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The Message Passing Interface (MPI) is the de facto standard message-passing infrastructure for
developing parallel applications. Two decades after the first version of the library specification,
MPI-based applications are nowadays routinely deployed on super and cluster computers. These
applications, written in C or Fortran, exhibit intricate message passing behaviours, making it hard to
statically verify important properties such as the absence of deadlocks. Our work builds on session
types, a theory for describing protocols that provides for correct-by-construction guarantees in this
regard. We annotate MPI primitives and C code with session type contracts, written in the language
of a software verifier for C. Annotated code is then checked for correctness with the software verifier.
We present preliminary results and discuss the challenges that lie ahead for verifying realistic MPI
program compliance against session types.

1 Introduction

MPI is a library specification targeting the development of communication intensive parallel applica-
tions [11]. There are a number of libraries available that allow to use MPI primitives from within C or
Fortran code. MPI supports a huge collection of communication primitives, including collective (barrier,
broadcast, reduction, . . . ) and point-to-point communications (blocking and non blocking), supports per-
sistence, datatypes (predefined and user defined), communication contexts, different process topologies,
one-sided communications, file I/O, among others.

Communication mismatch is a major source of errors in MPI applications, often leading to deadlocks
or to erroneous results. However, verification of MPI applications is non-trivial, accounting for an active
research area. A recent survey [6] summarises the state of the art of verification methods for MPI. Most
of these methods are based on model-checking. ISP [16] is a dynamic verifier which uses a scheduler to
explore all possible thread interleavings of an execution. The tool exploits independence between thread
actions as a heuristic to avoid state explosion. A fixed test harness is then used to detect common dead-
lock patterns. While this traditional model checking technique aims to capture most common deadlock
patterns in MPI programs, their approach is limited to a finite number of tests, and remains to be an
approximate solution for deadlock detection. TASS [14] is a tool that combines symbolic execution [15]
and model checking techniques to verify safety properties of MPI programs. The tool takes a C+MPI
application and an input n ≥ 1 which restricts the input space, then constructs an abstract model with
n processes and checks its functional equivalence with a sequential implementation by executing the
model of the application. Parallel data-flow analysis is a static analysis technique applied in [2]. The
work focuses on send-receive matching in MPI source code, which helps identify message leaks and
communication mismatch, by constructing a parallel control-flow graph by simple symbolic analysis

http://dx.doi.org/10.4204/EPTCS.137.9
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


104 Towards deductive verification of MPI programs against session types

Annotated 
MPI Library

Communication 
type

Protocol in 
VCC syntax

C + MPI source

#include

generate
#include

manual 
annotation

Yes/           
No

submit 
to VCC

Figure 1: Outline of the approach

on the control-flow graph of the MPI program. In [1] the authors discuss extending the technique by
combining static and dynamic analysis to improve precision of the data-flow analysis.

Model-checking based MPI verification methods rely on external testing, or equivalence checking of
the model against a correct sample implementation. Parallel data-flow analysis is somewhat ad-hoc. In
contrast we seek a simple constructive verification method for an overall understanding of the communi-
cation patterns of programs. Our method aims at ensuring that programs follow a predefined protocol; in
the process, we ensure that programs are exempt from communication mismatches, deadlocked situations
in particular.

Our approach is depicted in Figure 1. We start by writing the protocol in a language tailored for
describing MPI communication patterns. Afterwards, we translate the protocol into a term written in the
language of a software verifier tool for the C programming language, VCC [3]. The C+MPI code imports
the protocol definition (in VCC form) and a VCC-annotated MPI header with session type contracts for
the various MPI primitives. Depending on the specifics of the C code, further manual annotations may
be required. In this setting, VCC is invoked to check whether the C code follows the communication
type.

The project closest to ours is Scribble [9]. Based on the theory of Multiparty Session Types [10],
Scribble describes, from an high level perspective, patterns of message-passing interactions. Protocol
design with Scribble starts by identifying the communication participants. The body of the protocol
describes the interactions from a global viewpoint, with explicit senders and receivers, thus ensuring that
all senders have a matching receiver and vice versa. Global protocols are then projected into each of their
participants’ counterparts, yielding one local protocol for each participant present in the global protocol.
The projection algorithm converts the user-defined global protocol into the local interaction behaviour
of each participant automatically, while preserving the overall interaction patterns and the order of the
interactions. Developers can then implement programs for the various individual participants, based
on the local protocols and using standard message-passing libraries. One such approach, Multiparty
Session-C, builds a library of session primitives to be used within the C language [12].

