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Abstract Recent work on the enhancement of multiparty session types with logical annotations
enable the effective verification of properties on (1) the structure of the conversations, (2) the sorts
of the messages, and (3) the actual values exchanged. In [3] we extend this work to enable the
specification and verification of mutual effects of multiplecross-session interactions. Here we give
a sound and complete embedding into the Hennessy-Milner logic to justify the expressiveness of the
approach in [3] and to provide it with a logical background that will enable us to compare it with
similar approaches.

1 Introduction

The Hennessy-Milner Logic (HML) is an expressive modal logic with a strong semantic characterisa-
tion [10] that enables the specification of arbitrary behavioural properties of processes. Recent work on
the enhancement of multiparty session types with logical annotations [4, 3] addressed key challenges for
logical specifications of processes, which were unexploredin the context of HML, such as the tractability
of specifications of multiparty choreographies.

The work in [4, 3] is based on multiparty session types [11, 4,6] and inherits the same top-down
approach. The key idea is that conversations are built as thecomposition of units of design calledsessions
which are specified from a global perspective (i.e., as a global type). Each global type is thenprojected
into one local type for each participant, making the responsibilities of each endpoint explicit. This
approach enables: (1) the effective verification of properties such as session fidelity, progress, and error
freedom, and (2) the modular local verification (i.e., of each principal) of global properties of multiparty
interactions.

The direct use of HML for the same purpose would require to start from endpoint specifications and
then to check their mutual consistency, and would not offer the same tractability. Starting from global
assertions, instead, results in significant concision, while still enjoying generality in the modelling and
verification of choreographies.

By enhancing multiparty session types with logical annotations, [4] enables the effective verifica-
tion of properties on the actual values exchanged, other than the properties on the sorts of the messages
guaranteed by [11, 6]. For instance, global typeG in (1) describes, following a similar syntax to [6], a
conversation where roleS sends roleC an integer and then continues as specified by global typeG′. Fol-
lowing [4], assertionG in (1) can be obtained by annotating global typeG; assertionG further prescribes
that the exchanged value, sayy, must be greater than 10. Note thaty is bound inG ′ and the fact{y> 10}
can be relied on in the subsequent interactions occurring inG ′.

G= S→ C : (int).G′
G = S→ C : (y : int){y> 10}.G ′ (1)
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54 Embedding Session Types in HML

In [3] we extended [4] with the capability to refer tovirtual stateslocal to each network principal,
hence expressing not only properties confined to the single multiparty sessions, but also stateful specifi-
cations incorporating mutual effects of multiple sessionsrun by a principal.

S→ C : (y:int){y> 10∧y= S.x}〈S.x++〉 (2)

Consider now the protocol in (2). The description of this simple distributed application implies be-
havioural constraints of greater depth than the basic communication actions. The (sender-side)predicate
and effectfor the interaction step,{y> 10∧y= S.x}〈S.x++〉, asserts that the messagey sent to each client
must equal the current value ofS.x, a state variablex allocated to theprincipal serving asS; and that the
local effect of sending this message is to incrementS.x. In this way,S is specified to send incremental
values acrossconsecutivesessions. The resulting global specifications are calledmultiparty stateful as-
sertions(MPSAs), and model the skeletal structure of the interactions of a session, the constraints on the
exchanged messages and on the branches to be followed, and theeffectsof each interaction on the virtual
state.

In order to obtain a clear understanding of the status of the logical methodology proposed in [3], it
is useful to relate its notion of assertion to a more standardapproach in process logic. This enables us
to integrate different methods catering for different concerns, for which we may need a common logical
basis. In this paper we consider the HML with predicates in [4, 2], and we justify the relevance of the
stateful logical layer of [3] by embedding the behaviours ofeach role in a session – i.e., the projections
of MPSAs – into a HML formula. In this way, the required predicates will hold if a process and its state
perform reductions and updates matching those of the specification.

∀y : Nat, [sC(y)](y= S.x∧ [S.x++]true) (3)

(3) is the formula corresponding to the behaviour ofS in (2) on channels, where[ℓ]φ means “if a process
and its state perform the actionℓ, the resulting pair satisfiesφ ”. Communications and state updates are
treated as actions of a labelled transition system.

