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Reversible distributed programs have the ability to abort unproductive computation paths and back-
track, while unwinding communication that occurred in the aborted paths. While it is natural to
assume that reversibility implies full state recovery (as with traditional roll-back recovery protocols),
an interesting alternative is to separate backtracking from local state recovery. For example, such a
model could be used to create complex transactions out of nested compensable transactions where a
programmer-supplied compensation defines the work required to “unwind” a transaction.

Reversible distributed computing has received considerable theoretical attention, but little re-
duction to practice; the few published implementations of languages supporting reversibility depend
upon a high degree of central control. The objective of this paper is to demonstrate that a practical
reversible distributed language can be efficiently implemented in a fully distributed manner.

We discuss such a language, supporting CSP-style synchronous communication, embedded in
Scala. While this language provided the motivation for the work described in this paper, our focus
is upon the distributed implementation. In particular, we demonstrate that a “high-level” semantic
model can be implemented using a simple point-to-point protocol.

1 Introduction

Speculative execution either by intent or through misfortune (in response to error conditions) is perva-
sive in system design and yet it remains difficult to handle atthe program level [7]. Indeed, we find
that despite the importance of speculative computation, there is very little programmatic support for it in
distributed languages at the foundational level it deserves. We note that, from a programming language
perspective, speculative execution requires a backtracking mechanism and that, even in the sequential
case, backtracking in the presence of various computational effects (e.g. assignments, exceptions, etc.)
has significant subtleties [9]. The introduction of concurrency additionally requires a “distributed back-
tracking” algorithm that must “undo” the effects of any communication events that occurred in the scope
over which we wish to backtrack. While this has been successfully accomplished at the algorithmic level
(e.g. in virtual time based simulation [12, 11]), in models of concurrent languages (e.g. [2, 3, 13, 14, 21])
and in some restricted parallel shared-memory environments (e.g. [23, 8, 15, 22, 17]), it does not appear
that any concurrent languages based upon message passing have directly supported backtracking with no
restrictions. The language constructs we introduce are inspired by the stabilizers of [24]; however, that
work depends upon central control to manage backtracking. Our work was also inspired by the work
of Hoare and others [16, 10]. Communicating message transactions [23, 15] is an interesting related
approach that relies upon global shared data structures.

The work presented in this paper has a natural relationship to the rich history of rollback-recovery
protocols [5]. Rollback-recovery protocols were developed to handle the (presumably rare) situation
where a processor fails and it is necessary to restart a computation from a previously saved state. The
fundamental requirement of these protocols is that the behavior is as if no error ever occurred. In contrast,
we are interested in systems where backtracking might take the computation in a new direction based
upon state information gleaned from an abandoned executionpath; the (possibly frequent) decision to
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backtrack is entirely under program control. Because check-pointing in traditional rollback-recovery
protocols involves saving a complete snapshot of a process’s state, it is a relatively expensive operation.
Much of the research in rollback-recovery protocols focuses upon minimizing these costs. The cost of
check-pointing is much lower for our domain – saving controlstate is no more expensive than for a
conventional exception handler; the amount of data state preserved is program dependent.

Implementing a reversible concurrent language is not a trivial undertaking and, as we found, there
are many opportunities to introduce subtle errors. Ideally, such a language implementation should be
accompanied by a suitable semantics that provides both a high-level view which a programmer can use
to understand the expected behavior of a program text, and a low-level view which the language imple-
menter can use to develop a correct implementation. In orderto accommodate these two constituencies,
we have developed two separate semantic models. We have developed a refinement mapping to demon-
strate that the low-level model is a correct implementationof the high-level model.

The remainder of this paper is organized as follows. We beginwith a small example that illustrates the
main ideas using our Scala implementation. We then, in Sec. 3, present a formal “high-level” semantic
model focusing on the semantics of forward communication and backtracking. In Sec. 4, we discuss
a communication protocol for maintaining backtracking state across distributed communicating agents.
Sec. 5 introduces a “low-level” model that utilizes the channel protocol to implement the high-level
model, and outlines the proof of correctness of the low-level semantics with respect to the high-level
semantics. We end with a brief discussion.

2 Example

A programmer wishing to use our distributed reversible extensions of Scala imports our libraries for pro-
cesses and channels and then defines extensions of the base classCspProc by overriding the methoduCode.
The user-defined code must use our channel implementation for communication and may additionally
use the keywordsstable andbacktrack for managing backtracking over speculative executions. Thestable

regions denote the scope of saved contexts; executingbacktrack within a stable region returns control to
the beginning of the stable region – much like throwing an exception, but with the additional effect of
unwinding any communication that may have occurred within the stable region.

The excerpt of Fig. 1 provides the code for two processesp1 andp2 that communicate over channelc

– not shown is the code that creates these processes and the channel. Processp1’s execution consists of
entering a stable region, entering a nested stable region (line 6), sending a message top2 (line 8), entering
another stable region (line 9), sending another message top2 (line 11), and then possibly backtracking
(line 15). Meanwhile processp2 also starts a stable region (line 24) in which it receives thetwo messages
(lines 26 and 29).

