
S. J. Gay and P. H. Kelly (Eds.): Programming Language Approaches to
Concurrency- and Communication-cEntric Software (PLACES 2012)
EPTCS 109, 2013, pp. 13–20, doi:10.4204/EPTCS.109.3

An event-based model for contracts

Massimo Bartoletti Tiziana Cimoli G. Michele Pinna
Università degli Studi di Cagliari, Italy

{bart,t.cimoli,gmpinna}@unica.it

Roberto Zunino
Università degli Studi di Trento and COSBI, Italy

roberto.zunino@unitn.it

We introduce a basic model for contracts. Our model extends event structures with a new relation,
which faithfully captures the circular dependencies among contract clauses. We establish whether an
agreement exists which respects all the contracts at hand (i.e. all the dependencies can be resolved),
and we detect the obligations of each participant. The main technical contribution is a correspondence
between our model and a fragment of the contract logic PCL [6]. More precisely, we show that the
reachable events are exactly those which correspond to provable atoms in the logic. Despite of this
strong correspondence, our model improves [6] by exhibiting a finer-grained notion of culpability,
which takes into account the legitimate orderings of events.

1 Introduction

Contracts will play an increasingly important role in the specification and implementation of distributed
systems. Since participants in distributed systems may be mutually distrusted, and may have conflicting
individual goals, the possibility that a participant behaviour may diverge from the expected one is quite
realistic. To protect themselves against possible misconducts, participants should postpone actual col-
laboration until reaching an agreement on the mutually offered behaviour. This requires a preliminary
step, where each participant declares her promised behaviour, i.e. her contract.

A contract is a sort of assume/guarantee rule, which makes explicit the dependency between the
actions performed by a participant, and those promised in return by the others. Event structures [17]
can provide a basic semantic model for assume/guarantee rules, by interpreting the enabling b ` a as the
contract clause: “I will do a after you have done b”. However, event structures do not capture a typical
aspect of contracts, i.e. the capability of reaching an agreement when the assumptions and the guarantees
of the parties mutually match. For instance, in the event structure with enablings b ` a and a ` b, none of
the events a and b is reachable, because of the circularity of the constraints. An agreement would still be
possible if one of the parties is willing to accept a weaker contract. Of course, the contract “I will do b”
(modelled as ` b) will lead to an agreement with the contract b ` a, but it offers no protection to the
participant who offers it: indeed, such contract can be stipulated without having anything in return.

In this paper we introduce a model for contracts, by extending (conflict-free) event structures with a
new relation . The contract a b (intuitively, “I will do a if you promise to do b”) reaches an agreement
with the dual contract b a, while protecting the participant who offers it. We formalise agreements as
configurations where all the participants have reached their goals. We show that the problem of deciding
if an agreement exists can be reduced to the problem of proving a suitable formula in (a fragment of) the
contract logic PCL [6], where an effective decision procedure for provability exists.

Once an agreement has been found, the involved participants may safely cooperate by performing
events. Indeed, we prove that — even in the presence of dishonest participants which do not respect

http://dx.doi.org/10.4204/EPTCS.109.3

14 An event-based model for contracts

their promises — either all the participants reach their goals, or some of them is culpable of not having
performed her duties. A culpable participant may then be identified (and possibly punished). Also the
problem of detecting duties and identifying culpable participants is related to provability in PCL. No-
tably, while PCL does not distinguish between the immediate duties and those that will only be required
later on in a computation (all provable atoms are considered duties in PCL), the richer semantical struc-
ture of our model allows for a finer-grained notion of duties, which depend on the actual events already
performed in a contract execution.

2 Contract model

A contract (Def. 1) comprises a set of events E and a set of participants A. Each event e ∈ E is uniquely
associated to a participant π(e) ∈ A. Events are ranged over by a,b, . . ., sets of events by C,D,X ,Y, . . .,
and participants by A,B, Events are constrained by two relations: one is the enabling relation `
of [17], while the other is called circular enabling relation, and it is denoted by . Intuitively, D ` e
states that e may be performed after all the events in D have happened; instead, D e means that e may
be performed either if D has already happened (similarly to `), or possibly “on credit”, on the promise
that the events in D will be performed at some later time. The goals of each participant are indicated by
the relation ok: A ok X means that A is satisfied if all the events in X have happened. The composition of
contracts is defined component-wise, provided that events are uniquely associated to participants.

