b

(6)

The steering inequality {Fb|y} is the one determined by the SDP, (2), which is maximally violated by

the ideal assemblage, {σb|y}, that Alice expects to have access to if Eve follows the protocol honestly.

The SDP, (6), allows Eve to create, for Alice, any assemblage, {σ E
b|y}, as long as this assemblage obeys

the constraints in the SDP. The first constraint enforces the fact that this assemblage should produce a vio-

lation of the steering inequality, {Fb|y}, with violation v that would be produced by the ideal assemblage.

The second constraint enforces that Alice and Bob cannot communicate faster than the speed of light

(no-signalling condition), while the last constraint enforces that Eve must produce a valid assemblage

for Alice i.e. it must be a positive semidefinite matrix. We also assume Eve knows the measurement

setting from which Bob wants to extract randomness, y = y∗.

Once Bob has made his measurement, Alice can then determine the state she then possesses as a
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result. By repeating multiple runs of the protocol, Alice can determine the full statistics of Bob’s mea-

surement outcomes and hence the full assemblage. Once she knows the assemblage produced by the

given initial state and measurement set, she can then calculate the optimal steering inequality for that

assemblage, using (2), and the associated value of the violation, v, given by the steering inequality. Us-

ing this, she can calculate the GP with the SDP, (6). This guessing probability, as discussed in ([5], [13]

, [9], [12]) is the optimal probability that Eve can guess Bob’s outcome, b, given any information that

she possesses. For example, if the assemblage is unsteerable (it has a steering weight of 0), then it is

unsteerable with respect to any steering inequality and so the value of the violation, v, will reflect this.

In this scenario, Eve could have engineered Bob’s device to include some local hidden variables and

hence produce deterministic outcomes. It is exactly this situation which we want to detect. For a single

measurement, if the GP is equal to 1/2, the outcome of the measurement is in fact random and Eve’s

only strategy is simply to guess randomly which outcome Bob received. However, if it is equal to 1,

Eve knows the outcome exactly since, from her point of view, the process was deterministic. Clearly, to

optimally certify randomness, we want the GP to be as close to the former situation as possible.

A further quantifier which is useful is the min entropy, Hmin, [5]:

Hmin =− log2(PG) (7)

The meaning of this quantity is clear. If PG = 1/2 =⇒ Hmin = 1 and so one certifiable random bit is

produced by the measurement. If PG = 1 =⇒ Hmin = 0 and no randomness can be certified, i.e. the

assemblage could have been produced by a LHS model.

2 One-Sided Device-Independent (1SDI) Protocol

As in [5], we can extend this scenario to one in which Bob implements a sequence of non-projective mea-

surements on his half of the shared state. Defining the protocol for n rounds is therefore straightforward

(n is predetermined by Alice and Bob), where on each round, Bob makes one measurement on the shared

state. Bob will input his choice of measurement basis for the n rounds, denoted~yn = y1y2...yn ∈ {0,1}n,

into the device and record his measurement outcomes, denoted~bn = b1b2...bn ∈ {1,−1}n. In round k,

Bob chooses to measure in the ‘noisy’ Pauli-X basis, Xθk
, or the ‘noisy’ Pauli-Z basis, Zφk

, using the

Kraus operators defined by (3), (4) respectively. Of course, since the scenario is device independent,

Bob does not know if these measurements were actually performed in the device, until the randomness

is finally certified by the protocol.

If Alice wants to certify the randomness of the outcomes for all rounds up to round n, she must find

the solution for the SDP, (8), for all k < n. This set of SDP’s will give her the optimal steering inequality

for each round k (1 ≤ k ≤ n), {F~bk|~yk
}, which is maximally violated by the assemblage {σ~bk|~yk

}.

SW (σ~bk |~yk
) = max 1− tr ∑

~bk ,~yk

F~bk|~yk
σ~bk|~yk

s.t. ∑
~bk ,~yk

D(~bk|~yk,~λk)F~bk|~yk
−1≥ 0 ∀~λk

F~bk|~yk
≥ 0, ∀~bk,~yk

(8)

This SDP calculates the steering weight for the assemblage created on measurement round k, how-
ever the actual value of this steering weight is not important for our purposes. Instead, we want to extract
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the dual variables, {F~bk|~yk
}, which again define a steering inequality.