A possible execution trace showing a possible interleavingof the execution is:

p2: start

p1: start

p1: snd 2

p2: recv 2

p1: snd 2

p2: recv 2

p1: backtrack

p2: start

p1: snd 1

p2: recv 1

p1: snd 1

p2: recv 1
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class p1 (c: SndPort, name: String)

2 extends CspProc(name) {

override def uCode = {

4 println("p1: start")

var count = 2

6 stable {

println("p1: snd " + count)

8 send(c,count)

stable {

10 println("p1: snd " + count)

send(c,count)

12 count = count - 1

if (count > 0) {

14 println ("p1: backtrack")

backtrack }

16 }}

}}

18

class p2 (c: RcvPort, name: String)

20 extends CspProc(name) {

override def uCode = {

22 println("p2: start")

stable {

24 var x = receive(c)

println("p2: recv " + x)

26 var y = receive(c)

println("p2: recv " + y)

28 }

}}

30
class RootClass() extends CspProc("root") {

32 override def uCode() = {

stable{

34 var c = newChannel("c")

par (new p1(c.tx, "p1"),

36 new p2(c.rx, "p2"))

Figure 1: Example

In the trace, processesp1 andp2 both start executing and enter their respective stable regions. Processp2
must block until a communication event occurs on channelc. Processp1 initiates the communication
sending the value2 which is received byp2 which must then block again waiting to receive on channelc.
Processp1 enters its nested stable region and sends another value2 which is received. At this point,
processp2 is “done” but processp1 decides to backtrack. As a result, processp1 transfers its control to the
inner stable region (line 9). This jump invalidates the communication on channelc at line 11. Processp1
then blocks until processp2 takes action. When processp2 notices that the second communication event
within the stable region (line 29) was invalidated, it backtracks to the start of its stable region. This jump
invalidates the first communication action (line 26) which in turn invalidates the corresponding action
in p1 at line 8. In other words, processp1 is forced to backtrack to its outer stable region to establish a
causally consistent state. It is important to remember thatall processes have an implicit stable region that
includes their full code body;p2 is therefore forced to backtrack to the beginning of its code. In other
words, after the backtracking ofp1, both communication events betweenp1 andp2 are re-executed.

3 High-Level Semantics of a Reversible Process Language

We will present two semantic models for our language. The first “high-level” semantics formalizes both
the forward communication events that occur under “normal”program execution and the backwards
communication events that occur when processes are backtracking to previously saved states as atomic
steps. In the low-level semantics, these communication events are further subdivided into actions that
communicating senders and receivers may take independently in a distributed environment and hence
trades additional complexity for a specification that is close to a direct implementation. This low-level
semantics is based upon a channel protocol that we have verified using the SAL infinite-state model
checker [19, 20, 4]; the invariants validated using SAL werenecessary to prove that the low-level seman-
tics is a refinement of the high level semantics. Both of our semantic models are based upon virtual time
– a commonly used technique for conventional rollback recovery protocols [6, 18]. Our approach differs
in utilizing synchronous communication and also by providing a fully distributed rollback protocol.
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3.1 User-Level Syntax

We begin with a core calculus which is rich enough to express the semantic notions of interest:

(channel names) ℓ
(constants) c ::= () | 0 | 1 | . . . | + | − | ≥ | . . .
(expressions) e ::= c | x | λx.e | e1e2 | send ℓ e | recv ℓ(x).e | stable e | backtrack e
(processes) p ::= p1‖ p2 | 〈e〉

A program is a collection of processes executing in parallel. Expressions extend the call-by-valueλ -
calculus with communication and backtracking primitives.The communication primitives aresend ℓ e
which commits to sending the value ofeon the channelℓ andrecv ℓ(x).ewhich blocks until it receivesx
on channelℓ. Our Scala implementation supports input “choice” allowing a receiving process to non-
deterministically choose among a collection of active channels; the addition of choice is necessary for
expressiveness but adds little new insight to the formal semantics and is hence omitted in the interest
of brevity. The backtracking primitives arestable e which is used to delimit the scope of possible
backtracking events withine. The expressionbacktrack e typically has two effects: the control state in
the process executing the instruction jumps back to the dynamically closest nested block with the value
of e andall intervening communication events are invalidated. Thelatter action might force neighboring
processes to also backtrack, possibly resulting in a cascade of backtracking for a poorly written program.

3.2 Internal Syntax

In order to formalize evaluation, we define a few auxiliary syntactic categories that are used to model
run-time data structures and internal states used by the distributed reversible protocol. These additional
categories include process names, time stamps, channel maps, evaluation contexts, and stacks:

(process names) n
(time stamps) t
(values) v ::= c | x | λx.e | stable (λx.e)
(expressions) e ::= . . . | stable e
(evaluation contexts) E ::= ✷ | E e| v E | send ℓ E | stable E | stable E | backtrack E
(channel maps) Ξ = ℓ 7→ (n, t,n)
(stacks) Γ = • | Γ,(E,v, t,Ξ)
(processes) p ::= p1‖ p2 | 〈n@t : Γ,e〉
(configurations) C ::= Ξ # (p1‖ p2 . . . ‖ pk)