Definition 1. A contract C is a 6-tuple (E,A,π,ok,`,), where:

• E is a finite set of events;

• A is a finite set of participants;

• π : E→A associates each event to a participant;

• ok ⊆A×℘(E) is the fulfillment relation, such that A ok X ∧ X ⊆ Y =⇒ A ok Y;

• ` ⊆℘(E) × E is the enabling relation;

• ⊆℘(E) × E is the circular enabling relation.

We assume that both the enabling relations are saturated, i.e. X ◦ e ∧ X ⊆ Y =⇒ Y ◦ e, for ◦ ∈ {`,}.

The saturation of the relation ok models the fact that once a contract has been fulfilled (i.e. a state is
reached where all participants say ok), additional events can be neglected.

For notational convenience, we shall sometimes omit curly brackets around singletons, e.g. we shall
write a ` b instead of {a} ` b, and we shall simply write ` e for /0 ` e. Similar abbreviations apply to .

Example 2. Suppose there are three kids who want to play together. Alice has a toy airplane, Bob has
a bike, while Carl has a toy car. Each of the kids is willing to share his toy, but they have different
constraints: Alice will lend her airplane only after Bob has allowed her ride his bike; Bob will lend his
bike only after he has played with Carl’s car; Carl will lend his toy car if the other two kids promise
that they will eventually let him play with their toys. These constraints are modelled by the following
contract C, where we only indicate the minimal elements of the relations `, and ok:

E = {a,b,c} {b} ` a {c} ` b {a,b} c

A= {A,B,C} A ok{b} B ok{c} C ok{a,b}
π(a) = A π(b) = B π(c) = C

M. Bartoletti, T. Cimoli, G.M. Pinna, R. Zunino 15

In the previous example, it is crucial that Carl’s contract allows the event c to happen “on credit” be-
fore the other events are performed. We shall show that this leads to an agreement among the participants,
while no agreement exists were Carl requiring {a,b} ` c (cf. Ex. 5).

In Def. 3 we refine the notion of configuration of [17], so to deal with the new -enablings. A set
of events C is a configuration if its events can be ordered in such a way that each event e ∈C is either
`-enabled by its predecessors, or it is -enabled by the whole C. Configurations play a crucial role, as
they represent sets of events where all the debts have been honoured.

Definition 3. For all contracts C, we say that C ⊆ E is a configuration of C iff

∃e0, . . . ,en.
(
{e0, . . . ,en}=C ∧ ∀i≤ n. ({e0, . . . ,ei−1} ` ei ∨ C ei)

)
The set of all configurations of C is denoted by FC.

Example 4. Not all sets of events are also configurations. For instance, in the contract with enablings
a b and b a, the sets /0 and {a,b} are configurations (in the latter, the use of allows for resolving
the circular dependency between a and b), while {a} and {b} are not.

Example 5. The contract C of Ex. 2 has configurations /0 and E = {a,b,c}. Note that if Carl replaces
his contract with {a,b} ` c, then E no longer belongs to FC.

Following the examples above we observe that, differently from other event-based models, if C is a
configuration, not necessarily X ⊆C is a configuration as well. Hereafter, subsets of E are called states,
regardless they are configurations or not.

Since our contracts have no conflicts (unlike [17]), the union of two configurations is a configuration
as well.

Lemma 6. For all contracts C, if C ∈ FC and D ∈ FC, then C∪D ∈ FC.

Given a configuration C and an event e, the set C∪{e} is still a configuration if C ` e or C e.
Otherwise, C∪{e} is not a configuration. Compositional reasoning on sets of events (not necessarily
configurations) requires to keep track of the events taken “on credit”, as sketched in the proof of Th. 15.

An event is reachable when it belongs to a configuration; a set of events X is reachable if every event
in X is reachable. A reachable set is not necessarily a configuration (e.g. {a,b} in Ex. 2); yet, there always
exists a configuration that contains it. This follows by Lemma 6, which guarantees that configurations
are closed by union. The set comprising all the reachable events is a configuration (actually, it is the
greatest one).

Lemma 7. Let X ⊆ E be a reachable set of events. Then, ∃C ∈ FC. X ⊆C.

Lemma 8. C =
⋃
{e ∈ E | e is reachable} ∈ FC, and ∀C′ ∈ FC. C′ ⊆C.