In this work we slightly depart from Multiparty Session Types and Scribble by introducing collective
decision primitives, allowing for behaviours where all participants decide to enter or to leave a loop, or
choose one of the two branches of a choice point, two patterns impossible to describe with Scribble.
We found these primitives to be in line with the common practice of MPI programming. We have
also included in the language of communication types MPI specific collective operations, as well as a
dependent functional type constructor. Finally, and in contrast to Session-C where programmers use a
particular library of communication operations, we directly check standard C+MPI code. Preliminary
ideas were put forward in [8].

The outline of the this paper is as follows. The next section introduces our running example, written
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1 int main(int argc, char** argv) {
2 int np; // Number of processes
3 int me; // My process rank
4 MPI_Init(&argc, &argv);
5 MPI_Comm_size(MPI_COMM_WORLD, &np);
6 MPI_Comm_rank(MPI_COMM_WORLD, &me);
7 ...
8 int psize = atoi(argv[1]); // Global problem size
9 if (rank == 0)

10 read_vector(work, psize);
11 ...
12 // Scatter input data
13 MPI_Scatter(work, lsize, MPI_FLOAT, &local[1], lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
14 ...
15 int left = (np + me - 1) % np; // Left neighbour
16 int right = (me + 1) % np; // Right neighbour
17 // Loop until finite differences converge to a minimum error or max iterations attained
18 while (!converged(globalerr) && iter < MAX_ITER) {
19 ...
20 if (me % 2 == 0) {
21 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
22 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right, 0, MPI_COMM_WORLD, &status);
23 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
24 MPI_Send(&local[lsize], 1, MPI_FLOAT, right, 0, MPI_COMM_WORLD);
25 } else {
26 MPI_Recv(&local[lsize+1], 1, MPI_FLOAT, right, 0, MPI_COMM_WORLD, &status);
27 MPI_Send(&local[1], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD);
28 MPI_Send(&local[lsize], 1, MPI_FLOAT, right, 0, MPI_COMM_WORLD);
29 MPI_Recv(&local[0], 1, MPI_FLOAT, left, 0, MPI_COMM_WORLD, &status);
30 }
31 ...
32 MPI_Allreduce(&localerr, &globalerr, 1, MPI_FLOAT, MPI_MAX, MPI_COMM_WORLD);
33 ...
34 }
35 ...
36 if (converged(globalerr)) {
37 // Gather data at rank 0 for solution
38 MPI_Gather(&local[1], lsize, MPI_FLOAT, work, lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
39 ...
40 } else
41 printf ("Failed to converge after %d iterations!", MAX_ITER);
42 MPI_Finalize();
43 return 0;
44 }

Figure 2: Excerpt of an MPI program for the finite differences algorithm (adapted from [5])

in C+MPI, as well as the language of communication types. Section 3 explains the process of verifying
C+MPI code against communication types, and Section 4 presents results of running our system on four
textbook examples. Section 5 concludes the paper and points a few directions for further work.

2 Communication types for MPI programs

Our running example is that of the one-dimensional finite differences problem, in which we start with
a vector X0 and must compute XT iteratively, governed by a given recurrence formula [5]. The original
C+MPI code is given in Figure 2. Even though the same program is executed by all processes (in line with
the Single-Program-Multiple-Data paradigm), each process is endowed with a unique natural number,
its rank, that can be used to partially specialise its behaviour.

MPI programs start with a call to MPI_Init and conclude with a call to MPI_Finalize, lines 4 and
42 in Figure 2. After initialising the framework, each process asks for the total number of processes
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1 Π size: {n:nat|n%3==0}.
2 scatter(0,MPI_FLOAT,size/3).
3 loop(
4 message(2,1,MPI_FLOAT,1).
5 message(0,2,MPI_FLOAT,1).
6 message(1,0,MPI_FLOAT,1).
7 message(1,2,MPI_FLOAT,1).
8 message(2,0,MPI_FLOAT,1).
9 message(0,1,MPI_FLOAT,1).