We explain how specifications handling several roles in several sessions can be soundly and com-
pletely embedded, through the use of aninterleavingof formulae, exploring all the possible orders in
which the actions coming from different sessions can be performed, and ensuring that predicates are
always satisfied.

2 HML Embedding

Logical layer We propose an embedding of our analysis into Hennessy MilnerLogic (HML), together
with soundness and completeness results. The analysis in [3] be seen as the superposition of two analy-
ses: a session type system and a logical layer. The former ensures that a process is able to perform some
visible actions described by the specification and can be mechanically, yet tediously encoded in HML,
for instance, by using a “surely/then” modality [2]. Our contribution focuses on the embedding of the
latter, namely onpredicate safety, ensuring that stateful predicates will be satisfied. As consequence,
the completeness result we propose (Proposition 7), statesthat if a process abides to the session-type
componentL of a local assertionL (obtained by erasing all predicates inL ) and satisfies the logical
encoding ofL , then it is provable againstL .

MPSAs We focus here on local assertions, each referring to a specific role and deriving, via projection,
from a global assertion as in [3] – e.g., as (2). Local assertions are defined by the grammar below and
are ranged over byL .
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L ::= p!{l i(xi : Ui){Ai}〈Ei〉.Li}i∈I | p?{l i(xi : Ui){Ai}〈Ei〉.Li}i∈I

µt{y : A′}(x : S).L : A | t(y : A′) | end

Selectionp!{l i(xi : Ui){Ai}〈Ei〉.Li}i∈I models an interaction where the role sendsp a branch label
l i and a messagexi of sortUi (e.g.,int, bool, etc., and local assertion for delegation) and continues
asLi , with beingAi predicates1 andEi state updates. Branchingp?{l i(xi : Ui){Ai}〈Ei〉.Li}i∈I is dual
to selection. We use guarded recursion defining a recursion parameterx initially set equal to a value
satisfying the initialisation predicateA′, wherey is the free variable ofA′, and withA being an invariant
predicate. Recursive callt(y : A′) instantiates a new iteration oft where the recursion parameter takes a
value satisfyingA′, with y free variable ofA′.

[3] uses local assertions as a basis for the verification of a processes, ranged over byP.

P ::= 0 | u[n](y).P | u[i](y).P | k[p,q]!{ei 7→ l i〈e′i〉(xi)〈Ei〉;Pi}i∈I | k[p,q]?{l i(xi)〈Ei〉.Pi}i∈I

P | Q | (µX(x).P)〈e〉 | X〈e〉

A process can be an idle process0, a session request/accept, a guarded command [9], a branching,
a parallel composition of processes, a recursive definitionand invocation. Session requestu[n](y).P
multicasts a request to each session accept processu[i](y).P (with i ∈ {2, ..,n}) by synchronisation
through a shared nameu and continuing asP. Guarded command and branching processes represent
communications through an established sessionk. Guarded commandk[p,q]!{ei 7→ l i〈e′i〉(xi)〈Ei〉;Pi}i∈I

acts as rolep in sessionk and sends roleq one of the labelsl i. The choice of the label is determined by
boolean expressionsei, assuming∨i∈I ei = true andi 6= j impliesei ∧ej = false. Each labell i is sent with
the corresponding expressione′i which specifies the value forxi , assuminge′i andxi have the same type.
Branchingk[p,q]?{l i(xi)〈Ei〉.Pi}i∈I plays roleq in sessionk and is ready to receive fromp one of the
labelsl i and a value for the correspondingxi , then behaves asPi after instantiatingxi with the received
value. In guarded command (resp. branching), the local state of the sender (resp. receiver) is updated
according to updateEi; in both processes eachxi binds its occurrences inPi andEi.

The judgements are of the formC ;Γ ⊢ P⊲∆ where:

• C is the assertion environment that is the set of preconditions built, during the verification, as the
incremental conjunction of the predicates occurring in thebranchings,

• Γ determines which types of sessions can be initiated by a process by mapping shared channels to
global assertions (e.g., ifΓ(a) = I(G ) thenP can be invited to join a session specified byG ),

• ∆ is the session environment mapping sessions thatP has joined, says[p], to local types.

We write omitΓ (resp.C ) in the judgment when it is the empty mapping (resp.true precondition).

HML Here, the behaviour prescribed forP is modelled using the standard HML with the first-order
predicates as in [2]. We use the same type of predicateA as in MPSAs. We associate this HML with a
LTS where actionsℓ model communications and state updates.

