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We propose a calculus for asynchronous multiparty sessions where input choices with different

senders are allowed in processes. We present a type system that accepts such input races provided

they do not hinder lock-freedom.

1 Introduction

The foundational work on multiparty sessions [11] introduced the notion of global type for specifying

the overall behaviour of multiparty protocols. The criterion for a session implementation to be correct

with respect to its specification was formalised via the notion of projection: each process implementing

the behaviour of a session participant was required to type-check against the local type obtained by

projecting the global type on that participant.

However, the work [11] imposed strong restrictions on the syntax of global types, requiring all initial

communications in the branches of a choice to have the same sender and the same receiver, and every

third participant1 to have the same behaviour in all branches. Although these were useful simplifying

assumptions in order to achieve multiparty session correctness, they limited the expressiveness of global

types, ruling out relevant protocols. For this reason, more permissive choice constructors were investi-

gated in subsequent work [1, 2, 9, 16, 13, 3, 5, 14, 10, 17]. A widely adopted relaxation of the choice

operator, originally proposed in [1], allows third participants to behave differently in different branches,

provided they are notified of which branch has been chosen. Later proposals [9, 16, 13] accommodate

processes with output choices among different receivers, for instance a client choosing among different

servers. On the other hand input races, namely input choices among different senders, continued to be

considered as problematic. As a consequence, common protocols such as a server shared by different

clients could not be specified by means of global types.

Recent proposals introduce more flexibility in input choices for processes [3, 5, 14, 10, 17]. The

work [10] defines the property of race-freedom for sessions as the absence, at any stage of computation,

of a branching between communications from different senders towards the same receiver leading to

distinct target states. A rather permissive type system is proposed, which is shown to be both sound and

complete for a range of liveness properties when restricting attention to race-free sessions. The work [14]

also addresses the input race problem, referred to as the “+-problem” there. While the proposed syntax

for global and local types is completely free, two well-formedness conditions are imposed on types,

*This research has been supported by the ANR17-CE25-0014-01 CISC project.
†This original research has the financial support of the Università del Piemonte Orientale.
1We call “third participant” any participant which is not involved in the first communication of a branch.
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which are meant to prevent dangerous races. Sessions are synchronous in [10, 14] and asynchronous

in [17], which is the work that is closest to ours. In that paper, input races are allowed under sophisticated

conditions on projections of global types. These conditions track causalities between messages, and their

soundness proof uses novel graph-theoretic techniques from the theory of message-sequence charts.

Consider for example the following session, where two participants p and q send concurrently a

message to a third participant r, which is ready to receive both messages in any order:

Example 1.1 (Confluent input race) p[[ r!ℓ ]] ‖ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ ]]

No matter whether communication is synchronous or asynchronous, this session incurs a race2. However,

this race may be viewed as innocuous since after any branch is chosen, the input of the other branch is

still available, leading to the same target state. Indeed, the race consists here of a choice between two

different sequentialisations of concurrent inputs3. This kind of input race will be called confluent. The

above session is well typed in [14], but not in [10, 17], where the syntax of global types forbids different

senders in a choice. In [10], this session is also ruled out by the race-freedom condition.

By contrast, the following asynchronous session, where there is an apparent input race in the process

of participant r, is actually race-free according to [10] because it cannot evolve to a state in which

both inputs of r are simultaneously enabled. This kind of uneffective input race, which results from an

agreement between the senders such that in every computation only one of them sends a message to the

receiver, will be called fake.

Example 1.2 (Fake input race in asynchronous session)

p[[q!a;q?a;(q!ℓ; r!b⊕q!ℓ′) ]] ‖ q[[p!a;p?a;(p?ℓ+p?ℓ′; r!b) ]] ‖ r[[p?b+q?b ]]

This session implements the following protocol between Alice, Bob and Carol, represented by partic-

ipants p, q and r respectively:

• Alice and Bob send each other the message “I arrived” and then they read their messages;

• Alice sends Bob either the message “I will tell Carol”, after which she sends Carol the message “We

arrived”, or the message “Please tell Carol”;

• Bob reads either the message “I will tell Carol”, or the message “Please tell Carol” after which he

sends Carol the message “We arrived”;

• Carol reads the message “We arrived” with sender either Alice or Bob.

