
N. Yoshida, W. Vanderbauwhede (Eds.): Programming Language
Approaches to Concurrency- and Communication-cEntric
Software 2013 (PLACES’13)
EPTCS 137, 2013, pp. 135–141, doi:10.4204/EPTCS.137.11

c© Dobson, Dearle, and Porter

Minimising virtual machine support for concurrency

Simon Dobson Alan Dearle Barry Porter
School of Computer Science, University of St Andrews UK

simon.dobson@st-andrews.ac.uk

Co-operative and pre-emptive scheduling are usually considered to be complementary models of
threading. In the case of virtual machines, we show that theycan be unified using a single concept,
the bounded execution of a thread of control, essentially providing a first-class representation of a
computation as it is reduced. Furthermore this technique can be used to surface the thread scheduler
of a language into the language itself, allowing programs toprovide their own schedulers without any
additional support in the virtual machine, and allowing thesame virtual machine to support different
thread models simultaneously and without re-compilation.

1 Introduction

Multiple threads of control can make programs easier to write, by allowing logically concurrent activi-
ties to be coded independently, regardless of the availability of true concurrency. These benefits accrue
equally to all levels of the software stack: applications, operating systems and virtual machines. In multi-
core environments there can also be performance benefits, and there are almost always extra complexities
due to the need to control simultaneous or interleaved access to resources – but improved expressiveness
alone makes multiple threads attractive even for single-cored systems

Virtual machines (VMs) can further improve expressiveness, by providing a base level of abstraction
targeted to the needs of the higher-level languages being written and hiding the underlying complexities
of different machine architectures. A typical virtual machine embodies a particular model of threading
and hard-codes a particular model of thread scheduling, prioritisation and so on. This choice will almost
always be sub-optimal for some class of applications, especially in the case of resource-constrained
embedded systems and sensor networks where it may be desirable for applications to exert close control
over all aspects of the system’s operation. Equally, we wantto keep the VM well-defined and not shuffle
important features into platform-dependent libraries.

In this paper we observe that it is possible to construct a virtual machine that makes noa priori
choices about thread scheduling and concurrency control, yet without relegating these vital functions to
external libraries. Put another way, we allow thesame VM to supportdifferent concurrency models. We
do this by simplifying the VM’s support for threading to a single function offeringbounded execution of
the virtual instruction stream. This approach allows us to surface all other aspects of concurrency out of
the VM and into the language.

2 Virtual machines and concurrency

Several modern programming language implementations adopt a virtual machine approach. The most no-
table are Java (the Java Virtual Machine or JVM); C♯ and F♯ (the Common Language Infrastructure [5]);
GNU and Squeak Smalltalk; Lua; and Python. These VMs all adopt the bytecode style, in which the

http://dx.doi.org/10.4204/EPTCS.137.11

136 Minimising VM support for concurrency

VM defines the instruction set of a processor that is “ideal” in some sense for the language being de-
fined. This focus allows the language and VM designers to collaborate to define an instruction set that
exactly matches the needs of the language, and so minimise space, time and compilation overheads, and
the trade-offs between them. Some VMs are general enough to be targeted by several languages: by
design in the case of CLI, or through ingenuity in the case of the JVM targeted by Java and Scala. It also
allows different implementations of the same instruction set, targeted at different classes of machine (for
example for Java standard [7], bare-metal [6] and just-in-time [2] VMs, and Smalltalk’s highly portable
and long-lived object engine and associated VM [4]).

/* VM */

void bytecode_inner_interpreter () {

while(TRUE) {

bytecode = *ip++;

opcode = unpack_opcode(bytecode);

switch(opcode) {

case OP_NOOP:

break;

...

case OP_JUMP:

ip += unpack_offset(bytecode);

break;

...

}

}

}

Figure 1: Interpreting bytecode

The core of a virtual machine is aninner in-
terpreter that identifies and interprets virtual in-
structions. For a bytecode VM the inner inter-
preter uses a virtual instruction pointer (IP) to read
an instruction and select an appropriate behaviour
to execute. The bytecode may be “packed” to
include (for example) a small integer literal or a
jump offset to allow common instructons to take
up less space, and so may require some decod-
ing to extract theopcode specifying the instruc-
tion’s implementation (aprimitive) before execu-
tion (figure 1)1.