This SDP is adapted from [15] and as in that case, the primal SDP checks a given assemblage against

all possible deterministic strategies, D(~bk|~yk, ~λk). This determines if the assemblage can be decomposed
as a convex combination of assemblages, σ~λk

that Eve could have created in some LHS model, given her

possible knowledge of k hidden variables,~λk = λ1λ2...λk. Again, the steering inequality can be decom-
posed into a linear combination of these assemblage elements, with coefficients given by the variables
F~bk|~yk

, which are the dual variables in the SDP, (8). Once Alice has this set of steering inequalities, she

can determine the guessing probability for Eve, as the solution of the following SDP, (9):

PG(~y
∗
n,F~bn|~yn

) = max
~bn,~yn

trA σE
~bn|~yn=~y∗n

(9)

s.t.

∑
~bn,~yn

F~bn|~yn
σE
~bn|~yn

= vn,

∑
~bn−1,~yn−1

F~bn−1|~yn−1
σE
~bn−1|~yn−1

= vn−1

...
...

∑
b1,y1

Fb1|y1
σE

b1|y1
= v1,

∑
bn

σE
~bn|~yn

= σE
~bn−1|~yn−1

, ∀yn

∑
bn−1

σE
~bn−1|~yn−1

= σE
~bn−2|~yn−2

, ∀yn−1

...
...

∑
b1

σE
b1|y1

= ρA ∀y1

∑
~bn

σE
~bn|~yn

= ∑
bn

σE
~bn|~y′n

, ∀~yn,~y
′
n

∑
~bn−1

σE
~bn−1|~yn−1

= ∑
bn−1

σE
~bn−1|~y′n−1

, ∀~yn−1,~y
′
n−1

...
...

∑
b1

σE
b1|y1

= ∑
b1

σE
b1|y′1

, ∀y1,y
′
1

σE
~bn|~yn

� 0, ∀~yn,~bn

σE
~bn−1|~yn−1

� 0, ∀~yn−1,~bn−1

...
...

σE
b1|y1

� 0 ∀y1,b1

Where the solution of this SDP is the guessing probability and the maximum over the trace of all

the assemblages that Eve can create for Alice at the end of the protocol, σ E
~bn|~yn=~y∗n

, for a particular input

string, ~y∗n. Again, Eve knows from which measurement settings, ~y∗n, Bob wants to extract randomness.

The steering inequality violations, ~vn = v1v2 . . .vn can be calculated by Alice once she has determined

the associated steering inequality (if one exists). The constraints of the SDP are similar to the single

measurement case except for the addition of one new set of constraints which are required for a sequence.

These particular constraints enforce causality in the measurement sequence, so that, for example (for two

measurement rounds):

∑
b2

σ E
b1b2|y1y2

= σ E
b1|y1

, ∀y2 (10)

Simply put, this constraint means that Eve has no access to future events, i.e. in measurement round i,

she only has access to information from rounds j < i to aid in her attempts to guess the measurement

outcomes.

For the final measurement round, the measurement operators become projective to end the protocol,

i.e. θn = φn = 0 and the state at round n−1 is a pure entangled state. In this case, it is possible to define

the steering inequality explicitly, as done in [15]:

F~bn|~yn
= α



1−
σ~bn|~yn

tr
(

σ~bn|~yn

)



 (11)

where α is chosen sufficiently large. A choice of α = 100 was chosen for all numerical results in this pa-

per. Clearly, this choice of a steering inequality automatically gives a maximal violation value of vn = 0.
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Protocol 1 describes the full scenario in detail. If the guessing probability after n measurement rounds

is sufficiently close to 1/2n, then Eve has followed the protocol faithfully and produced the required

quantum state and measurement apparatus for Bob. This means that the probability of Eve guessing the

sequence of bits that Bob has obtained decreases exponentially with the number of rounds in the protocol

and we have true quantum randomness.

Protocol 1: 1SDI Randomness Certification

1. Eve prepares joint state ρABE & sends state ρAB = trE(ρABE) to Alice and Bob. Bob’s state is

contained in a black box with the ability to implement a predetermined measurement sequence

with angles, {θ1,θ2, . . . ,θn},{φ1,φ2, . . .φn}.
2. Bob chooses measurement y∗1 and makes measurement, Mb1|y∗1 , on state corresponding to a mea-

surement in either Xθ1
(y∗1 = 1), or Zφ1

(y∗1 = 0) basis.

3. Alice’s state is steered into σb1|y∗1 , which she determines using state tomography.

4. Alice and Bob repeat step 2. and 3. up to n rounds to determine full assemblage for each round,

k, {σ~bk |~y∗k
} until Bob has made sufficient measurements to determine the measurement statistics

accurately enough.