Expressions are extended withstable e which indicates anactive region. The syntax of processes
〈n@t : Γ,e〉 is extended to record additional information: a process idn, a virtual timet, a context
stackΓ, and an expressione to evaluate. The processes communicate using channelsℓ whose state is
maintained in mapsΞ. Each entry inΞ maps a channel to the sender and receiver processes (which are
fixed throughout the lifetime of the channel) and the currentvirtual time of the channel. Contexts are
pushed on the stack when a process enters a new stable region and popped when a process backtracks
or exits a stable region. Each context includes a conventional continuation (modeled by an evaluation
contextE), a valuev with which to backtrack if needed, a time stamp, and a local channel map describing
the state of the communication channels at the time of the checkpoint.
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Ξ # 〈n@t : Γ,E[(λx.e) v]〉
ε
−→ Ξ # 〈n@t : Γ,E[e[v/x]]〉(H1)

Ξ{ℓ 7→ (n1, tc,n2)} # 〈n1@t1 : Γ1,E1[send ℓ v]〉 ‖〈n2@t2 : Γ2,E2[recv ℓ(x).e]〉
ℓ@t[v]
−−−−→

Ξ{ℓ 7→ (n1, t,n2)} # 〈n1@t : Γ1,E1[()]〉‖〈n2@t : Γ2,E2[e[v/x]]〉

wheret > max(t1, t2)

(H2)

Ξ # 〈n@t : Γ,E[(stable (λx.e)) v]〉
ε
−→

Ξ # 〈n@t ′ : Γ,(E[(stable (λx.e)) ✷],v, t,Ξn),E[stable e[v/x]]〉

wheret ′ > t andΞn is the subset ofΞ referring to the channels ofn

(H3)

Ξ # 〈n@t : Γ,(E′,v′, t ′,Ξ′),E[stable v]〉
ε
−→ Ξ # 〈n@t : Γ,E[v]〉(H4)

Ξ # 〈n@t : Γ,(E′,v′, t ′,e′),e〉
ε
−→ Ξ # 〈n@t : Γ,(E′,v′, t ′,e′),backtrack v′〉(H5)

Ξ{ℓ 7→ (c1, tc,c2)} # 〈n1@t1 : Γ1,E1[backtrack v1]〉‖〈n2@t2 : Γ2,E2[backtrack v2]〉
ℓ@t ′c−−−→

Ξ{ℓ 7→ (c1, t
′
c,c2)} # 〈n1@t1 : Γ1,E1[backtrack v1]〉‖〈n2@t2 : Γ2,E2[backtrack v2]〉

where 0≤ t ′c < tc and{c1,c2}= {n1,n2}

(H6)

Ξ{ℓ 7→ (−, t,−)} # 〈n1@t1 : Γ,(E1,v
′, t ′1,Ξ1{ℓ 7→ (−, t ′,−)}),E[backtrack v]〉

ε
−→

Ξ{ℓ 7→ (−, t,−)} # 〈n1@t1 : Γ,E[backtrack v]〉

wheret < t ′

(H7)

Ξ # 〈n1@t1 : Γ,(E1,v1, t
′
1,Ξ1),E[backtrack v]〉

ε
−→ Ξ # 〈n1@t ′1 : Γ,E1[v]〉

where the timestamp on every channel inΞ1 is equal to the timestamp of the same channel inΞ
(H8)

Figure 2: High-level rules

A semantic configurationC consists of a global channel mapΞ and a number of processes. An
invariant maintained by the semantics is that a process executing in the forward direction will have the
times of its channels in the global map greater than or equal to the times associated with the channels in
the top stack frame. Similarly, the time associated with a process will always be at least as great as the
times associated with its channels. Both invariants followfrom the intuition that any channel appearing
on the stack must have been pushed “in the past” and similarlythat any communication reflected in the
global map must have also happened “in the past.” A process inthe backtracking state will temporarily
violate these invariants until it negotiates a consistent state with its neighbors.

We assume that in the initial system state, all channels havetime 0 and every process is of the form
〈n@0 : •,stable (λ .e) ()〉; i.e. processn is entering a stable region containing the expressione with an
empty context stack at time 0.

3.3 Forward Semantics

The rules are collected in Fig. 2. We discuss each rule with the aid of simple examples below.
A computation step that does not involve communication, stable regions, or backtracking is consid-

ered a local computation step. None of the internal structures need to be consulted or updated during
such local computation steps and hence in our Scala implementation, local computation steps proceed at
“full native speed.” In order to establish notation, here isa simple computation step:1

{ℓ 7→ (n1,2,n2)} # 〈n1@5 : Γ,1+2〉 → {ℓ 7→ (n1,2,n2)} # 〈n1@5 : Γ,3〉

1The color version of the paper highlights the components of the configuration that are modified by each rule.



50 Reversible Communicating Processes

In this example, a processn1 with local virtual time 5 and making forward progress encounters the com-
putation 1+2. We assume the existence of a channelℓ which is associated with time 2 and connectsn1

to n2. Intuitively this means that the last communication by thatprocess on that channel happened three
virtual time units in the past. The reduction rule leaves allstructures intact and simply performs the local
calculation. In the general case, we have rule H1 for application of λ -expressions and similar rules for
applying primitive operations. In rule H1, the runnable expression in the process is decomposed into an
evaluation contextE and a current “instruction”(λx.e) v. This instruction is performed in one step that
replaces the parameterx with the valuev in the body of the proceduree. The notation for this substitution
is e[v/x]. The entire transition is tagged withε indicating that it produces no visible events.