2.1 Agreements

Informally, a contract admits an agreement when all the involved participants are happy with the guaran-
tees provided by that contract. In Def. 9, we formalise an agreement on a contract C as a configuration
of C where all the participants have reached their individual goals. E.g., the configuration E = {a,b,c}
is an agreement on the contract C of Ex. 2, since P ok E holds for P ∈ {A,B,C} by saturation of ok.

Definition 9. An agreement on C is a configuration C ∈ FC such that ∀A ∈A : A ok C.

16 An event-based model for contracts

We now establish the duties of a participant in a state where some events X have been performed.
Although several different definitions of duties are possible, the common factor of any reasonable def-
inition is that, in the absence of duties, all the participants must have reached their goals (see Th. 13).
Here we focus on a definition of duties where ` is prioritized over , i.e. an event may be performed on
credit only if no other ways are possible. More precisely, an event e belongs to duties(A,X) if (i) e is not
already present in X , but is in some configuration C, (ii) π(e) = A, and (iii) either e is `-enabled by X ,
or, if no `-enablings are possible from X , then e is -enabled by some events in C∪X .

Definition 10. For all A, for all X, we define duties(A,X) as the set of events e 6∈ X such that π(e) = A
and there exists C ∈ FC such that e ∈C, and either X ` e or @e′ ∈C \X : X ` e′ ∧ ∃D ⊆C∪X : D e.
A participant A is culpable in X when A has some duties in X.

Example 11. Recall the contract C of Ex. 2. By Def. 10, in state /0 only participant C is culpable, with
duties(C, /0) = {c}; in {c} only B is culpable, with duties(B,{c}) = {b}; finally, in {b,c} only A is
culpable, with duties(A,{b,c}) = {a}.
Example 12. Let C be a contract with {a0,a1} a2, {a0,a2} a1, {a1,a2} ` a3, and /0 ` a0, where
π(ai) = Ai for i ∈ [0,3]. We have that only A0 is culpable in /0; only A1 and A2 are culpable in {a0}; only
A1 is culpable in {a0,a2}; only A2 is culpable in {a0,a1}; only A3 is culpable in {a0,a1,a2}; finally, no
one is culpable in C = {a0,a1,a2,a3} ∈ FC.

The following theorem establishes that it is safe to execute contracts after they have been agreed
upon. More precisely, in each state X of the contract execution, either all the participant goals have been
fulfilled, or some participant is culpable in X . Note that, in consequence of Def. 10, a participant can
always exculpate herself by performing some of her duties. This is because, if D = duties(A,X) is not
empty, participant A is always allowed to perform all the events in D, eventually reaching a state where
she is not culpable (note also that in the maximal state E no one is culpable).

Theorem 13. If an agreement on C exists, then for all participants A ∈ A, and for all X ⊆ E, either
A ok X, or some participant is culpable in X.

2.2 A logical characterisation of agreements

The problem of deciding if an agreement exists on some contract C is reduced below to the problem of
proving formulae in the contract logic PCL [6]. A comprehensive presentation of PCL is beyond the
scope of this paper, so we give here a brief overview, and we refer the reader to [6, 5] for more details.

PCL extends intuitionistic propositional logic IPC with a new connective, called contractual impli-
cation and denoted by �. Differently from IPC, a contract b � a implies a not only when b is true,
like IPC implication, but also in the case that a “compatible” contract, e.g. a� b, holds. Also, PCL is
equipped with an indexed lax modality says , similarly to the one in [13].

The Hilbert-style axiomatisation of PCL extend that of IPC with the following axioms:

>�> φ → (A says φ)

(φ � φ)→ φ (A says A says φ)→ A says φ

(φ ′→ φ)→ (φ � ψ)→ (ψ → ψ
′)→ (φ ′� ψ

′) (φ → ψ)→ (A says φ)→ (A says ψ)

The Gentzen-style proof system of PCL extends that of IPC with the following rules (we refer to [6]
for the standard IPC rules, and for the rules for the says modality).

Γ ` q
Γ ` p � q

Γ, p � q, a ` p Γ, p � q, q ` b
Γ, p � q ` a � b

Γ, p � q, r ` p Γ, p � q, q ` r
Γ, p � q ` r

M. Bartoletti, T. Cimoli, G.M. Pinna, R. Zunino 17

Notice the resemblance between the last rule and the rule (→L) of IPC: the only difference is that here
we allow the conclusion r to be used as hypothesis in the leftmost premise. This feature allows � to
resolve circular assume/guarantee rules, e.g. to deduce a and b from the formula a � b ∧ b � a.