The session of Example 1.2 cannot be typed in [14, 10, 17] because the syntax of global types does not

allow two participants to exchange messages by first performing both outputs and then both inputs. If

we omit the initial exchange of messages between Alice and Bob, the resulting session can be typed

in [10, 17] but not in [14].

Our goal is to devise a type system for asynchronous sessions that is permissive enough to accept the

sessions of Example 1.1 and Example 1.2, while rejecting dangerous races that could lead to deadlock or

starvation. In particular, we will not be able to type the sessions discussed in the introductions of [14, 17],

since they both have a possibility of starvation.

For typing asynchronous sessions we use global types that split communications into outputs and

inputs, following the approach advocated in [4, 7]. For instance, the session of Example 1.2 has the fol-

lowing global type: p!q.a;q!p.a;p?q.a;q?p.a;p!{q.ℓ;G1 , q.ℓ
′;G2} where G1 = p!r.b;q?p.ℓ; r?{p.b , q.b}

and G2 = q?p.ℓ′;q!r.b; r?{p.b , q.b}. Here p!q.a denotes a send from p to q of label a, p?q.a denotes a

receive by p from q of label a, p!{q.ℓ;G1 , q.ℓ
′;G2} is an output choice with sender p and receiver q, and

r?{p.b , q.b} is an input choice with receiver r and senders p and q.

2Either initially, if communication is synchronous, or after performing both outputs, if communication is asynchronous.
3If we had a parallel construct | for processes, this situation would be represented as (p?ℓ |q?ℓ′).
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The rest of the paper is organised as follows. In Section 2 we introduce our calculus for asynchronous

sessions. In Section 3 we define the syntax and semantics of global types. In Section 4 we present our

type system, illustrate it with some examples, and establish the properties of Subject Reduction, Session

Fidelity and Lock-freedom. We conclude in Section 5 with a discussion on future and related work.

2 Asynchronous Sessions

We assume the following base sets: participants, ranged over by p,q, r and forming the set Part, and

labels, ranged over by ℓ,ℓ′, . . . and forming the set Lab.

Definition 2.1 (Processes) Processes are defined by:

P ::=ρ 0 |
⊕

i∈I pi!ℓi;Pi | Σi∈Ipi?ℓi;Pi

where I 6= /0 and ph!ℓh 6= pk!ℓk and ph?ℓh 6= pk?ℓk for h,k ∈ I and h 6= k.

A process may be terminated, or it is an internal choice of outputs or an external choice of inputs. The

symbol ::=ρ , in Definition 2.1 and in later definitions, indicates that the productions should be interpreted

coinductively (they define possibly infinite processes) and that we focus on regular terms, namely, terms

with finitely many distinct subterms. In this way, we only obtain processes which are solutions of finite

sets of equations, see [6]. So, when writing processes, we shall use (mutually) recursive equations.

In the following, we will omit trailing 0’s when writing processes.

In a full-fledged calculus, processes would exchange labels of the form ℓ(v), where v is a value. For

simplicity, we consider only pure labels here.

In our calculus, asynchronous communication is handled in the standard way, by storing sent labels

in a queue together with sender and receiver names. Receivers may then fetch messages from the queue

when required. We define messages to be triples 〈p, ℓ,q〉, where p is the sender and q is the receiver, and

message queues (or simply queues) to be possibly empty sequences of messages:

M ::= /0 | 〈p, ℓ,q〉 ·M
The order of messages in the queue is the order in which they will be read. Since the only reading

order that matters is that between messages with the same sender and the same receiver, we consider

message queues modulo the structural equivalence given by:

M · 〈p, ℓ,q〉 · 〈r, ℓ′,s〉 ·M ′ ≡ M · 〈r, ℓ′,s〉 · 〈p, ℓ,q〉 ·M ′ if p 6= r or q 6= s

Sessions are composed by a number of located processes of the form p[[P ]], each enclosed within a

different participant p, and by a message queue.

Definition 2.2 (Networks and Sessions) Networks are defined by:

N= p1[[P1 ]] ‖ · · · ‖ pn[[Pn ]] with ph 6= pk for any h 6= k

Sessions are defined by:

N ‖ M

where N is a network, and M is a message queue.