10 allreduce(MPI_FLOAT,1,MPI_MAX).
11 end).
12 choice(
13 gather(0,MPI_FLOAT,size/3).end,
14 end).
15 end

Π size: {n:nat|n%3==0}.
scatter(0,MPI_FLOAT,size/3).
loop(
send(2,MPI_FLOAT,1).
receive(1,MPI_FLOAT,1).
receive(2,MPI_FLOAT,1).
send(1,MPI_FLOAT,1).
allreduce(MPI_FLOAT,1,MPI_MAX).
end).

choice(
gather(0,MPI_FLOAT,size/3).end,
end).

end

Π size: {n:nat|n%3==0}.
scatter(0,MPI_FLOAT,size/3).
loop(
receive(2,MPI_FLOAT,1).
send(0,MPI_FLOAT,1).
receive(2,MPI_FLOAT,1).
send(0,MPI_FLOAT,1).
allreduce(MPI_FLOAT,1,MPI_MAX).
end).

choice(
gather(0,MPI_FLOAT,size/3).end,
end).

end

Figure 3: Global communication type and two local types (ranks 0 and 1)

(MPI_Comm_size, line 5) and the process’ own rank (MPI_Comm_rank, line 6), storing these values in variables
np and me, respectively. The problem size is read, by all processes, from the arguments of the program
and into variable psize (line 8). The process with rank 0 alone reads vector X0 into memory (lines 9–10),
and then distributes it among all participants (including itself), each participant receiving a slice of length
psize/np elements (MPI_Scatter, line 13).

Each process then loops until the finite differences converges to a given threshold or a given number
of iterations is attained, lines 18–34. The body of the loop specifies point-to-point message exchanges
(MPI_Send and MPI_Recv) between each process and its left and right neighbours, following a ring topology.
The purpose of these exchanges is to distribute the border values necessary for the calculations due to
each participant. We assume the standard non-buffered, synchronous semantics of MPI operations, in
that, e.g., an MPI_Send operation blocks until the target process issues the corresponding MPI_Recv oper-
ation. This justifies the different orderings of the message exchanges for the even and the odd ranked
participants (lines 20–24 and 26–29): processes would deadlock otherwise. After the two (per partici-
pant) message exchanges, and before the end of the loop step, the global error is calculated with a reduc-
tion operation and propagated to all participants (MPI_Allreduce, line 32). If the procedure converges, the
solution is gathered at rank 0 (MPI_Gather, line 38).

The overall protocol for the various processes is described as a term in the language of communica-
tion types. Such a term captures, not only the various message exchanges between processes (point-to-
point, broadcast), but also the communication-related loops and choices programs make. We informally
describe the language next. A possible communication type for our running example is presented in
Figure 3, left column.

The atoms in our types describe the individual MPI communications and the special dependent func-
tion type constructor, Π. Line 2, scatter(0,MPI_FLOAT,size/3), describes a data distribution operation,
initiated at rank 0 and delivering a float array of length size/3 to each process. The operation in line 13,
gather(0,MPI_FLOAT,size/3), behaves similarly except that it gathers at rank 0 the various slices of an array.
Lines 4–9 introduce point-to-point communications. For example, message(2,1,MPI_FLOAT,1) describes a
message exchange, from process rank 2 to process rank 1, containing a float array of length 1.

Individual MPI communications are composed via prefixing and collective decisions. Prefixing is
defined by the . (dot) operator, and the terminated protocol is denoted by end. A protocol that scatters
and then terminates can be written as scatter(0,MPI_FLOAT,size/3).end. Collective decisions include loops
and choices. A type loop(allreduce(MPI_FLOAT,1,MPI_MAX).end).T denotes a point in the protocol where all
processes either decide to enter or to leave the loop. In case a process enters the loop, it performs an
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allreduce operation; in case it decides not to enter the loop, it continues as T. The case of a choice is
similar: a type choice(gather(0,MPI_FLOAT,size/3).end,end).T describes a point in the protocol where all
processes either decide to gather a float array, or not to engage in any MPI operation. In either case, each
process then continues as prescribed by T.