5. Alice determines the steering inequality for each assemblage generated by each measurement

round, k, {F~bk|~y∗k
} using SDP, (8), and the associated value of the steering inequality violation,

vk.

6. Alice uses SDP, (9), to determine the guessing probability for the assemblage after n rounds.

7. If the GP is sufficiently high, Alice and Bob abort the protocol and discard the measurement

outcomes.

Figure (1) illustrates the protocol by writing Bob as a series of ‘Bob’s’ to illustrate the causal structure

of the protocol. In this picture, each Bi makes a single measurement on the state he receives from Bi−1

by choosing a basis yi, and receiving measurement outcome bi before ‘passing’ the state onto Bi+1. As

described above, each Bob has no access to the black box he receives, but Alice has full autonomy over

her device.

2.1 Quantum Circuit for Protocol 1

The the following circuit, (13), was designed to implement Bob’s half of the protocol, with his sequence

of n measurements on his half of the shared state. First of all, the following two qubit unitary gates need to

be introduced, that effectively implement the non-projective Xθ and Zφ measurements, (12) respectively.

∣
∣0i
〉

Xθ

= Ry(2θ ) H • H






∣
∣0k
〉

|ψ〉B X

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

∣
∣0i
〉

Zφ

= Ry(2φ) H • H






∣
∣0k
〉

|ψ〉B Z

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴ ❴

(12)

In each gate above, the control ancilla is the topmost one, labelled by i, where all the other (k) ancillas

pass through the gate acted on by the identity. The index on the ancilla will represent the measurement
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round it is used in. The input string,~yn, for n measurement rounds is used as classical input to the circuit,

and conditioned on this input for each round, either the noisy X or noisy Z measurement is implemented.

As mentioned above, it is the topmost ancilla that is used as a control qubit for each gate in the circuit.

At the end of the protocol, all ancillas can be measured in the usual computational basis, where Z(k)

represents the measurement done in round k. Clearly, if the input yk = 0, the noisy Z measurement is

implemented, Z
yk⊕1
φk

, while if yk = 1, the noisy X measurement is implemented, X
yk

θk
, and the other is not.

In this fashion, only one quantum gate acts on the state per measurement round. Also, the state ρB is

only Bob’s half of the initial state.

This circuit is designed in the standard manner, in which all measurements are deferred to the end

of the circuit. However, it could be further improved by using only a single ancilla. This ancilla would

undergo multiple measurements, with the addition of a series of CNOT gates to the ancilla wire. These

CNOT gates would return the ancilla to the usual |0〉 state conditioned on the previous measurement

outcome.

y1 •
y2 •

...
. . . ...

...yn−1 . . . •
yn . . . •

∣
∣01
〉

Z
y1⊕1
φ1

X
y1

θ1

. . . Z(1)

∣
∣02
〉

Z
y2⊕1
φ2

X
y2
θ2

. . . Z(2)

. . . ...
...

∣
∣0n−1

〉
. . .

Z
yn−1⊕1

φn−1
X

yn−1

θn−1

Z(n−1)

|0n〉 . . .
Z

yn⊕1
0

X
yn

0

Z(n)

ρB . . .

(13)

3 Numerical Results

3.1 Ideal Case

In this section, numerical results are presented to illustrate the performance of the protocol, in particular

the SDP, (9), assuming ideal functionality of both devices. All numerical results were obtained using

the Matlab convex optimization package, cvx, [2] and a package for managing quantum states, qetlab,

[8]. The codes can be found at [3]. As a convention, it will be assumed that Bob always measures in the

noisy X basis in the first round, with the final measurement round in the protocol being projective, θn = 0

or φn = 0, depending on whether n is odd or even. In all of the following, we assume the measurement

statistics and runs of the protocol are i.i.d.

For completeness, the Min. Entropy for one round of measurement is plotted as a function of mea-

surement angles used for the first round, with the noisy X measurements, Xθ1
, for a range of values of θ1,

as seen in Figure (2a). All measurements are applied on the initial state:

|Ψ(ζ1)〉= cos(ζ1) |00〉+ sin(ζ1) |11〉 (14)

|Ψ(ζ1)〉 was measured for values of: ζ1 ∈{0, π
32
, π

16
, π

8
, π

4
}. The solution of this SDP clearly reproduce the

already known results for a single measurement round, as is done in [14, 12], but using our SDP which is
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slightly different than the one derived in that paper and requires no assumption about the specific actions

of the adversary, Eve. As expected, when ζ1 = 0, no randomness can be certified as the state becomes a

product state, whereas for ζ1 = π/4, the maximal amount of randomness can be certified, since this state

is maximally entangled between Alice and Bob.