In a multithreaded architecture, each thread
must give up the processor after some time (re-
ferred to as itstime quantum) to allow another
thread to execute. In aco-operative (or corou-
tine) scheduler the programmer embeds explicit
instructions that yield control at programmer-
selected execution points. This slightly compli-
cates programming and means that poorly-written code may not yield often enough (or at all) to avoid
starving other threads of processor time, but has the advantage of requiring little or no concurrency
control on data structures, since a thread may manipulate shared data without fear of interference from
another thread. (In single-core systems, at least: multi-core requires slightly more care, for example
separate control structures for each core.) By contrast, apre-emptive scheduler forcibly interrupts the
executing thread, suspending it and allowing another thread to be selected. This gives more power to the
scheduler and prevents starvation, but requires concurrency control over all shared data.

Typically each thread maintains its own stack space and instruction pointer cache. Changing threads
(a context switch) saves the VM’s stack and instruction pointers and replacesthem with those of the
newly-scheduled thread. Implementing co-operative scheduling on a VM is conceptually straightfor-
ward, with ayield() primitive invoking a context switch. Pre-emptive scheduling often leads VM
designers to use OS-level threads, swapping between several different VM-level instruction streams.
Context switches also need to be triggered when a thread blocks on some event, such as a semaphore or a
file read. This reduces the control the VM can offer to the language level, and often makes its behaviour
platform-specific. (Java, for example, has primitives to block on object semaphores, but none for thread
creation or scheduling [7].)

1In the code fragments included in this paper, we use C syntax both for the codeimplementing the VM and the target
language codeimplemented using the VM. We differentiate between the two using a leading comment.

Dobson, Dearle, and Porter 137

2.1 Approaches to VM concurrency

Despite being such an important feature of a programming language, many VMs – perhaps surprisingly
– leave their concurrency model under-specified. The JVM, for example, includes bytecodes for concur-
rencycontrol, manipulating the locks associated with objects, but none for concurrencycreation. This
has the advantage of leaving a particular JVM implementation free to make use of native libraries to im-
plement threads, but simultaneously removes the issue fromthe VM’s design. Most JVMs run concurrent
instances of themselves in different OS-defined threads, accepting the overhead in terms of concurrency
control within the VM that this imposes. Smalltalk’s VM similarly omits instructions for concurrency
control.

Some implementations of Scheme have adopted the “engines” construct [3], which re-defines the
lambda binder to maintain a timer (essentially counting thenumber of function calls made) that is then
used to interrupt a thread when a certain number of reductions have occurred. It is possible to implement
engines inside Scheme, on top of a standard implementation (whether using a VM or otherwise), by
making use of continuation capture [1]. Care needs to be taken to ensure that such an implementation is
loaded first so as to capture all lambdas, and there is also therisk that such an approach will conflict with
other uses of continuation capturing.

3 Bounded concurrency control

We assume a single core and therefore no “true” concurrency.Similar techniques can be used in multicore
environments.

The core problem in context switching is to take control awayfrom a running language-level thread
(either voluntarily or forcibly) and give it to another. We propose to accomplish this by changing the
inner interpreter so that – instead of running anunbounded loop over a single virtual instruction stream
which must be interrupted to regain control – it runs abounded loop to context-switch into a given
thread and execute a certain maximum number of virtual instructions before returning (figure 2). Here
activate() context-switches the VM’s instruction pointer and other registers to those of a given thread.
If we assume that all primitives are non-blocking, then the such a bounded inner interpreter will always
return to its caller in a finite time. Non-blocking primitives are a strong assumption, but multithreading
actually simplifies the creation of blocking structures on anon-blocking substrate by allowing condition
checking to be made independent of the main program flow (exactly as an operating system does).

/* VM */

void bounded(bound , thread) {

oldthread = activate(thread);

n = bound;

while(n--) {

bytecode = *ip++;

opcode = unpack_opcode(bytecode);

switch(opcode) {

...

}

}

activate(oldthread);

}

Figure 2: Bounded interpretation

We could simply use this construction to
avoid the need for interruption and to re-factor
the scheduler into another primitive that uses the
bounded inner interpreter. However, the con-
struction facilitates a more interesting approach
whereby we remove theentire scheduling and
concurrency control regime from the VM and sur-
face it to the language level.

Having bounded the inner interpreter, we may
now treat it as a virtual instruction in its own right
(since it is non-blocking). This means that we may
use it in defining new behaviours, and specifically
we may use it in thread scheduling and concur-
rency control. The significance of this change is

138 Minimising VM support for concurrency

two-fold. Firstly, it blurs the distinction between
co-operative and pre-emptive thread scheduling.
Suppose we provide language-level threads, each of which isrepresented as a VM-level thread. At the
VM level, thread scheduling is essentially co-operative: the bounded inner interpreter runs the thread for
a time quantum specified in terms of virtual instructions andperforms a voluntary context switch. At the
language level, however, threads are pre-empted arbitrarily (from their perspective), since they have no
control over when the underlying VM will switch them out. Secondly, bounded execution means that
thread scheduling can itself be provided by a thread, ratherthan as a primitive. The scheduling thread
chooses a worker thread, boundedly executes it for its time quantum, receives control back and selects
another (or the same) thread for execution. Thread scheduling therefore need not be considered as a
primitive function of the VM, and may instead happen at language level: one language-level thread can
use bounded execution to run another for a given period, without losing overall control of the program’s
execution.