Ranks and array lengths are described by integer expressions. The communication type under discus-
sion mentions variable size. Such a variable is introduced by a dependent function type constructor Π. A
type Πsize:{n:nat|n%3==0}.scatter(0,MPI_FLOAT,size/3).end denotes a protocol parametric on the size of
the problem that scatters a float array in chunks of length size/3. Expressions in communication types
are formed from literals, variables and arithmetic expressions. Such expressions are of kind integer (int),
floating point (float), or array (float[n]). Furthermore, any such kind can be refined. Kind {n:nat|n%3==0}

in line 1 denotes a non-negative integer, multiple of 3. Kind nat is itself an abbreviation for {n:int|n>=0}.
The program in Figure 2 works for any number of participants. In contrast the communication type
in Figure 3 describes a protocol for exactly three participants, ranked 0 to 2. The current version of our
communication type language does not allow for iteration, hence we hard-coded the number of processes
(3 in the example) in the type.

We can easily see that there is roughly a one-to-one correspondence between the MPI primitives in
our running program and those in the communication type, including loops and conditionals, except for
the point-to-point communications, where we see MPI_Send and MPI_Recv in Figure 2 and message alone
in Figure 3. There is a difference in perspective: the C code describes a per-process (or local) view,
whereas the communication code presents a global view of the protocol. In order to check C code
against communication types, we have to reduce the global view of communication types into a local
view. Following [10], we project the communication type into each of the ranks present in the type,
thus obtaining a series of local protocols. Local protocols are very much like global protocols. The
only difference is that a message(0,1,MPI_FLOAT,1) point-to-point communication is replaced by send(1,

MPI_FLOAT,1) when projecting on rank 0, by receive(0,MPI_FLOAT,1) when projecting on rank 1, and omitted
altogether for all other ranks.

The projections of the global protocol on ranks 0 and 1 are shown in the central and right columns of
Figure 3. We can easily see that the overall structure of the protocol is preserved, except for the point-
to-point communications, where the six occurrences of message in the communication type are replaced
by four occurrences in each local type (notice that each rank 0–2 occurs four times in lines 4–9 of the
communication type). It worth noting that the projection operation alone yields different local types for
the odd and for the even ranks, as witnessed by the two local types in Figure 3, and that these are aligned
with the C code (Figure 2, lines 21–24 and 26–29).

3 Verifying C+MPI code against communication types

Communication types, as described in the previous section, are translated into the language of VCC so
that they may be used in the verification process. The language of communication types is described in
VCC by a datatype. The left column in Figure 4 describes the datatype \Type for communication types,
that for convenience relies on datatype \Comm for MPI operations.

Rather than translating each local type individually as suggested by the central and right columns in
Figure 3, the global type is translated as a VCC function that takes a process rank as parameter. It is this
function, type_func, that internally projects all ranks (as described in the previous section), by making
use of the conditional expression (?:) of the C programming language. Communication types can be
parametric on program values; one such example is exhibited in Figure 3, line 1, where the problem size
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typedef int MPI_Datatype;
typedef int Rank;
typedef int Length;
_(datatype \Comm {
case send(Rank,MPI_Datatype,Length);
case recv(Rank,MPI_Datatype,Length);
case scatter(Rank,MPI_Datatype,Length);
case gather(Rank,MPI_Datatype,Length);
case bcast(Rank,MPI_Datatype,Length);
...

})
_(datatype \Type {
case end();
case comm(\Comm, \Type);
case loop(\Type, \Type);
case choice(\Type, \Type, \Type);

})

_(ghost _(pure) \Type type_func(int rank, int size)
_(requires 0 <= rank && rank < 3)
_(requires 0 <= size && size % 3 == 0)
_(ensures \result ==
comm(scatter(0,MPI_FLOAT,size/3),
loop (
rank == 0 ?
comm(send(2,MPI_FLOAT,1), ...) :

rank == 1 ?
comm(recv(2,MPI_FLOAT,1), ...) :

// rank == 2
comm(send(1,MPI_FLOAT,1), ...),

choice(
comm(gather(0, MPI_FLOAT, size/3),end()),
end(),

end())))))

Figure 4: The VCC datatype for communication types and the type function for the running example

is introduced in the type. Currently we allow dependent function types to occur only at the top level of
types. The parameters for the various dependent functions are all gathered at type_func, in addition to the
rank parameter.