We assume the standard structural congruence ≡ on networks4, stating that parallel composition is

associative and commutative and has neutral element p[[0 ]] for any fresh p.

If P 6= 0 we write p[[P ]] ∈ N as short for N ≡ p[[P ]] ‖ N′ for some N
′. This abbreviation is justified

by the associativity and commutativity of parallel composition.

To define the operational semantics of sessions, we use an LTS whose transitions are decorated by

outputs or inputs. Therefore, we define the set of input/output communications (communications for

4By abuse of notation, we use the same symbol as for structural equivalence on queues.
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p[[
⊕

i∈I qi!ℓi;Pi ]] ‖ N ‖ M
p!qk .ℓk−−−−→ p[[Pk ]] ‖ N ‖ M · 〈p, ℓk,qk〉 where k ∈ I [SEND]

q[[Σ j∈Jp j?ℓ j;Q j ]] ‖ N ‖ 〈pk, ℓk,q〉 ·M
q?pk .ℓk−−−−→ q[[Qk ]] ‖ N ‖ M where k ∈ J [RCV]

Figure 1: LTS for sessions.

short), ranged over by β , β ′, to be {p!q.ℓ,p?q.ℓ | p,q ∈ Part, ℓ ∈ Lab}, where p!q.ℓ represents the output

of the label ℓ from participant p to participant q, and p?q.ℓ the input by participant p of the label ℓ sent

by participant q.

The LTS semantics of networks, defined modulo ≡, is specified by the two Rules [SEND] and [RCV]
given in Figure 1. Rule [SEND] allows a participant p with an internal choice (a sender) to send to the

participant qk the label ℓk by adding it to the queue. Symmetrically, Rule [RCV] allows a participant

q with an external choice (a receiver) to read the label ℓk sent by participant pk, provided this label is

among the ℓ j’s specified in the choice. Thanks to structural equivalence, the first message from pk to q

that appears in the queue, if any, can always be moved to the top of the queue.

A key role in this paper is played by (possibly empty) sequences of communications. As usual we

define them as traces.

Definition 2.3 (Traces) (Finite) traces are defined by:

τ ::= ε | β ·τ
We use | τ | to denote the length of the trace τ .

When τ = β1 · . . . ·βn (n ≥ 1) we write N ‖ M
τ
−→ N

′ ‖ M ′ as short for

N ‖ M
β1
−→ N1 ‖ M1 · · ·

βn
−→ Nn ‖ Mn = N′ ‖ M ′

We now introduce the notion of player, which is characteristic of asynchronous communication,

where only one of the involved participants is active, namely the sender for an output communication and

the receiver for an input communication. The player of a communication β is the participant who is active

in β . The set of players of a trace is then obtained by collecting the players of all its communications.

Definition 2.4 (Players of communications and traces) We denote by play(β ) the player of a commu-

nication β defined by

play(p!q.ℓ) = play(p?q.ℓ) = p

We denote by Players(τ) the set of players of a trace τ defined by

Players(ε) = /0 Players(β ·τ) = {play(β )}∪Players(τ)

3 Global Types

As in [4, 7], our global types can be obtained from the standard ones [11, 12] by splitting output and

input communications. The novelty is that we allow multiple receivers in output choices and multiple

senders in input choices.

Definition 3.1 (Global types) Global types G are defined by the following grammar:

G ::=ρ p!{qi.ℓi;Gi}i∈I | p?{qi.ℓi;Gi}i∈I | End
where I 6= /0, p 6= qi for all i ∈ I and qh.ℓh 6= qk.ℓk for h,k ∈ I and h 6= k.
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As for processes, ::=ρ indicates that global types are coinductively defined and regular.

The global type p!{qi.ℓi;Gi}i∈I specifies that player p sends the label ℓk with k ∈ I to participant qk

and then the interaction described by the global type Gk takes place. The global type p?{qi.ℓi;Gi}i∈I spec-

ifies that player p receives the label ℓk with k ∈ I from participant qk and then the interaction described

by the global type Gk takes place.