Communication between processes is synchronous and involves a handshake. We require that in ad-
dition to the usual exchange of information between sender and receiver, that the handshake additionally
exchanges several virtual times to force the virtual times of the sending process, the receiving process,
and the used channel to be all equal to a new virtual time larger than any of the prior times for these
structures. Here is a small example illustrating this communication handshake:

{ℓ 7→ (n1,3,n2)} # 〈n1@5 : Γ,send ℓ 10〉 ‖ 〈n2@4 : Γ, recv ℓ(x).x+1〉
→ {ℓ 7→ (n1,6,n2)} # 〈n1@6 : Γ,()〉 ‖ 〈n2@6 : Γ,10+1〉

Initially, we have two processes willing to communicate on channelℓ. Processn1 is sending the value 10
and processn2 is willing to receive anx on channelℓ and proceed withx+1. After the reduction, the
value 10 is exchanged and each process proceeds to the next step. In addition, the virtual times of the
two processes as well as the virtual time of the channelℓ have all been synchronized to time 6 which
is greater than any of the previous times. This is captured inrule H2. In that rule, the fact thatt > tc
follows from the global model invariant thatt1 ≥ tc∧ t2 ≥ tc. The notationΞ{ℓ 7→ (n1, tc,n2)} says that,
in channel mapΞ, channelℓ connects sendern1 and receivern2 and has timetc. The transition produces
the visible eventℓ@t[v] that valuev was transferred on channelℓ at timet.

Finally, there are rules H3, H4, and H5 corresponding to entering and exiting stable regions. These
rules are interconnected and we illustrate them with a smallexample whose first transition is:

{ℓ 7→ (n1,2,n2)} # 〈n1@5 : Γ ,7+(stable f ) v〉
→ {ℓ 7→ (n1,2,n2)} # 〈n1@6 : Γ(7+(stable f ) ✷,v,5,{ℓ 7→ (n1,2,n2)}),7+ stable ( f v)〉

Processn1 encounters the expression 7+(stable f ) v where f is some function andv is some value. The
stable construct indicates that execution might have to revert back to the current state if any backtracking
actions are encountered during the execution off v. The first step is to increase the virtual time to
establish a new unique event. Then, to be prepared for the eventuality of backtracking, processn1 pushes
(7+(stable f ) ✷,v,5,{ℓ 7→ (n1,2,n2)}) on its context stack. The pushed information consists of the
continuation 7+ stable f ✷ which indicates the local control point to jump back to, the value v, the
virtual time 5 which indicates the time to which to return, and the current channel map which captures
the state of the communication channels to be restored. Execution continues with 7+ stable ( f v) where
the underline indicates that the region is currently active. If the execution off v finishes normally,
for example, by performing communication on channelℓ and then returning the value 100, then the
evaluation progresses as follows:

{ℓ 7→ (n1,8,n2)} # 〈n1@8 : Γ,(7+(stable f ) ✷,v,5,{ℓ 7→ (n1,2,n2)}) ,7+ stable 100〉
→ {ℓ 7→ (n1,8,n2)} # 〈n1@8 : Γ ,7+100〉
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The context stack is popped and execution continues in the forward direction. The case in whichf v
backtracks is considered in the next section.

3.4 Backtracking Semantics

Backtracking may occur either from within the current process or indirectly because another neighboring
process has retracted a communication event. In the first case, the saved context will be resumed with a
value of the programmer’s choice; in the latter case, the context will be resumed, asynchronously, with
the value saved on the context stack. A well-typed program should have the function argument tostable
(λx.e in the rules above) be prepared to handle either situation.

We illustrate the important steps taken in a typical backtracking sequence using an example. Consider
the following configuration in which processn1 has communicated on channelℓ at time 2, taken a step
to time 3, entered a stable region, communicated again onℓ at time 5, taken two steps to time 7, entered
another stable region, communicated again onℓ at time 8, taken a step to time 9, and then encountered
a backtracking instruction. The internal state of its communicating partner is irrelevant for the example
except that its virtual time is assumed to be larger than 8:

{ℓ 7→ (n1,8,n2)}#〈n1@9 :Γ,(E1[(stable f1) ✷],v1,3,{ℓ 7→ (n1,2,n2)})
,(E2[(stable f2) ✷],v2,7,{ℓ 7→ (n1,5,n2)}),

E3[backtrack 100]〉
‖〈n2@13 :Γ2,e2〉

The first step is for two processes to negotiate a time to whichchannelℓ should return. The semantic
specification is flexible allowingany time in the past (including 0 in the extreme case). For the running
example, we pick time 2 for the channelℓ. The configuration steps to:

{ℓ 7→ (n1,2,n2)}#〈n1@9 :Γ,(E1[(stable f1) ✷],v1,3,{ℓ 7→ (n1,2,n2)})
,(E2[(stable f2) ✷],v2,7,{ℓ 7→ (n1,5,n2)}),

E3[backtrack 100]〉
‖〈n2@13 :Γ2,e2〉

At this point, neither process may engage in any forward steps. Focusing onn1 for the remaining of the
discussion, the top stack frame needs to be popped as its embedded time for channelℓ is later than the
global time:

{ℓ 7→ (n1,2,n2)} # 〈n1@9 :Γ,(E1[(stable f1) ✷],v1,3,{ℓ 7→ (n1,2,n2)}), E3[backtrack 100]〉

In general, the popping of stack frames continues until the time associated with all the channels in the top
stack frame agrees with the global times associated with thechannels. This is guaranteed to be satisfied
when the process backtracks to the initial state but might, as in the current example, be satisfied earlier.
In this case, forward execution resumes with the stable region saved in the top stack frame:

{ℓ 7→ (n1,2,n2)} # 〈n1@3 :Γ, E1[(stable f1) 100]〉

As illustrated in the example above, our semantic rules impose as few constraints as possible on the
extent of, and the number of steps taken during backtracking, to serve as a general specification; our
Scala implementation constrains the application of these rules to obtain an efficient implementation.