The right column in Figure 4 contains the VCC function corresponding to the communication type
in Figure 3, where we can find two parameters corresponding to the rank and to the problem size. Some
explanation on the syntactic details of VCC are in order. VCC annotation blocks are introduced as _(

annotation block); keyword ghost introduces an annotation block necessary for the verification process,
but inconsequential for the C program; keyword pure describes a function without side effects; keywords
requires and ensures introduce the pre and post conditions of a function, respectively. Finally keyword
\result denotes the value of the function.

As described in Figure 1, function type_func is placed in a C header file and included in our running
example. Unfortunately, including header files alone is not enough to check C+MPI code against com-
munication types. VCC annotations (some of which can be easily automated) must be added to the code.
Figure 5 shows the code for our running example with the necessary annotations. The first annotation is
in line 1. The _ampi_arg_decl is a convenience C preprocessor macro that introduces a number of ghost
parameters used by the verification logic, employed by main or any other C function of interest. The
declaration of main in line 1 expands to
int main(int argc, char** argv _(ghost _ampi_glue_t* _gd) _(ghost \Type _type) _(out \Type _type_out)

The ghost parameters specify the input and output session type for a function (_type and _type_out),
discussed later in the text, and the gd argument characterises verification data for the overall restrictions
on the number of processes and the process rank. The _ampi_glue_t declaration contains data fields and
VCC data structure invariants for the restrictions, as follows:
typedef struct {
int procs; _(invariant 1 < procs && procs < 32768)
int rank; _(invariant 0 <= rank && rank < procs)

} ampi_glue_t;

The parameterisation of gd->procs and gd->rank are reflected in the contracts of primitives MPI_Comm_size

and MPI_Comm_rank:
int MPI_Comm_size(MPI_Comm* comm, int* size _(ghost ampi_glue_t* gd))
_(requires comm == MPI_COMM_WORLD)
_(ensures *size == gd->procs)
...
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1 int main(int argc, char** argv _ampi_arg_decl) {
2 ...
3 MPI_Init(&argc, &argv);
4 MPI_Comm_size(MPI_COMM_WORLD, &np);
5 MPI_Comm_rank(MPI_COMM_WORLD, &me);
6 _(assume np == 3)
7 ...
8 int psize = atoi(argv[1]); // Global problem size
9 _(ghost type = type_func (me, psize))

10 ...
11 MPI_Scatter(work, lsize, MPI_FLOAT, &local[1], lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
12 ...
13 int left = (np + me - 1) % np; // Left neighbour
14 int right = (me + 1) % np; // Right neighbour
15 _(ghost \Type loop_body = loopBody(type);)
16 _(ghost \Type loop_continuation = next(type);)
17 while (!converged(globalerr) && iter < MAX_ITER)
18 _(writes &globalerr)
19 _(writes \array_range(local, (unsigned) lsize + 2))
20 {
21 _(ghost type = loop_body;)
22 ...
23 _(assert type == end())
24 }
25 _(ghost type = loop_continuation;)
26 ...
27 _(ghost \Type choice_true = choiceTrue(type);)
28 _(ghost \Type choice_false = choiceFalse(type);)
29 _(ghost \Type choice_continuation = next(type);)
30 if (converged(globalerr)) {
31 _(ghost type = choice_true;)
32 MPI_Gather(&local[1], lsize, MPI_FLOAT, work, lsize, MPI_FLOAT, 0, MPI_COMM_WORLD);
33 ...
34 _(assert type == end())
35 } else {
36 _(ghost type = choice_false;)
37 printf ("failed to converge after %d iterations!", MAX_ITER);
38 _(assert type == end())
39 }
40 _(ghost type = choice_continuation;)
41 MPI_Finalize();
42 return 0;
43 }

Figure 5: Annotated version of Figure 2

int MPI_Comm_rank(MPI_Comm* comm, int* rank _(ghost ampi_glue_t* gd))
_(requires comm == MPI_COMM_WORLD)
_(ensures *rank == gd->rank)
...

Recall that these primitives are used to obtain the number of processes and the process rank (lines 4–5 in
the example), and note that we currently restrict the MPI communicator to be only the global top-level
communicator in MPI, that is, MPI_COMM_WORLD.