The proof system of PCL enjoys cut elimination and the subformula property. The decidability of
the entailment relation `PCL is a direct consequence of these facts (see [6] for details).

In Def. 14 we show a translation from contracts to PCL formulae. In particular, our mapping is a
bijection into the fragment of PCL (called 1N-PCL) which comprises atoms, conjunctions, says, and
non-nested (standard/contractual) implications.
Definition 14. The mapping [·] from contracts into 1N-PCL formulae is defined as follows:

[(Di ◦ai)i] =
∧

i[Di ◦ai]

[{di | i ∈ I}◦a] = π(a) says (
∧

i∈I π(di) says di)[◦] a
where [◦] =

{
→ if ◦= `
� if ◦=

Theorem 15. For all contracts C, an events e is reachable in C iff [C] `PCL π(e) says e.

Proof. (Sketch) We extend the definition of configuration, by allowing events to be picked from a set X ,
in the absence of their premises. We say that C ⊆ E is an X-configuration of C iff X ⊆C and

∃e0, . . . ,en ∈C. {e0, . . . ,en}=C ∧ ∀i≤ n.
(
ei ∈ X ∨ {e0, . . . ,ei−1} ` ei ∨ C ei

)
This allows, given an X-configuration, to add/remove any event and obtain an Y -configuration, possibly
with Y 6= X . We shall say that the events in X have been taken “on credit”, to remark the fact that they
may have been performed in the absence of a causal justification. Notice that Def. 3 is the special case
of the above when X = /0. An event e is X-reachable if it belongs to some X-configuration. For all X , we
define the set R(X) by the following inference rules:

D ` e D⊆ R(X)

e ∈ R(X)

D e D⊆ R(X ∪{e})
e ∈ R(X)

e ∈ X
e ∈ R(X)

The set R(X) is used as a bridge in proving that e is X-reachable iff [C], X `PCL e. We prove first that
R(X) contains exactly the X-reachable events, and then we prove that [C], X `PCL e iff e ∈ R(X). The
actual inductive statement is a bit stronger. For all conjunction of atoms ϕ and for all sets of conjunctions
of atoms Φ, we denote with ϕ and Φ the sets of atoms occurring in ϕ and in Φ, respectively. Then, we
prove that for all ϕ and for all Φ: ϕ ⊆ R(Φ) ⇐⇒ [C],Φ `PCL ϕ . The (⇐) direction is proved by
induction on the depth of the derivation of [C],Φ `PCL ϕ . For the (⇒) direction, we let e ∈ ϕ , and then
we proceed by induction on the depth of the derivation of e ∈ R(Φ).

The following theorem reduces the problem of deciding agreements to provability of PCL formulae.
Concretely, one can use the decision procedure of 1N-PCL to compute the set C of reachable events.
Then, an agreement exists iff each principal A has some goals contained in C.
Theorem 16. A contract C admits an agreement iff:

∀A ∈A. ∃G⊆ E.
(
A ok G ∧ ∀e ∈ G : [C] `PCL π(e) says e

)
Proof. (⇒) Let C be an agreement on C, and let A = {Ai}i. By Def. 9, Ai ok C for all i. By definition
of ok, there exist Gi ⊆ C such that Ai ok Gi. Since Gi ⊆ C ∈ FC, then Gi is reachable. Therefore, by
Theorem 15, [C] `PCL π(e) says e, for all e ∈ Gi.

(⇐) Let A = {Ai}i, and let {Gi}i be such that Ai ok Gi and [C] `PCL π(e) says e for all i and for
all e ∈ Gi. By Theorem 15, each Gi is reachable. By Lemma 7, for all i there exists Ci ∈ FC such that
Ci ⊇ Gi. By Lemma 6, C =

⋃
iCi ∈ FC is an agreement on C.

18 An event-based model for contracts

Finally, note that also duties(A,X) can be computed by exploiting the correspondence with PCL.
More precisely, we use `PCL to compute the set of all reachable events, so obtaining the maximal con-
figuration (Lemma 8), and then to compute D ` e as prescribed by Def. 10.

3 Related work

Contracts have been investigated using a variety of models, e.g. c-semirings [8, 9, 12], behavioural
types [7, 10, 11], logics [1, 16], etc. All these models do not explicitly deal with the circularity issue,
which instead is the focus of this paper.