We define Players(G) as the smallest set satisfying the following equations:

Players(End) = /0 Players(p!{qi.ℓi;Gi}i∈I) = Players(p?{qi.ℓi;Gi}i∈I) = {p}∪
⋃

i∈IPlayers(Gi)
The regularity of global types ensures that the sets of players are finite. In Section 2 we used the same

notation for the players of traces. In all cases, the context should make it easy to understand which

function is in use.

To avoid starvation we require global types to satisfy a boundedness condition. To formalise bound-

edness we use ξ to denote a path in global type trees, i.e., a possibly infinite sequence of communications

β . Note that a finite path is a trace in the sense of Definition 2.3. We extend the notation · to denote also

the concatenation of a finite sequence with a possibly infinite sequence. The function Paths gives the set

of paths of a global type, which is the greatest set such that:

Paths(End) = {ε}
Paths(p!{qi.ℓi;Gi}i∈I) =

⋃

i∈I{p!q.ℓi ·ξ | ξ ∈ Paths(Gi)}
Paths(p?{qi.ℓi;Gi}i∈I) =

⋃

i∈I{p?q.ℓi ·ξ | ξ ∈ Paths(Gi)}

If x ∈ N∪{ω} is the length of ξ , we denote by ξ [n] the n-th communication in the path ξ , where

1 ≤ n < x. It is handy to define the depth of a player p in a global type G, depth(G,p).

Definition 3.2 (Depth of a player) Let G be a global type. For ξ ∈ Paths(G) set

depth(ξ ,p) = inf{n | play(ξ [n]) = p}
and define depth(G,p), the depth of p in G, as follows:

depth(G,p) =

{

sup{depth(ξ ,p) | ξ ∈ Paths(G)} p ∈ Players(G)

0 otherwise

Note that depth(G,p)= 0 iff p 6∈Players(G). Moreover, if p 6= play(ξ [n]) for all n∈N, then depth(ξ ,p)=
inf /0 = ∞. Hence, if p is a player of a global type G and there is some path in G where p does not occur

as a player, then depth(G,p) = ∞.

Definition 3.3 (Boundedness) A global type G is bounded if depth(G′,p) is finite for all participants

p ∈ Players(G) and all types G′ which occur in G.

Example 3.4 The following example shows the necessity of considering all types occurring in a global

type for defining boundedness. Consider G= r!q.ℓ;q?r.ℓ;G′, where

G′ = p!{q.ℓ1;q?p.ℓ1;q!r.ℓ3; r?q.ℓ3 , q.ℓ2;q?p.ℓ2;G′}
Then we have: depth(G,p)= 3,depth(G,q)= 2,depth(G, r)= 1, whereas depth(G′,p)= 1,depth(G′,q)=
2,depth(G′, r) = ∞.

Since global types are regular the boundedness condition is decidable.

Global types in parallel with queues, dubbed type configurations, are given semantics by means of

the LTS in Figure 2. The first two rules allow top level outputs and inputs to be performed in the standard

way. The remaining two rules allow communications to be performed inside output and input choices.

These inside rules are needed to enable interleaving between independent communications despite the

sequential structure of global types. For example, we want to allow p!q.ℓ; r!s.ℓ′ ‖ /0
r!s.ℓ′

−−→ p!q.ℓ ‖ 〈r, ℓ′,s〉
when p 6= r, because, intuitively, outputs performed by different players should be independent. This
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[TOP-OUT]

p!{qi.ℓi;Gi}i∈I ‖ M
p!qh.ℓh−−−−→ Gh ‖ M · 〈p, ℓh,qh〉

h ∈ I

[TOP-IN]

p?{qi.ℓi;Gi}i∈I ‖ 〈qh, ℓh,p〉 ·M
qh?p.ℓh−−−−→ Gh ‖ M

h ∈ I

[INSIDE-OUT]
Gi ‖ M · 〈p, ℓi,qi〉

β
−→ G′

i ‖ M
′ · 〈p, ℓi,qi〉 ∀i ∈ I

p!{qi.ℓi;Gi}i∈I ‖ M
β
−→ p!{qi.ℓi;G

′
i}i∈I ‖ M

′
p 6= play(β )