Formally, we have four rules. The rule H5 allows a process to asynchronously enter a backtracking
state. Rule H6 allows a pair of communicating processes in the backtracking state (either because they
encountered the backtracking command itself or asynchronously decided to backtrack using the rule
above) to select any earlier time for their common channel. The labelℓ@t ′c means that all communication
events on channelℓ at times later thant ′c are retracted. Notice that only the channel time is reduced –
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this preserves our invariant that the virtual time of every process is greater than or equal to that of its
channels. Rule H7 allows a process in the backtracking stateto pop stack frames that were pushed after
the required reset time of the channel. Finally, in rule H8, aprocess that is backtracking can return
to forward action if all its channels are in a “consistent” state – that is, when all channels in its stored
channel map in the top stack frame have timestamps matching what is found in the global channel map.
It is only at this point that the virtual time of the process isupdated.

4 Channel Protocol

The high-level semantics assumes that synchronous communication is realized atomically (e.g., rule
H2). In an actual implementation, synchronization betweensender and receiver requires a multi-phase
handshaking protocol. It is not evident that such low-levelprotocols are robust if interleaved with back-
tracking actions. Because of the subtlety of this point, we formalize a low-level communication protocol
with backtracking and prove it correct. In the next section,we will introduce a low-level semantics
and use invariants of the protocol to prove that the high-level semantics can be faithfully implemented
without assuming atomic synchronous communication.

4.1 Low-Level Communication

Instead of assuming that synchronous communication is atomic, we consider instead the realistic situa-
tion in which communication happens in two phases: (i) a sender requests a communication event, and
(ii) after some unspecified time the receiver acknowledges the request.

In a distributed environment, where channel state changes made by the sender or receiver take time
to propagate, the low-level communication messages introduce potential race conditions. We account for
race conditions by verifying a model where communication isbuffered. Thus, global channel state will
be divided into two parts – one maintained by the sender and the other maintained by the receiver. A
process may only write the state associated with its channelend, and may only read a delayed version of
the state maintained by its communicating partner. This requires that channels carry two timestamps –
one maintained by the sender and one maintained by the receiver. We think of the timestamp maintained
by the receiver as the “true” channel time. In addition to independent timestamps, each end of the channel
will also have a token bit and a “direction” flag. The token bits jointly determine which end of the channel
may make the next “move,” and the flag (loosely) determines the direction of communication, forward
or backwards.

A crucial aspect exposed by the low-level communication protocol is the ability of a blocked sender
or receiver engaged in a synchronization to signal its partner that it wishes to switch from forward to
backwards communication. To accommodate such situations,the receiver state will also include an
auxiliary Boolean variablesync that is set when the receiver agrees to complete a communication event
and reset when it refuses a communication event. This variable is not visible to the sender; however, the
sender will be able infer its value from the visible state even in the presence of potential races.

4.2 Protocol Types

We now introduce the formal model for the channel protocol using the Symbolic Analysis Laboratory
(SAL) tools [20, 19, 4]. In the SAL language the key protocol types are defined as:

TIME : TYPE = NATURAL;

DIR : TYPE = { B, I, F }; % backwards, idle, forward
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As motivated above, each of the sender and receiver states are defined by four state variables:

OUTPUT s_b : BOOLEAN % sender token

OUTPUT s_t : TIME % sender time

OUTPUT s_d : DIR % sender direction

OUTPUT v : NATURAL % sender data

OUTPUT r_b : BOOLEAN % receiver token

OUTPUT r_t : TIME % receiver time

OUTPUT r_d : DIR % receiver direction

The state of a channel consists of the union of the sender and receiver states. In general, the right to
act alternates between the sender and the receiver. The sender is permitted to initiate a communication
event (forwards or backwards) when the two token bits are equal. The receiver is permitted to complete a
communication event when the two token bits are unequal. Thus the sender (receiver) “holds” the token
when these bits are equal (unequal). This alternating behavior is a characteristic of handshake protocols.

4.3 Model

In SAL, transition rules are simply predicates defining pre-and post-conditions; the next state ofs_b is
s_b’. Forward communication is initiated when the sender executes the guarded transition:

Trans1. (s_b = r_b) AND (r_d = F) --> s_b’ = NOT s_b; s_d’ = F; s_t’ IN { x : TIME | x > r_t} ;

v’ IN { x : NATURAL | true}

Thus, the sender may initiate forward communication whenever it holds the “token” (s_b = r_b) and the
receiver is accepting forward transactions (r_d = F). By executing the transition, the sender selects a new
time (s_t’), relinquishes the token, indicates that it is executing a forward transaction (s_d’ = F), and
selects (arbitrary) data to transfer.