(a) One round of measurements,

for a range of initial states, ζ1, as

a function of initial measurement

angle, θ1

(b) Hmin for two rounds of mea-

surements, with a range of initial

states, ζ1 ∈ (0, π
4
] and φ1 = θ2 =

φ2 = 0.

(c) Difference in certified random-

ness when choosing between mea-

surement settings y∗2 = 1 or y∗2 = 0

in the second measurement round.

Figure 2: Min. Entropy, Hmin, for one and two measurement rounds, as a function of initial measurement

angle, θ1.

Figures (2b) and (2c) show the results after two measurement rounds. In Figure (2b), the mea-

surement in round one was taken to be in the noisy X basis, with a range of initial angles ζ1, and the

measurement in round two was taken to be in the usual computational basis, φ2 = 0. Figure (2c) il-

lustrates the difference in choosing different measurement choices for the second round, i.e. between

y∗2 = 0, or y∗2 = 1, with maximal randomness certified after sequential measurements in alternating bases,

for example y∗1 = 1,y∗2 = 0.

Finally, Figure (3) shows numerical results for the protocol for three measurement rounds. The pro-

tocol proceeds in exactly the same manner as for one and two rounds. In particular, in the first round,

Bob can choose between a non-projective measurement in the noisy Xθ1
basis, or if the particular run of

the protocol is a test, he will measure in the projective Z0 basis. In the second round, he will choose to

measure in the noisy Zφ2
basis, or the X0 basis for a test run. In the final round, he will choose to measure

in the projective (θ3 = 0) X0 basis, or the projective (φ3 = 0) Z0 basis for a test. Again, Figure (3b)

reiterates the optimality of using an alternating sequence of non-projective measurements, with the most

randomness produced with the setting y∗1 = 1,y∗2 = 0,y∗3 = 1 in this example. Figure (3c) shows the re-

sults for various second round measurement angles, and the amount of randomness that can be certified

increases as the measurement angle, φ2 → 0.

3.2 Networked Ion Trap Implementation

The framework in which we have designed this protocol, assuming a malicious adversary, Eve, is general

enough to include the scenario in which she is not intentionally trying to interfere with our randomness

generation, but instead we can imagine that Eve simply made some error in building the devices. This

would correspond to introducing some noise, for example, in our state preparation and/or measurement

apparatus. This noise assumption is clearly a sub-case of the malicious adversary scenario. This men-

tality allows us to use our protocol to evaluate the usefulness of some current available technologies



B. Coyle, M. J. Hoban & E. Kashefi 23

(a) Hmin using various initial

states, with initial angles, ζ1 ∈
{ π

4
, π

5
, π

7
, π

8
, π

12
}.

(b) Hmin using various measure-

ment settings, y∗1,y
∗
2,y

∗
3.

(c) Hmin using various an-

gles in the second round,

φ2 ∈ {0.08,0.1,0.2,0.4, π
4
} rad.

Figure 3: Hmin for three measurement rounds, as a function of initial measurement angle, θ1.

for randomness generation purposes, in some simple cases. In particular, we will restrict to assuming

we only have some noise in our state preparation, but all other parts of the device works perfectly. To

do so, we test the state introduced in [11], which can be produced between two parties in a networked

architecture of ion traps:

ρ
(0)
ε = (1− ε)Φ++ ε/3Φ−+ ε/3Ψ++ ε/3Ψ− (15)

where φ+,φ−,ψ+,ψ− are the standard 2-qubit Bell states. The state, (15), is a mixed state assuming

uniform depolarising noise. In [11], this state is assumed to be one produced by two ion traps entangled

by a photonic link. The simple noise model is chosen to allow use of a technique to purify the state. In

particular, after 3 rounds of this purification protocol, the resulting states are given by:

ρ
(1)
ε =

(
1−2/3ε −2/3ε2

)
Φ++

(
2/9ε +2/9ε2

)
Φ−+2/9ε2Ψ++2/9ε2Ψ−+O(ε3) (16)

ρ
(2)
ε =

(
1−8/9ε2 −8/27ε3

)
Φ++4/9ε2Φ−+4/9ε2Ψ++8/27ε3Ψ−+O(ε4) (17)

ρ
(3)
ε =

(
1−2/9ε2 −16/27ε3

)
Φ++2/9ε2Φ−+8/27ε3Ψ++8/27ε3Ψ−+O(ε4) (18)

where ρ
(i)
ε is the state produced after i rounds of the purification protocol.