Circularity is dealt with at a logical (proof-theoretic) level in [6]; the relation between reachability
in our model and provability in the logic of [6] is stated by Theorem 15. Compared to [6], our model
features a finer notion of duties: while [6] focusses on reachable events, Def. 10 singles out which events
must be performed in a given state, by interpreting D ` e as “I will do e after D has been done”.

In [15] a trace-based model for contracts is defined. Similarly to ours, a way is devised for blaming
misconducts, also taking into account time contraints. However, [15] is not concerned in how to reach
agreements, so the modeling of mutual obligations (circularity) is neglected. It seems interesting to
extend our model with temporal deadlines, which would allow for a tighter notion of agreement, and,
more in general, with soft constraints, which could be used to model QoS requirements.

In [14] a generalization of prime event structures is proposed where a response relation (denoted
with •→) is used to characterize the accepting traces as those where, for each a •→ b, if a is present
in the trace, then b eventually occurs after a. The response relation bears some resemblance with our
 relation, but there are some notable differences. First, having a b does not necessarily imply that a
configuration containing a must contain also b (another enabling could have been used), whereas a •→ b
stipulates that once one has a in an accepting configuration, then also b must be present. Indeed, an
enabling a b can be neglected, whereas a •→ b must be used. Also, augmenting the number of -
enablings increases the number of configurations, while adding more response relations reduces the
number of accepting configurations of the event structure. Finally, [14] deals with conflicts, while we
have left this issue for future investigation.

4 Conclusions

We have proposed a basic model for contracts, building upon a new kind of event structures which allow
to cope with circular assume/guarantee constraints. Our event structures feature two enabling relations
(the standard enabling ` of [17], and the circular enabling), but they lack a construct to model non-
determinism, and they only consider finite sets of events. Some preliminary work on a generalisation of
our event structures with conflicts and infinite sets of events is reported in [2]. Further extensions to the
basic model proposed here seem plausible: for instance, more general notions of goals, agreements and
duties. Also, a formalisation of the intuitive notion of “participant protected by a contract”, which we
used to motivate the circular enabling relation, seems most desirable.

Our contract model features an effective procedure for deciding when an agreement exists, and then
for deciding the duties of participants at each execution step. These procedures are obtained by the means
of an encoding of contracts into Propositional Contract Logic. In particular, our encoding reduces the
problem of detecting whether an event is reachable, to that of proving a formula in PCL. The correct-
ness of our encoding is stated in Theorem 15. An extension of such result is presented in [2], where
configurations are characterised as provability of certain formulae in PCL.

M. Bartoletti, T. Cimoli, G.M. Pinna, R. Zunino 19

A concrete usage scenario of our contract model is a protocol for exchanging, agreeing upon, and
executing contracts. In the initial phase of the protocol, a special participant T acts as a contract broker,
which collects the contracts from all the participants. Then, T looks for possible agreements on subsets of
the contracts at hand. After an agreement on C has been found, T shares a session with the participants in
C. As long as the goals of some participant have not been fulfilled, T notifies the duties to each culpable
participant. Variants of this protocol are possible which dispose T from some of his tasks. Notice that
reaching an agreement is an essential requirement for the security of this protocol: if an untrusted contract
broker claims to have found an agreement when there is none, then Theorem 13 no longer applies, and
a situation is possible where a participant has not reached her goals, but no one is culpable. Notably,
participants can still protect themselved against untrusted brokers, by always requiring in their contracts
the suitable (` /) preconditions. This protocol can be formally described in the process calculus
CO2 [3]. This requires to specialise the abstract contract model of CO2 to the contracts presented in this
paper, and, accordingly, to make the observables in fuse /ask prefixes correspond to agreements/duties,
respectively. Static analyses on CO2 , e.g. the one in [4], may then be used to detect whether a participant
always respects the contracts she advertises.

Acknowledgments. This work has been partially supported by by Aut. Region of Sardinia under grants
L.R.7/2007 CRP2-120 (Project TESLA) and CRP-17285 (Project TRICS).

References

[1] Alexander Artikis, Marek J. Sergot & Jeremy V. Pitt (2009): Specifying norm-governed computational soci-
eties. ACM Trans. Comput. Log. 10(1), doi:10.1145/1459010.1459011.

[2] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna & Roberto Zunino (2012): Circular Causality in Event
Structures. In: ICTCS.