ℓ ::= s[p,q](x) | s[p,q](x) | E

Namely,s[p,q](x) is an input action,s[p,q](x) is an output action, andE is a state update. We let states
to be ranged over byσ ,σ ′, . . . and we writeσ ′ = σ afterℓ for the stateσ ′ obtained by updatingσ as

1As in [4, 3] we assume that the validity of closed formulae is decidable.
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P,σ |= φ1 P,σ |= φ2

P,σ |= φ1∧φ2 P,σ |= true

if P,σ |= φ1 thenP,σ |= φ2

P,σ |= φ1 ⇒ φ2

For all P′,σ ′ s.t. P,σ ℓ
−→ P′,σ ′,P′,σ ′ |= φ

P |= [ℓ]φ
σ ⊢bool A

P,σ |= A

For all valuesv of typeT,P,σ |= φ [v/x]

P,σ |= ∀x : T.φ

Figure 1: Logical rules

prescribed byE. P,σ ℓ
−→ P′,σ ′ if either: (a)ℓ is an input or output action,P

ℓ
−→ P′ andσ ′ = σ , or (b)ℓ is

an update action,P= P′, andσ ′ = σ afterℓ.
We useφ to denote HML-formulae, which are built from predicates, implications, universal quanti-

fiers, conjunctions andmustmodalities. The logic used in thissafety embeddingis positive: if we remove
the implication symbol, there is no negation, no existential quantifier, no disjunction and no may modal-
ity. Additionally, the implication will always appear asA⇒ φ meaning that modalities never appear in
the negative side.

φ ::= true | φ ∧φ | φ ⇒ φ | [ℓ]φ | A | ∀x : S.φ

The satisfactions rules (Figure 1) are fairly standard. Fora pairP,σ to satisfy a predicateA, written
P,σ |= A, A has to hold with respect toσ , denoted byσ ⊢bool A, meaning thatσ(A) is a tautology for the
boolean logic.

The embedding of local types we propose is parameterised with a session channels[p]. Predicates
appearing in input prefixes are embedded as premises in implications, as in (5), and predicates in output
prefixes have to be satisfied, as in (4), yielding:

‖q!{l i(xi : Si){Ai}〈Ei〉.Li}i∈I‖
s[p] =

∧

i∈I

∀xi : Si , [s[p,q](xi)](Ai ∧ [Ei]‖Li‖
s[p]) (4)

‖q?{l j(x j : Sj){A j}〈E j〉.L j} j∈J‖
s[p] =

∧

j∈J

∀x j : Sj , [s[q,p](x j )](A j ⇒ ‖L j‖
s[p]) (5)

The embedding of selection (4), is a conjunction of the formulae corresponding to the branches: for each
value sent on the session channel, predicates should be satisfied and, if the state is updated, the embedding
of the continuation should hold. For branching types (5), the assertion is used as an hypothesis and no
update appears.

3 Soundness

For the sake of clarity, we divide our proofs into two parts, one provingsimplepreciseness, that is
soundness and completeness when the specification is a single session type, the other proves thefull
completeness, for any specification. This corresponds to the two challenges we tackle in our approach:
the translation of a type into a formula, and the handling of the possible interleaving of concurrent types.

Simple Preciseness We postpone the introduction of interleavings to focus on proving our result for
single types, obtaining asimplepreciseness result.

The following lemma states that a process cannot perform an action on a channel that does not appear
in its type, that a process that does not perform any action does not change the set of formulae it satisfies,
that satisfaction of assertions is stable by reduction and that validity of satisfaction judgements is stable
by well-typed substitutions.
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Lemma 1 If C ;Γ ⊢ P⊲∆ and s[p] /∈ ∆∪Γ, then there is no P′ s.t. P,σ ℓs−→ P′,σ for any actionℓs of the
form s![p,q](x) or s![q,p](x).

Similarly, if a : I(G ) /∈ Γ, there are no P′ and s[p] such that P,σ a(s[p])
−−−→ P′,σ .

If P1,σ |= φ and P2 cannot make any action, then P1 | P2,σ |= φ .

If P,σ |= A and P
ℓ
−→ P′, then P′,σ |= A.

If P,σ |= φ and x: S,v : S are not bound in P,σ andφ , then P[v/x],σ |= φ [v/x].