Currently, raw entanglement between two ion traps, connected with an entangling photon, has been

achieved with a fidelity of about 85% =⇒ ε ≈ 0.15, [7]. Starting with this level of raw infidelity, the

purification protocol produces states of infidelity ε ≈ 0.1,0.02,0.005 after one, two and three rounds

respectively. The fidelity is given by (19), [10], and taken to be between the actual state ρ (i), and the

pure Bell state, Φ+:

F(ρ
(i)
ε ,Φ+) = Tr

(√
√

ρ
(i)
ε Φ+

√

ρ
(i)
ε

)

(19)

Given the levels of entanglement present in the states above, we test the advantage of using a se-

quence of measurements vs. a single measurement on a noisy entangled state. Figure (4a) shows the

result after a single X measurement on the states (choosing y∗1 = 1) (15, 16, 17, 18). Clearly, maximal
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randomness can be certified in the case where the measurement is projective, as expected. It can also be

seen that by using the raw entangled state, (15), very little randomness can be certified, with a maximum

of approximately 0.15 bits.

Figure (4b) illustrates the results after two rounds of measurements, where the second round mea-

surements are projective, θ2 = φ2 = 0. The case of θ1 = 0 gives the same result as the single measurement

scenario, since in this case the first measurement is projective and hence no randomness can be certified

in the second round.

Unfortunately, it can be seen that no extra randomness can be certified in two measurement rounds on

the raw entangled state, (15). However, after two or more rounds of the purification protocol, indeed more

randomness can be certified by using a sequence vs. a single measurement, as indicated by the peaks in

Figure (4b). The infidelity for which the sequence becomes more useful than a single measurement can

be seen to be approximately in the interval ε ∈ (0.06,0.07).

(a) Single measurement on the raw entangled state

(15) (ε = 0.15), the states produced after three

rounds of the purification protocol, (16, 17, 18),

with ε = 0.1,0.02,0.005 respectively and a perfect

pure state with ε = 0.

(b) Two rounds of measurement on the raw entan-

gled state (15) (ε = 0.15), the states produced af-

ter three rounds of the purification protocol, (16,

17, 18), with ε = 0.1,0.02,0.005 respectively and

a perfect pure state with ε = 0.

Figure 4: 1SDI protocol implemented for one and two measurement rounds on noisy states produced by

a networked ion-trap architecture.

Finally, Figure (5a) shows the results after three rounds of measurements, where the third, and final

round of measurements are projective with θ3 = φ3 = 0. The second round of measurements is chosen

in this case to be a noisy Z measurement, with φ2 = 0.08 rad.

Unfortunately, it can be seen that no extra randomness can be certified by implementing three mea-

surements, than with two rounds. This is even the case for the purified states, (16, 17, 18), so even these

levels of purity are not sufficient to extract more randomness from a single state with three rounds of

measurements. The perfect pure state, with ε = 0 is also plotted for comparison.

Clearly, there must be some level at which the state becomes pure enough to be useful so Figure (5b)

shows the results of the protocol for very small infidelities, specifically:

ε = {5×10−3,5×10−4,3×10−4,2×10−4,1×10−4}

It can be seen that for an infidelity approximately in the interval, ε ∈ (1× 10−4,2× 10−4), the state is

pure enough to be able to certify more randomness with three rounds of measurement, than with two.

This corresponds to being able to create pure entangled states experimentally with fidelities of greater

than 99.98%. This level could be reached by repeating the purification protocol more times but clearly
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this decreases the efficiency of the protocol as many more extra qubits would need to be introduced to

implement this purification. It is expected that for 4 and higher rounds of measurement, states which have

an even higher level of purity would be required to make the protocol worthwhile, i.e. so that rounds of

measurements on a single state would give better results than single measurements on new states each

time.

(a) Three rounds of measurement on the raw en-

tangled state, (15), (ε = 0.15), the states produced

after three rounds of the purification protocol, (16,

17, 18), with ε = 0.1,0.02,0.005 respectively and a

perfect pure state with ε = 0.

(b) Three rounds of measurement on raw entangled

states with infidelities ε = {5×10−3,5×10−4,3×
10−4,2× 10−4,1× 10−4}.

Figure 5: Three rounds of measurements on states with various levels of entanglement fidelity.
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