The receiver completes the handshake by executing the following transition in which it updates its
clock (to a value at least that offered by the sender), and flips its token bit. This transition is only
permitted when both the sender and the receiver wish to engage in forward communication:

Trans2. (s_b /= r_b) AND (s_d /= B) AND (r_d = F) --> r_b’ = s_b;

r_t’ IN { x : TIME | x >= s_t};

A receiver may also refuse a forward transaction by indicating that it desires to engage only in
backwards communication:

Trans3. (s_b /= r_b) AND (s_d = F) --> r_b’ = s_b; r_d’ = B;

Our protocol also supports backwards communication events. The sender may initiate a backwards
event whenever it holds the token:

Trans4. (s_b = r_b) --> s_b’ = NOT s_b; s_t’ IN { x : TIME | x < r_t} ; s_d’ = B

In a manner analogous to forward communication, the receiver may complete the event by executing
the following transition. One subtlety of this transition is that the receiver may also signal whether it is
ready to resume forward communication (r_d’ = F) or wishes to engage in subsequent backward events
(r_d’= B). The latter occurs when the sender has offered a new time that is not sufficiently in the past to
satisfy the needs of the receiver:

Trans5. (s_b /= r_b) AND (s_d = B) --> r_b’ = s_b;

r_d’ IN { x : DIR | x = B or x = F }; r_t’ = s_t;
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While the protocol presented supports both forward and backwards communication, the sender may
be blocked waiting for a response from a receiver when it wishes to backtrack. The following transition
allows the sender torequestthat a forward transaction be retracted:

Trans6. (s_b /= r_b) AND (s_d = F) --> s_d’ = I

The receiver may either accept the original offer to communicate (Trans2) or allow the retraction:

Trans7. (s_b /= r_b) AND (s_d = I) --> r_b’ = s_b; r_d’ IN {x : DIR | x = r_d or x = B};

Similarly a blocked receiver may signal the sender that it wishes to backtrack:

Trans8. (s_b = r_b) --> r_d’ = B

4.4 Key Invariant

The main subtleties that we need to verify occur when a sendermay attempt to retract a forward request
while the receiver simultaneously acknowledges that request, or when a receiver may decide, after it has
acknowledged a request, that it wishes to backtrack. In either case the later decision “overwrites” state
that may or may not have been seen by the partner. For our semantic model, it is crucial that the sender
be able to determine whether the synchronization event occurred or was successfully retracted. The key
invariant of our SAL model uses a shadow variable to prove this property.

5 Low-Level Processes and Refinement Mapping

Our low-level model is derived from the high-level model by implementing those rules involving syn-
chronization using finer-grained rules based upon the the protocol model. Necessarily, there are more
transition rules associated with the low-level model. For example, the single high-level transition im-
plementing forward communication requires three transitions (two internal and one external or visible)
in the low-level model. High level transitions not involving communication (H1, H3, H4, and H7) are
adopted in the low-level model with minimal changes to account for the differences in channel state. The
high level transitions H5 and H8 are adopted with a few additional side conditions.

Along with our presentation of the low-level model (henceforth LP), we sketch a refinement mapping
from LP to the high-level model (henceforth HP) – essentially a function that maps every state of LP to
a state of HP and where every transition of LP maps to a transition (or sequence of transitions) of HP. [1]

5.1 Low-Level Synchronization

The low-level model is defined by its own set of transition rules (Figure 3) along with additional state in-
formation relating to the channel implementation. We beginby discussing in those transitions relating to
forward communication. We use these transitions to illustrate how low-level events “map” to high-level
events. The high-level semantics includes rule H2 (forwardcommunication) that requires simultaneous
changes in two processes and rule H6 that depends upon the state of two processes; none of the low-level
rules affects more than one process and the only preconditions on any of our low-level rules are the state
of a single process and the state of its channels. Furthermore, these rules modify only the process state
and the portion of a channel state (send or receive) owned by the process.

We define the state of a channel as a tuple(s : (n, t,b,d,v), r : (n, t,b,d)) wheres is the state of the
sender andr is the state of the receiver;s.n is the sender id andr.n is the receiver id. As mentioned, the
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Ξ{ℓ 7→ (s : (n, ts,b,−,−), r : (nr , tr ,b,F)} # 〈n@t : Γ,E[send ℓ v]〉
ε
−→

Ξ{ℓ 7→ (s : (n, t ′s,b,F,v), r : (nr , tr ,b,F)} # 〈n@t : Γ,E[send ℓ v]〉

wheret ′s > tr

(L1)

Ξ{ℓ 7→ (s : (ns, ts,b,ds,v), r : (n, tr ,b,F)} # 〈n@t : Γ,E[recv ℓ(x).e]〉
ℓ@t[v]
−−−−→

Ξ{ℓ 7→ (s : (ns, ts,b,ds,v), r : (n, t ,b,F)} # 〈n@t : Γ,E[e[v/x]]〉

wheret > max(ts, t) andds ∈ {F, I}

(L2)

Ξ{ℓ 7→ (s : (n, ts,b,ds,v), r : (nr , tr ,b,dr )} # 〈n@t : Γ,E[send ℓ v]〉
ε
−→

Ξ{ℓ 7→ (s : (n, ts,b,ds,v), r : (nr , tr ,b,dr )} # 〈n@tr : Γ,E[()]〉
whereds 6= B andts ≤ tr