Proof By induction onφ , as our processes and formulas abide a Barendregt convention, the case∀y.φ
is easy asy 6= x andy 6= v. The only interesting cases are assertion and must modality:

• Caseφ =A. The logic rules notifies thatσ(A) is a tautology, so any instantiation of its free variable
should be so. Thusσ(A){v/x} is a tautology and any process (in particularP{v/x}) and the state
σ form a pair that satisfies it.

• Caseφ = [α ]φ ′. We prove, by induction on the reduction rules, that ifP
α
−→P′, thenP{v/x}

α{v/x}
−−−−→

P′{v/x} and use the induction hypothesis.

We state, thanks to the previous lemmas, the following ‘simple’ soundness for simple local types,
that is for∆ with one single local type:

Proposition 2 (Simple Soundness)If C ⊢ P⊲s[p] : L , then(P,σ) |= C ⇒‖L ‖s[p].

In order to state simple completeness we define unasserted types. Unasserted types are built from:

L ::= p?{l i(Ui).Li}i∈I | p!{l i(Ui).Li}i∈I | µt.L | t | end

An unasserted local type can be obtained from an asserted local type using an erasing operator. The
erasing operatorEr(L ) is defined by the removal of every assertion, update and variable from L .
Unasserted typing rules for the judgements⊢ P⊲∆ are easily deduced from the asserted ones.

Proposition 3 (Simple Completeness)For all L , if ⊢ P⊲s[p] : Er(L ) and P,σ |= C ⇒‖L ‖s[p] then
C ⊢ P⊲s[p] : L .

Proof By induction on the typing judgement⊢ P⊲s[p] : Er(L ):

• Casebranching. We haveL = p0?{l i(xi : Ui){Ai}〈Ei〉.Li}i∈I . Let i ∈ I and supposeC holds.
We have from the hypothesis⊢ P⊲ p0?{l i(Ui).Li}i∈I . The unasserted typing rules give thatP =
s[p0,p]?{l i(xi)〈Ei〉.Pi}i∈I , and⊢ Pi ⊲s[p] : Li. We know thatP,σ |= C =⇒ ‖L ‖s, which is:

P,σ |=
∧

i∈I

∀xi .[s(xi)](Ai =⇒ [Ei]‖Li‖
s∧ (Ai ∧C )

rules, thatP can performs(xi) to Pi,σ |= (Ai =⇒ [Ei]‖Li‖
s[p]∧Ai). We see thatσ can performEi

to σ afterEi, meaning that we havePi,σ afterEi |= (Ai =⇒ ‖Li‖
s[p],I ), we use the induction

hypothesis to getC ∧Ai ⊢ Pi ⊲Li . To sum up, for alli, C ,Ai ⊢ Pi ⊲s[p] : Li . We use the proof rule
for branching to proveC ⊢ P⊲s[p] : L .

• Caseselection. We haveL = p0!{l i(Ui){Ai}〈Ei〉.Li}i∈I . SupposeC holds andσ |= I . We
have from the hypothesis⊢ P⊲ s[p] : p0?{l i(Ui).Li}i∈I . The unasserted typing rules giveP =
s[p,p0]!{ej 7→ l j〈e′j〉(x j)〈E j〉;Pj} j∈J, and⊢ Pj ⊲ s[p] : L j . We know thatP,σ |= C =⇒ ‖L ‖s,

which isP |=
∧

i∈I ∀xi.[s(xi)]Ai ∧‖Li‖
s[p]∧(Ai∧C ). In particular, asC holds,P |= [s[p,p0](x j)]A j ∧
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[ℓ1]φ1⋊ [ℓ2]φ2 = [ℓ1](φ1⋊ [ℓ2]φ2)∧ [ℓ2]([ℓ1]φ1∧φ2)
[ℓ1]φ1⋊ (φ2,1∧φ2,2) = [ℓ1](φ1⋊φ2,1)∧ [ℓ1](φ1⋊φ2,2)

φ ⋊true= φ
φ ⋊ (φ1∧φ2) = (φ ⋊φ1)∧ (φ ⋊φ2)
(φ1∧φ2)⋊φ = (φ1⋊φ)∧ (φ2⋊φ)

∀x : T.φ1⋊φ2

(A⇒ φ1)⋊φ2 = A⇒ (φ1⋊φ2)

Figure 2: Rules for interleaving
‖L j‖

s[p] ∧ (A j)) We know from the shape ofP, given above, and the reduction rules, thatP can
perform s[p,p0](x j) to Pj |= (A j ∧ ‖L j‖

s), meaning thatA j holds. Also,σ can performE j to
σ afterE j . To sum up, we haveC =⇒ A j , Pj |= C =⇒ ‖L j‖

s[p] and⊢ Pj ⊲s[p] : L j , we use
the induction hypothesis to getC ⊢ Pj⊲ : L j and this allows us to use the proof rule for selection
to proveC ⊢ P⊲s[p] : L .