After line 1, the annotation of the program is resumed with a (refined) restriction for the number of
processes (_(assume np == 3) at line 6) and a ghost call to the type_func function at line 9. If providing
the number of processes to the function can be easily automated, only the programmer knows which
expression in the program corresponds to the problem size. Furthermore, rather than annotating calls to
MPI primitives at each call site, a contract is defined for each primitive. These contracts rely on the first

and the next partial functions, both operating on \Type, and defined by the following axioms.
\forall \Type t; \forall \Comm c; first(comm(c, t)) == c
\forall \Type t; \forall \Comm c; next(comm(c,t)) == t
\forall \Type t1,t2; next(loop(t1,t2)) == t2
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\forall \Type t1,t2,t3; next(choice(t1,t2,t3)) == t3

Using these partial functions, the contract for the MPI_Send primitive can be expressed as follows,
extern int _MPI_Send (void *buf, int count, MPI_Datatype dtype, int target, int tag,

MPI_Comm c _(ghost ampi_glue_t* gd) _(ghost \Type _type) _(out \Type _type_out))
_(requires first(_type) == send(target, dtype, count))
_(requires dtype == MPI_INT ==> \thread_local_array((int*) buf, count))
_(requires dtype == MPI_FLOAT ==> \thread_local_array((float*) buf, count))
_(ensures _type_out == next(_type))
...

where we use two ghost variables, _type and _type_out, to represent the types before and after the call
to MPI_Send, respectively (VCC does not allow in/out ghost parameters). The contract states that the first
action of the incoming type must be of the form send(target,dtype,count), where target is the rank of the
destination process, and dtype and count define the data to be transmitted in the message. We must also
check the data part of MPI primitives, and this is where VCC becomes handy. In this case we check that
the type of the buffer array matches the declared MPI type, and that the buffer contains enough space.
For example, \thread_local_array((int*)buf,count) means that the memory from &buf[0] to &buf[count-1]

is valid and typed as int. The post condition expresses the effect of the MPI_Send operation on the type:
after the send operation, the outgoing type is the incoming type from which the first communication has
been removed. The remaining MPI primitives have similar contracts. At the end of the program, that is,
at the calls to MPI_Finalize, we check that the type has reduced to end.
extern int _MPI_Finalize(_(ghost \Type _type) _(out \Type _type_out))
_(requires _type == end())
_(ensures _type_out == end())

For collective operations, loops in particular, we currently follow a very simple and intentional ap-
proach: a loop in the type (loop) must be matched by a loop in the code (for or while). We require a
further (partial) function to extract the body of a loop type, governed by the following axiom.
\forall \Type t1,t2; loopBody(loop(t1,t2)) == t1

Equipped with such a function the main loop of our running example is annotated as in Figure 5, lines 15–
25. The code is self-explanatory: we extract the loop body and the continuation types at loop entry (lines
15–16). Then, enter the loop with type loop_body and terminate the loop with type end. In order to analyse
the rest of the program we use the loop_continuation type (line 25). The case of a choice is handled
similarly in lines 27–40. In addition to annotations related to the session type, others are required by
VCC in regard to the use of of memory, for proper inference of side-effects. For instance, in lines 18–19,
the write clause annotations indicate that the variable globalerr and the array local (from position 0 to
lsize+2) are changed in the loop body.

VCC analyses C code modularly, each function separately. This means that each such function needs
a contract that, among other things, describes the communication type at entry and at exit points. Suppose
for example that the reading and distribution of the data among all processes (lines 9–13 in Figure 2) is
abstracted in a function read_vector. The (currently) manually annotated function signature would look
as follows:
void read_vector(int psize, int me, int np, float local[]

_(ghost ampi_glue_t* gd) _(ghost \Type _type) _(out \Type _type_out))
...
_(requires psize >= 0)
_(requires psize % np == 0)
_(requires first(_type) == scatter(0, MPI_FLOAT, psize/np))
_(ensures _type_out == next(_type))
...