(L3)

Ξ{ℓ 7→ (s : (ns, ts,b,F,v), r : (n, tr ,b,−)} # 〈n@t : Γ,E[backtrack v]〉
ε
−→

Ξ{ℓ 7→ (s : (ns, ts,b,F,v), r : (n, tr ,b,B)} # 〈n@t : Γ,E[backtrack v]〉

wheretr > 0

(L4)

Ξ{ℓ 7→ (s : (n, ts,b,−,v), r : (nr , tr ,b,d)} # 〈n@t : Γ,E[backtrack v]〉
ε
−→

Ξ{ℓ 7→ (s : (n, t ′s,b,B,v), r : (nr , tr ,b,d)} # 〈n@t : Γ,E[backtrack v]〉

wheret ′s < tr

(L5)

Ξ{ℓ 7→ (s : (ns, ts,b,B,v), r : (n, t,b,−)} # 〈n@t : Γ,E[backtrack v]〉
ℓ@ts−−−→

Ξ{ℓ 7→ (s : (ns, ts,b,B,v), r : (n, ts,b,F)} # 〈n@t : Γ,E[backtrack v]〉

(L6)

Ξ{ℓ 7→ ((ns, ts,b,ds,v),(n, tr ,b,F)} # 〈n@t : Γ,E[backtrack v]〉
ε
−→

Ξ{ℓ 7→ ((ns, ts,b,ds,v),(n, tr ,b,B)} # 〈n@t : Γ,E[backtrack v]〉

wheretr > 0

(L7)

Ξ{ℓ 7→ (s : (n, ts,b,F,v), r : (nr , tr ,b,dr )} # 〈n@t : Γ,E[send ℓ v]〉
ε
−→

Ξ{ℓ 7→ (s : (n, ts,b, I ,v), r : (nr , tr ,b,dr)} # 〈n@t : Γ,E[send ℓ v]〉

(L8)

Ξ{ℓ 7→ ((ns, ts,b, I ,v),(n, tr ,b,d)} # 〈n@t : Γ,E[e]〉 ε
−→

Ξ{ℓ 7→ ((ns, ts,b, I ,v),(n, tr ,b,d
′)} # 〈n@t : Γ,E[e]〉

whered′ ∈ {d,B}

(L9)

Ξ{ℓ 7→ ((n, ts,b, I ,v),(nr , tr ,b,dr )} # 〈n@t : Γ,E[send ℓ v]〉
ε
−→

Ξ{ℓ 7→ ((n, ts,b, I ,v),(nr , tr ,b,dr )} # 〈n@t : Γ,E[send ℓ v]〉

wheretr > ts

(L10)

(Ξ{ℓ 7→ (s : (n1,−,b,−), r : (−, t,b,−))} ∨ Ξ{ℓ 7→ (s : (−,−,−,−), r : (n1, t,−,F))})(H8 Condition)

Figure 3: Low-level rules
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sender and receiver both maintain (non-negative) timestamps (s.t, r.t) and Boolean tokens (s.b, r.b). Each
also maintains a direction flag (s.d, r.d) indicating “forward” or “backward” synchronization. Thesender
state includes a values.v to be transferred when communication occurs. These state elements correspond
to those of the channel protocol. The refinement mapping fromLP to HP drops this additional channel
state information; although it does impact the mapping of the process expressions.

Forward communication (H2 in HP) is executed in three steps by the underlying channel protocol.

L1 In the first step, which corresponds toTrans1 of the SAL model, the sender initiates the commu-
nication by marking its state as “in progress” with the new expressionsend ℓ v. This expression
has no direct equivalent in HPand may only occur as a result ofthis rule.

Recall that the sender has the “token” when the two channel token bits are equal (s.b = r.b), and
initiates communication by inverting its token bit (s.b).

L2 In the second step, (Trans2) the receiver “sees” that the sender has initiated communication, reads
the data, updates its local virtual time, updates the channel’s time, and flips its token bit to enable
the sender to take the next and final step in the communication. (Note that the sender stays blocked
until the receiver takes this step.) After taking this step the receiver can proceed with its execution:

From L1 we can show thatts > tr . A required invariant for our model is that when the conditions
of this rule are satisfied, the senderns is executingsend ℓ .

L3 In the final step, the sender notes that its active communication event has been acknowledged by
the receiver. It updates its local time and unblocks.

The introduction of new control states such assend ℓ v necessarily complicates the creation of a
refinement mapping, which maps this to eithersend ℓ v or () depending upon the state of the channel.
This follows naturally from the protocol in which a sender initiates a synchronization event, but the
receiver completes it. Consider the following cases for mapping of send ℓ v. The first case corresponds
to the state after transition L1 and the second to the state after transition L2. (Recall thatℓ is a channel,
andℓ.x.y correspond to fields of the channel state).

f (E[send ℓ v]) = E[send ℓ v] if (ℓ.s.b 6= ℓ.r.b)∨ ℓ.s.t > ℓ.r.t

f (E[send ℓ v]) = E[()] if (ℓ.s.b= ℓ.r.b)∧ ℓ.s.t ≤ ℓ.r.t

Thus in the mapping, L1 is a “silent” (stuttering) transition and L2, which is only executed in parallel
with a process executingsend ℓ v, corresponds to high-level transition H2. Notice that the mapping of
this control state depends upon the state of channelℓ, although the mapping drops this additional state
information from the channels. Finally, L3 maps to HP as a silent transition.