3.1 Thread creation and scheduling

/* Target language */

while(TRUE) {

task = dequeue(runqueue);

bounded(quantum , task);

enqueue(task , runqueue);

}

Figure 3: Language-level scheduling

A thread is created by allocating memory for
its stacks and essential registers – tasks that can
be performed without primitive support – before
scheduling the thread by adding it to the sched-
uler’s run queue. We might encode the simplest
round-robin scheduler as shown in figure 3. The
point is that this isprogram code and not VM
code: it need not be primitive, and so may be re-
defined independently of the VM.

Within this style more complex schedulers are
clearly possible. A scheduler might maintain multiple run queues of differing priorities and select the
next thread from the highest-priority queue having runnable threads. Thequantum parameter determines
the latency of context switches in terms of virtual instructions: one might reduce this number to regain
control into the scheduler more frequently, and consult a timer to determine whether to perform a context
switch, leading to language-level threads that effectively have time quanta specified in wallclock times
(at some granularity) rather than in virtual instructions.

3.2 Program-level concurrent objects

A small modification of the bounded inner interpreter allowsus to migrate semphores and control of
other program-level concurrent objects to the language level alongside the scheduler.

If we ignore the possibility that the thread may be pre-empted, implementing semaphores at language
level is straightforward. A semaphore consists of a counterand a thread queue. The wait (P) function
decrements the counter and, if it is less than zero, enqueuesthe thread onto the thread queue and de-
schedules it as far as the thread scheduler is concerned. Thesignal (V) operation increments the counter
and, if it remains less than zero, dequeues a thread from the semaphore’s thread queue and adds it to the
scheduler’s run queue. None of these functions require explicit VM support.

Dealing with pre-emption requires that we change the bounded inner interpreter in three ways.
Firstly, we add a state flag to each thread which by default isRUNNABLE indicating that the thread may
continue to execute. Secondly, we introduce two other states: BLOCKED for a thread that is blocked on a

Dobson, Dearle, and Porter 139

thread queue and so cannot be scheduled; andPRIORITISED for a thread that should not be pre-empted.
Setting a thread’s state toPRIORITISED forces the bounded inner interpreter to keep executing virtual in-
structions in this thread, even if it comes to the end of its allocated quantum. Finally, we return the thread
state from the bounded inner interpreter. This new scheme isshown in figure 4a, and is VM-level code:
set thread state() is another primitive that sets the running thread’s state. We modify the scheduler
(at language level) so that it runs prioritised and, after receiving control back frombounded(), it only
enqueues the thread back onto the run queue if it isRUNNABLE (figure 4b). (Note that the scheduler is
target language, non-primitive code.)

/* VM */

int bounded(bound , thread) {

oldthread = activate(thread);

n = bound;

set_thread_state(RUNNABLE);

while ((state = thread_state()),

(state == PRIORITISED) ||

((state != BLOCKED) && (n--))) {

opcode = unpack_opcode(bytecode);

switch(opcode) {

...

}

}

activate(oldthread);

return state;

}

(a) Inner interpreter

/* Target language */

set_thread_state(PRIORITISED);

while(TRUE) {

task = dequeue(runqueue);

state = bounded(quantum , task);

if(state == RUNNABLE)

enqueue(task , runqueue);

}

(b) Round-robin scheduler

Figure 4: Language-level concurrency control

We can now write await() primitive (for example) at language level rather than as a VMprimitive.
We first set the thread’s state toPRIORITISED. The thread can then manipulate the semaphore’s counter
and thread queue safely using the full features of the language, since it will not be pre-empted. At the
end of the definition we set the thread’s state toRUNNABLE if we pass the semaphore orBLOCKED if the
thread has been enqueued on the semaphore’s thread queue. ARUNNABLE thread will keep running or, if
it has reached its quantum, will be de-scheduled and enqueued on the run queue; aBLOCKED thread will
not be enqueued. The complementary implmentation ofsignal() will prioritise the thread, dequeue a

140 Minimising VM support for concurrency

blocked thread (if any) from the sempahore, enqueue it on therun queue, and then make itselfRUNNABLE

again to restore normal scheduling.
What this shows is that the bounded inner interpreter with simple atomic thread state-setting offers

sufficient VM-level support to allow concurrency primitives to be lifted to language level, and so allow
a program to take complete control of its own concurrency control regime. These operations then have
access to the full scope of the language: they are not restricted to the functions available primitively
within the VM.