[3] Massimo Bartoletti, Emilio Tuosto & Roberto Zunino (2011): Contracts in Distributed Systems. In: Proc.
ICE, EPTCS 59, pp. 130–147, doi:10.4204/EPTCS.59.11.

[4] Massimo Bartoletti, Emilio Tuosto & Roberto Zunino (2012): On the realizability of contracts in dishonest
systems. In: Proc. COORDINATION, LNCS 7274, Springer, doi:10.1007/978-3-642-30829-1 17.

[5] Massimo Bartoletti & Roberto Zunino (2009): A logic for contracts. Technical Report DISI-09-034, DISI -
Univ. Trento.

[6] Massimo Bartoletti & Roberto Zunino (2010): A Calculus of Contracting Processes. In: Proc. LICS, IEEE
Computer Society, doi:10.1109/LICS.2010.25.

[7] Mario Bravetti & Gianluigi Zavattaro (2007): Towards a Unifying Theory for Choreography Conformance
and Contract Compliance. In: Software Composition, doi:10.1007/978-3-540-77351-1 4.

[8] Maria Grazia Buscemi & Hernán C. Melgratti (2008): Transactional Service Level Agreement. In: Proc.
TGC, LNCS 4912, Springer, doi:10.1007/978-3-540-78663-4 10.

[9] Maria Grazia Buscemi & Ugo Montanari (2007): CC-Pi: A Constraint-Based Language for Specifying Ser-
vice Level Agreements. In: Proc. ESOP, LNCS 4421, Springer, doi:10.1007/978-3-540-71316-6 3.

[10] Samuele Carpineti & Cosimo Laneve (2006): A Basic Contract Language for Web Services. In: Proc. ESOP,
LNCS 3924, Springer, doi:10.1007/11693024 14.

[11] Giuseppe Castagna, Nils Gesbert & Luca Padovani (2009): A theory of contracts for Web services. ACM
Transactions on Programming Languages and Systems 31(5), doi:10.1145/1538917.1538920.

[12] Gian Luigi Ferrari & Alberto Lluch-Lafuente (2006): A Logic for Graphs with QoS. ENTCS 142,
doi:10.1016/j.entcs.2004.10.030.

http://dx.doi.org/10.1145/1459010.1459011
http://dx.doi.org/10.4204/EPTCS.59.11
http://dx.doi.org/10.1007/978-3-642-30829-1_17
http://dx.doi.org/10.1109/LICS.2010.25
http://dx.doi.org/10.1007/978-3-540-77351-1_4
http://dx.doi.org/10.1007/978-3-540-78663-4_10
http://dx.doi.org/10.1007/978-3-540-71316-6_3
http://dx.doi.org/10.1007/11693024_14
http://dx.doi.org/10.1145/1538917.1538920
http://dx.doi.org/10.1016/j.entcs.2004.10.030

20 An event-based model for contracts

[13] Deepak Garg & Martı́n Abadi (2008): A Modal Deconstruction of Access Control Logics. In: Proc. FoSSaCS,
LNCS 4962, Springer, doi:10.1007/978-3-540-78499-9 16.

[14] Thomas T. Hildebrandt & Raghava Rao Mukkamala (2010): Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. In: Proc. PLACES, EPTCS 69, doi:10.4204/EPTCS.69.

[15] Tom Hvitved, Felix Klaedtke & Eugen Zălinescu (2012): A trace-based model for multiparty contracts. J.
Log. Algebr. Program. 81(2), pp. 72–98, doi:10.1016/j.jlap.2011.04.010.

[16] Cristian Prisacariu & Gerardo Schneider (2007): A Formal Language for Electronic Contracts. In: Proc.
FMOODS, LNCS 4468, Springer, doi:10.1007/978-3-540-72952-5 11.

[17] Glynn Winskel (1986): Event Structures. In: Advances in Petri Nets, LNCS 255, Springer, pp. 325–392,
doi:10.1007/3-540-17906-2 31.

http://dx.doi.org/10.1007/978-3-540-78499-9_16
http://dx.doi.org/10.4204/EPTCS.69
http://dx.doi.org/10.1016/j.jlap.2011.04.010
http://dx.doi.org/10.1007/978-3-540-72952-5_11
http://dx.doi.org/10.1007/3-540-17906-2_31

	1 Introduction
	2 Contract model
	2.1 Agreements
	2.2 A logical characterisation of agreements

	3 Related work
	4 Conclusions