• Caseparallel. No assertion appear in the parallel rule and we can use Lemmas 1.1 and 1.2 to state
that exactly one side of the parallel composition satisfies the formula (along with the same state
σ ). As a consequence, we use the induction hypothesis twice and conclude.

• Caseend. L = end, so this case is trivial.

Full preciseness Full preciseness is done using the previous simple results,and additional lemmas
handling interleavings.

To obtain soundness for typing judgements involving specifications, we have to introduceinter-
leavingsof formulae, treating the fact that one process can play several roles in several sessions. As
a simple example boths[p1,p2]?(x).k![q1,q2] 〈10〉 and k![q1,q2]〈10〉.s[p1,p2]?(x) can be typed with
s[p2] : p1?(x : Nat).end, k[q1] : q2!(y : Nat).end.

Interleaving is not a new operatorper seand can be seen as syntactic sugar, describing shuffling of
must modalities. The main rule for interleaving is:[ℓ1]φ1⋊ [ℓ2]φ2 = [ℓ1](φ1⋊ [ℓ2]φ2)∧ [ℓ2]([ℓ1]φ1∧φ2).
When interleaving two or more formulae containing modalities, we obtain a conjunction of formulae,
each one representing a different way of organising all modalities in a way that preserves their ini-
tial orders. Informally, the interleaving of[1][2] and [A][B] is [1][2][A][B]∧ [A][B][1][2]∧ [1][A][2][B]∧
[A][1][B][2]∧ [1][A][B][2]∧ [A][1][2][B].

The full rules for interleaving are given in Figure 3.
We encode a pair∆,Γ into a complex formulaInter(∆,Γ), defined as the interleaving of the for-

mulae obtained by encoding the local types of∆ on their corresponding channels and the formulae cor-
responding toΓ, built as follows: for each channela : I(G ), if somes[p] is received ona, the resulting
process should satisfy the encoding ons[p] of the projection ofG onp:

Inter(s1[p1], . . . ,sn[pn];a1 : I(G1), . . . ,am : I(Gm)) = ‖T1‖
s1[p1]

⋊ . . .⋊‖Tn‖
sn[pn]

⋊φ1⋊ . . .⋊φm

whereφi = ∀s′i .∀p
′
i.[ai(s′i [pi ])]‖Gi ↾ p

′
i‖

s′i [p
′
i ].

Lemma 4 (Shuffling correctness)
If P1 |= φ1 and P2 |= φ2 and iffree(φ1)∩free(P2)= free(φ2)∩free(P1)= free(P1)∩free(P2)=

free(φ1)∩free(φ2) = /0, then P1 | P2 |= φ1⋊φ2.
Conversely, if P1 | P2 |= φ1 ⋊ φ2, andfree(φ1)∩ free(P2) = free(φ2)∩ free(P1) = free(P1)∩

free(P2) = free(φ1)∩free(φ2) = /0, thenfree(φ1)⊆ free(P1) andfree(φ2)⊆ free(P2).
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Proof We proceed by double structural induction over the pair(φ1,φ2).

• The most interesting case is when both formula are modalities: φ1 = [α1]φ ′
1 andφ2 = [α2]φ ′

2. The
formula φ1⋊ φ2 is [α1](φ ′

1 ⋊ φ2)∧ [α2](φ ′
1⋊ φ2). We prove thatP1 | P2 satisfies the first formula

(the other part is similar). First the condition offree(P2)∩ free(φ1) ensures that there is noP′
2

such thatP2
α1−→ P′

2. As a consequence, ifP1 | P2
α1−→ P′, it means thatP1

α1−→ P′
1. By hypothesis,

P′
1 |= φ ′

1 and we use the induction hypothesis to getP′
1 | P2 |= (φ ′

1⋊φ2).