Clearly there is scope for errors in this scheme if program code is allowed to arbitrarily make itself
PRIORITISED, which essentially turns the pre-emptive scheme into a co-operative scheme again. How-
ever, this is a problem for the language level that may be addressed using permissions, encapsulation or
whatever mechanisms (if any) the designer chooses: it is notan issue for the VM, which can support any
scheme chosen.

3.3 Considerations of VM design

At the design level, the VM does not need to have visibility ofeither the scheduling policy or the mecha-
nisms (queues, semaphores, etc) used to implement it: all such considerations can be raised into the target
language, to be re-implemented as required. This is in contrast to the more standard approaches to VM
implementation (section 2.1) in which the same structures are submerged into the run-time system that
underlies the VM. This places far more control in the hands ofthe language designer and implementer.

This approach to concurrency is orthogonal to any other mechanisms provided within the VM, with
the single proviso that all primitives be non-blocking so asto be properly schedulable. The scheduling
mechanism is applied “below” the target language rather than “within”it, even while the scheduling
policy is provided within the target: it does not re-use a language-level feature (such as continuation
capture) that might also be used in other ways that interferewith the scheduling mechanism.

It is interesting to note the way in which bounded concurrency highlights the closeness of the two
concepts of thread and continuation, with a continuation capturing the future of a computation compared
to a thread capturing the on-going reduction of that computation.

4 Conclusion

We have briefly presented an approach to opening-up the concurrency mechanisms in a virtual machine,
allowing the VM to provide minimal support (two primitive operations) and building the rest of the
concurrency regime at the language level. We have shown thatthis supports a number of different
approaches to concurrency, including allowing the definition of new thread schedulers within a language
so that they can be changed and specialised at run-time. One may also choose between traditional and
speculative concurrency, blocking and non-blocking data structures and the like, entirely on top of the
VM and therefore completely portably.

This scheme allows us to further enrich the program-level handling of concurrency on top of a mini-
mal virtual machine. It is possible, for example, to unify the treatment of threads and delimited continu-
ations, making these powerful features available on-demand with little or no VM support – and therefore
no overhead where they are not required. This is potentiallyof great significance for sensor networks and
other systems with severely limited resources, and we are currently exploring what place such advanced
language features have in such environments.

Dobson, Dearle, and Porter 141

References

[1] R. Kent Dybvig & Robert Hieb (1989):Engines from continuations. Computer Languages14(2), pp. 109–123.
Available athttp://dx.doi.org/10.1016/0096-0551(89)90018-0.

[2] Joshua Ellul & Kirk Martinez (2010):Run-time Compilation of Bytecode in Sensor Networks. In: Pro-
ceedings of the Fourth International Conference on Sensor Technologies and Applications. Available at
http://dx.doi.org/10.1109/SENSORCOMM.2010.28.

[3] Christopher Hayes & Daniel Friedman (1987):Abstracting timing preemption with engines. Computer Lan-
guages12(2), pp. 109–121. Available athttp://dx.doi.org/10.1016/0096-0551(87)90003-8.

[4] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace & Alan Kay (1997): Back to the future: The
story of Squeak, a practical Smalltalk written in itself. In: Proceedings ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, ACM Press. Available at
http://dx.doi.org/10.1145/263698.263754.

[5] ECMA International (2012):Common Language Infrastructure (CLI). Technical Report ECMA-335, ECMA
International.

[6] Doug Simon & Cristina Cifuentes (2005):The Squawk Virtual Machine: Java on the bare metal. In: Proceed-
ings ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications,
ACM Press. Available athttp://dx.doi.org/10.1145/1134760.1134773.

[7] Bill Venners (2000):Inside the Java Virtual Machine. McGraw Hill Osbourne Media.

http://dx.doi.org/10.1016/0096-0551(89)90018-0
http://dx.doi.org/10.1109/SENSORCOMM.2010.28
http://dx.doi.org/10.1016/0096-0551(87)90003-8
http://dx.doi.org/10.1145/263698.263754
http://dx.doi.org/10.1145/1134760.1134773

	1 Introduction
	2 Virtual machines and concurrency
	2.1 Approaches to VM concurrency

	3 Bounded concurrency control
	3.1 Thread creation and scheduling
	3.2 Program-level concurrent objects
	3.3 Considerations of VM design

	4 Conclusion