;
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C code Auto annot. Manual annot. Manual/loc VCC time
Program (loc) (loc) (loc) (%) (s)
Finite differences [5] 256 69 12 4.7 6.1
Parallel dot product [13] 357 81 14 3.9 3.7
Parallel Jacobi [13] 429 34 18 4.2 11.4
N-body simulation [7] 362 80 16 4.4 7.0

Figure 6: Lines of code, annotations and running times for four textbook programs

The logic is similar to that employed for MPI primitives. Ghost variables are used in the function dec-
laration to represent the input and output session type, _type and _type_out respectively, and the contract
states the actions performed within the function. In this case, we have that the first action of the input
type should be scatter(0, MPI_FLOAT, psize/np) and that the output type is the continuation of the input
type.

4 Results

We have manually annotated C+MPI code taken from standard textbooks. Even though all annotations
were introduced by hand, we distinguish those that can be automatically generated in principle (e.g.,
the loop and choice annotations) from those that necessarily require the programmer’s intervention (e.g,
initialising the type_func function with the size of the problem, line 9 in Figure 5; loop invariants, lines
18–19; and non-MPI function annotations). In the table in Figure 6 we summarise the number of lines
of code (loc) in the original program, the number of annotations that can be potentially automated, the
number of programmer annotations, the number of manual annotations per 100 lines of original C code,
and the average time VCC took to complete the verification on a Windows machine with two Intel 2.66
GHz cores and 2 GB of RAM 1.

Remark the small number of manual annotations required to successfully verify the code, in all cases
below 5% when compared to the total number of lines of code. As described in the previous section,
VCC analyses each C function separately. Hence, a major source of annotations comes from functions.
Since currently we annotate functions by hand, we have analysed the function related annotations on the
manual annotations. How many of such annotations are needed heavily depends on the nature of C code
involved; however a fair amount of functions are to be expected on a well designed code. In the examples
we tested, we added between 2.4 (finite differences) and 6.0 (parallel Jacobi) lines of annotations per
function and in average.

In addition to the numbers above we must add approximately 800 lines of annotated C header files to
describe the datatypes, axioms, and the contracts for the various MPI primitives. The annotated header
files and examples are available from http://www.di.fc.ul.pt/~edrdo/ampi-0.1.zip.

5 Conclusion and future work

We have identified a framework for checking C+MPI code against a protocol description language. Terms
of this language, called communication types, describe the overall communication structure of programs.

1VCC seems to make use of only one core in a multi-core platform. We have also performed our tests on a virtualised
platform and observed no difference in performance between virtual machines configured with 1 and 2 cores.

http://www.di.fc.ul.pt/~edrdo/ampi-0.1.zip
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Such a type is then translated into a datatype term of VCC, a verification tool for the C programming
language, in the form of an include header file. This header, together with a VCC-annotated MPI-
library header file, are fed into VCC that determines whether the code follows the protocol. We used our
framework to check four non-trivial examples (260–430 lines of code), with promising results.

Much remains to be done. Currently, communication types are manually translated into VCC terms.
We are working on an Eclipse plugin that checks the good formation of types (are variables declared? is
the source and destination of messages valid ranks?) and generates the corresponding VCC term.

Currently, all annotations to C code are performed by hand. We are working on a tool that, given C
source code, automatically inserts the required annotations on collective operations (loop and choice).
Another major source of handcrafted annotations are C functions: for each function a pre- and a post-
condition on the current communication type (in the form of requires and ensures predicates) needs to be
manually introduced. We believe that, under some conditions (MPI programs are usually not recursive),
these contracts can be automatically derived, given the communication type.

The communication language is currently quite limited. Even though it features a dependent function
constructor, its usage in practice is quite restrictive (it can only occur at the top level). The next version
of our language will allow using the construct anywhere in the type, will feature a for-each construct al-
lowing to describe protocols with a variable number of processes (cf. [4]), as well dependencies between
communication primitives so that types may refer to values exchanged in previous communications. Fi-
nally, we plan to address further MPI operations, including non-blocking primitives (MPI_Isend, MPI_Irecv,
and MPI_Wait).

Currently, there is a too close connection between a loop type in a communication type and a for or
a while loop in C code. We would like to relax the connection by using iso- or equi-recursive techniques.
There is also the (deep) issue of checking whether all processes effectively follow the same branch in a
collective operation. Finally, the theory of communication types need to be further developed.
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