• The other cases are treated by destructing one construct, following the definition, and using the
induction hypothesis.

Lemma 5 (Description of free names) If C ,Γ ⊢ P⊲∆ thenfree(P)⊆ free(∆)∪free(Γ)

Easily done by induction on the typing judgement.

Lemma 6 (Nature of an interleaving)

Let ∆ = {sk[pk] : qk
!
?
{l i(xi : Ui){Ai}〈Ei〉.Tk,i}i∈I}k and Γ = {a j : I(G j)} j be well-formed, then the

formulaInter(∆,Γ) is equivalent to a formula guarded by several∀ operators guarding a conjunction
of formulae, each one starting with a modality, and this modalities are in bijection with the pairs of

(sk[
pk,qk

qk,pk
], lk,i) and(a j , /0).

Proof By induction on the typing judgment:

• Caseselection. In this case we haveP = s[p,p0]?{l i(xi)〈Ei〉.Pi}i∈I and ∆ = ∆′,s[p] : p0?{l i(xi :
Ui){Ai}〈Ei〉.Li}i∈I . We use Lemma 6 to state the formula we are trying to validate using P is a
conjunction on several formulas, all beginning with a different modality from the pairs(sk[pk], lk,i)
and(a j , /0) . As P is only able to perform an actions[p,p0]?, all formulas starting with a modality
associated to a different name are automatically satisfied,and we have to prove that for eachi:

P,σ |= C =⇒

‖Ti‖
s[p],S⋊⋊sk[pk]:Tk∈∆′‖Tk‖

sk[pk],I ,S⋊⋊aj :G j [p j ]∈Γ∀sj .[a j(sj [p j ])]‖G j |pj‖
sj [p j ],I ,S

We conclude in a way similar to the one followed in the proof ofProposition 2.

• Casebranching. We haveP = s[p,p0]!{ei 7→ l i〈e′i〉(xi)〈Ei〉;Pi}i∈I . We use Lemma 6 to state the
formula we are trying to validate usingP is a conjunction on several formulas, all beginning with
a different prefix. AsP is only able to perform an actions[p,p0]!, all formulas starting with a
different modality are automatically satisfied, and we haveto prove We conclude using the proof
of Proposition 2.

• Casesession reception. We haveP= a(s).P′ andΓ = a : G [p],Γ′. We use Lemma 6 to state the
formula we are trying to validate usingP is a conjunction on several formulas, all beginning with
a different modality. AsP is only able to perform an action ona, all formulas starting with a
modality associated to a different name are automatically satisfied, and we have to prove thatP
satisfies∀s[p], [a(s)]Inter(Γ′;∆,s : G |p). As P is able to receives[p] on a, we use the induction
hypothesis to conclude.

• Caseparallel composition. Easily done by using Lemmas 4 and 5 and the fact that bothΓ and∆
are split multiplicatively in the rule for parallel composition we use.
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• Caseendis trivial.

We extend the erasing operator to∆. Namely,Er(∆) mapss[p] to Er(L ) iff ∆ mapss[p] to L . Our
preciseness result is:

Proposition 7 (Preciseness)If Γ ⊢ P⊲ ∆, then: P,σ |= (Inter(∆,Γ)). If ⊢ P⊲Er(∆) and P,σ |=
(Inter(∆,Γ)) thenΓ ⊢ P⊲∆

By induction on the unasserted typing judgment, case branching and selection are treated in a way
similar to the proof of Proposition 3, parallel compositionis done using Lemmas 4 and 5.

4 Refinements

Embedding to pure HML We are actually able to embed a stateful satisfaction relation P,σ |= φ into
a satisfaction relationP′ |= φ ′ for a standardπ-calculus with first-order values, by encoding the storeσ
into aπ-process:

‖x1 7→ v1, . . . ,xn 7→ vn‖p = a1(v1) | . . . | an(vn) |
!x1(e).a1(y1) . . .an(yn).(a1(eval(e[y1 . . .yn/x1 . . .xn])) | a2(y2) | . . . | an(yn)) | . . . |
!xn(e).a1(y1) . . .an(yn).(a1(y1) | . . . | an−1(yn−1) | an(eval(e[y1 . . .yn/x1 . . .xn])))

For each variablexi in the domain of the stateσ , we add an output prefix emitting its content on the
channelai and we add a replicated module that waits for an updatee at xi , then capture the value of all
variables of the current state, replace the variablexi by evaluatinge by eval, and then makes available
the other ones. Soundness and completeness allow us to statethat HML formulae for pairs state/process
can be seen as pure HML formulas on theπ-processes.