5.2 Backtracking Communication

Backwards communication is considerably more complex for several reasons. First, consider that a
process wishing to backtrack may communicate with any of itspeers – at the low level this may involve
simultaneous communication along its various channels. A further complication has to do with the fact
that low-level communication involves a handshake betweenthe sender and receiver where the sender
“commits” and then the receiver may acknowledge. If a senderhas committed on a channel and detects,
through its other channels, that a peer wishes to backtrack it must somehow retract the outstanding
communication event.

As with forward communication, many of the transitions relating to backwards communication im-
plement specific transitions in the channel model.
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L5 A sender may initiate a backwards event (H6 in HP) if it is inthe backtracking state and “holds”
the token (Trans4).

Notice that the sender’s time did not change; the time will change when the sender transitions from
backwards to forwards operation (see H8)

L6 A backtracking channel receiver may acknowledge the backwards transaction (Trans5).

L7 A receiver that is backtracking may need to signal a senderthat it wishes to backtrack (Trans8).

Notice this simply raises a flag requesting a backtracking event. It is up to the sender to pay
attention by requesting a backwards communication event (after entering the backtracking state if
necessary).

L4 Finally, a receiver may reject a request for forward communication (this should only occur if the
receiver is backtracking) (Trans3). Notice that in this casets > tr .

5.2.1 Retracting Forward Requests

As discussed in Sec. 4, we have special actions that allow a blocked sender or receiver to request back-
ward communication.

L8 If the sender is blocked, it may ask the receiver to allow itto retract the communication request –
this should only be executed where the sender has been requested to backtrack through some other
channel (Trans6).

L9 The receivermayallow the sender to retract the communication (Trans7) or it may acknowledge
the communication using the rule L2 above. We have a proof obligation to show that thens is
executingsend ℓ v wheneverℓ.s.d = I . Furthermore, we have an obligation to show thatts > tr .

L10 Once a sender has been permitted to retract its request, it may return to the sending state from
which it is free to respond to requests to backtrack. However, it is important to note that the
receivermayhave completed the request (L3). These two cases are coveredby the invariant in our
SAL model.

5.2.2 Initiating and Exiting Backtracking

There are two ways a process can begin backtracking – explicitly through abacktrack command in the
program text or spontaneously. The low-level semantic rulefor explicitly entering the backtracking state
is the same as the high level rule (H5). However, because communication involves a series of protocol
steps, we restrict spontaneous backtracking to the case where a process has no outstanding send request
(i.e. it is not in thesend state).2 Note that the rule L8 allows a blocked sender to request retraction of an
outstanding request and hence transition to a state where this side condition is satisfied.

Finally, we need a rule that allows a process to exit the backtracking state – H8 with constraints. The
conditions on timestamps are the same, but send channels arerequired to be in a quiescent state. Since
the receiver can only change the timestamp when it has the token (non-quiescent state), this predicate
can safely be evaluated sequentially. For processn1 and channell this side condition is (H8 Condition)
in the figure. Although checking this condition requires testing the state of all the process’ channels,
the channel protocol guarantees that if a channel satisfies the necessary condition then that property is

2Our Scala implementation further restricts spontaneous backtracking transitions to situations where a neighbor is back-
tracking; however, that does not alter the underlying model.
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stable. Note that for send channels we require that the sender holds the token, and receive channels we
require that the process has not requested further backtracking (this may occur in the model, with its
non-determinism, but does not occur in our implementation).

6 Conclusion

We have introduced a CSP based language supporting reversible distributed computing along with two
semantic models – a high-level model in which synchronous events are modeled by transitions that affect
two processes simultaneously, and a low-level model in which transitions affect a single process. These
two models are related by a verified communication protocol which is the basis for the finer grained
transitions of the low-level model. We outlined a refinementmapping that we developed proving that the
low-level model implements the high-level model. This proof required the invariants of the protocol that
were verified with the SAL model checker. We have also proved that the high-level model obeys sensible
causal ordering properties even in the face of backtracking.

While our Scala language implementation is somewhat richerthan the simple models presented here
(e.g., it supports communication choice, and dynamic process and channel creation); at its core it is im-
plemented exactly as indicated by our low-level model. Channels are implemented via message passing
where the messages carry the channel state of our protocol. Processes are implemented as Java threads.
Processes learn that their peers wish to backtrack by examining the (local) state of their channels. Stable
sections consist of: saving the channel timestamps on the context stack, executing the stable code in
a try/catch block, and popping the stack; backtracking is implemented by throwing an exception. The
implementation required approximately 1200 lines of code.3

This paper provides clear evidence that implementing reversible communicating processes in a dis-
tributed manner is both feasible and, from the perspective of communication overhead, relatively effi-
cient. We note that our high-level model is somewhat unsatisfying because it exposes the programmer to
the mechanics of backtracking. In our current model, even when a process has decided that it wishes to
backtrack, its peers may continue forward execution for a period during which they may learn from their
peers. If we were to restrict our attention to traditional roll-back recovery, where nothing is “learned”
from unsuccessful forward execution, this could easily be abstracted. We continue to work towards a
“compromise” between traditional rollback and the unrestricted model we have presented.
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