The embedding for the formula is given by

‖[E]φ‖p = [‖E‖p]‖φ‖p
‖A‖p = [x1(v1)] . . . [xn(vn)]A{v1, . . . ,vn/x1, . . . ,xn}

where the state variables ofA arex1, . . . ,xn.

Proposition 8 (Preciseness)If P,σ |= φ , then‖P‖p | ‖σ‖p |= ‖φ‖p.
If ‖P‖p | ‖σ‖p |= ‖φ‖p then P,σ |= φ

Embedding Recursion Recursion can be encoded at the cost of much technical details. We add to our
HML syntax the recursion operators,µX.φ andX (similar to the ones present in theµ-calculus [7]). The
main difficulty lies in the interaction between interleaving and recursion: loops coming from different
sessions can be interleaved in many different way, and the difficult task is to compute the finite formula
which is equivalent to this interleaving. As a small exampleconsider the following session environment
(interactions are replaced by integer labels):s1[p1] : µX.1.2.X,s2[p2] : µY.3.4.Y. The simplest HML
formula describing all possible interleavings is:

µA.([1]µB.([2]A∧ [3]µC.([4]B∧ [2]([1]C∧ [4].A)))∧
[3]µD.([4].A∧ [1]µE.([2]D∧ [4]([2]A∧ [3]E))))

We use the following method to obtain a matching HML formula.We use a translation through finite
automata. Here is a sketch of the method, which takes as arguments a set session environment∆:

1. Encode every session judgementsi [pi] : Ti of ∆ into a formulaφi , using‖µX.T‖s[p] = µX‖T‖s[p].
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2. Translate every formulaφi into a finite automataAi, one state corresponds to a syntactic point
between two modalities or aµX, one transition correponds to either[ℓ](A∧ [E]◦) (output) or
[ℓ](A ⇒ ◦) (input). Every automata isdirected with a source state corresponding to the head
of the formula and leaf states corresponding to recursion variables (or end of protocols).

3. Compute the automataA , the parallel composition of all theAi, which is stilldirected.

4. Expand the automataA , in order to obtain an equivalent branch automata, that is, an automata
such that there is a root (the starting state) and transitions form a tree (back transitions are allowed
but only on the same branch). This could be done by recursively replacing sub-automata with
several copies of this sub-automata.

5. Translate back the automata into a formula, every state with more than two incoming transition is
encoded as a recursion operator.

On our example, we obtain the formulasµX.[1][2].X andµY.[3][4].Y, each one giving an automaton
with 2 states (initial and between[1] (resp. [3]) and [2] (resp. [4])). Merging yields automata with 4
states: the initial one, one after[1], one after[3], one after both[1] and[3]. These automata are diamond-
shaped (hence not tree-shaped). Expansion yields an automaton with 7 states, which is then translated
in the formula described above. The preciseness proof relies on the fact that the operation described in
3. and 4. give equivalent automata, and that two formulas translated into two equivalent automata are
equivalent for the HML satisfaction relation.

5 Conclusion

Hennessy-Milner logic (HML) is a natural and semantically complete logic for processes which can
immediately be applied to the distributedπ-calculus in [3]. The HML with hypothetical supposition
can faithfully embed the safety aspect of stateful MPSAs: atthe same time, the restricted expressive
power of MPSAs enables tractable dynamic and static validations. The underlying type structures and
linkage among them through local state is a major reason why local types enable both static and runtime
verification against rich specifications.

The work [5] investigates a relationship between a dual intuitionistic linear logic and binary session
types, and shows that the former defines a proof system for a session calculus which can automatically
characterise and guarantee a session fidelity and global progress. In [1], the authors introduce a state
layer in aπ-caclulus, toward the validation of security properties for protocols. The work [13] further
extends [5] to the dependent type theory in order to include processes that communicate data values
in functional languages. A recent work [12] encodes dynamicfeatures in [8] in a dependently typed
language for secure distributed programming. None of the above works treat either virtual states or
logical specifications for interleaved multiparty sessions.
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