[INSIDE-IN]
G j ‖ M

β
−→ G′

j ‖ M
′ ∀ j ∈ J

p?{qi.ℓi;Gi}i∈I ‖ M
β
−→ p?{qi.ℓi;G

′
i}i∈I ‖ M

′

J = rm({〈qi, ℓi,p〉}i∈I,M ) 6= /0

p 6= play(β ) β 6= ql!p.ℓl

G′
l = Gk k ∈ J ∀l ∈ I\J

Figure 2: LTS for type configurations.

justifies the condition p 6= play(β ) in Rules [INSIDE-OUT] and [INSIDE-IN]. In Rule [INSIDE-OUT] we

require all branches to be able to perform the β transition. This avoids for example:

p!{q.ℓ;q?p.ℓ; r!p.ℓ;p?r.ℓ , q.ℓ′;q?p.ℓ′; r!p.ℓ′;p?r.ℓ′} ‖ /0
r!p.ℓ
−−→

p!{q.ℓ;q?p.ℓ;p?r.ℓ , q.ℓ′;q?p.ℓ′; r!p.ℓ′;p?r.ℓ′} ‖ 〈r, ℓ,p〉
which, in case we choose the right branch, leads to the configuration p?r.ℓ′ ‖ 〈r, ℓ,p〉 · 〈r, ℓ′,p〉.

The shapes of the queues appearing in the premise of Rule [INSIDE-OUT] ensure that β is not the

matching input for any output in the choice. In Rule [INSIDE-IN], we consider only the branches with

corresponding messages on top of the queue (called live branches), using the index set of ready messages

rm({〈qi, ℓi,p〉}i∈I ,M ) defined as follows, where m ranges over messages.

Definition 3.5 Given a set of messages {mi}i∈I and a queue M , the index set of the “ready messages”

in this set is defined by: rm({mi}i∈I ,M ) = {i ∈ I | M ≡mi ·Mi}.

The mapping rm plays a crucial role also in the typing rule for input choices, as we will see in Section 4.

The condition J 6= /0 means that there is at least one live branch. The condition β 6= ql!p.ℓl for all l ∈ I\J

ensures that the occurrence of β does not generate a message that would “awaken” some dead, i.e. not

live, branch of the choice. In the resulting choice, the dead branches become an arbitrary live branch

(condition G′
l = Gk for some k ∈ J and for all l ∈ I\J). In fact, such branches could also be omitted as

they can never be awaken.

It is easy to check that the LTS of type configurations preserves boundedness of global types. There-

fore, from now on we will assume all our global types to be bounded.

4 Type System

Global types are an abstraction of sessions. Usually, global types are projected to participants, yielding

local types which are assigned to processes. The simplicity of our calculus and the flexibility of our

global types allow us to formulate a type system where global types are directly derived for sessions,

using judgements of the form G ⊢ N ‖ M . The typing rules are given in Figure 3.

Rules [OUT] and [IN] just add simultaneously outputs and inputs to global types and to the cor-

responding processes inside networks. The condition Players(Gi) \ {p} = Players(N) for all i ∈ I en-

sures that all players in N are also players in G. For example, this condition prevents the derivation of
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[END]
End ⊢ p[[0 ]] ‖ /0
=============

[OUT]
Gi ⊢ p[[Pi ]] ‖N ‖ M · 〈p, ℓi,qi〉 Players(Gi)\{p}= Players(N) ∀i ∈ I

p!{qi.ℓi;Gi}i∈I ⊢ p[[
⊕

i∈I

qi!ℓi;Pi ]] ‖ N ‖ M

==================================================================

[IN]

G j ⊢ p[[Pj ]] ‖ N ‖ M j ι(G j,M) ∀ j ∈ J

Players(Gi)\{p}= Players(N) ∀i ∈ I

p?{qi.ℓi;Gi}i∈I ⊢ p[[Σh∈Hqh?ℓh;Ph ]] ‖ N ‖ M

========================================

J = rm({〈qi, ℓi,p〉}i∈I,M )
= rm({〈qh, ℓh,p〉}h∈H ,M ) 6= /0

M ≡ 〈q j, ℓ j,p〉 ·M j ∀ j ∈ J

M= {〈ql , ℓl ,p〉 | l ∈ (I ∪H)\ J & ql 6= q j ∀ j ∈ J}

Figure 3: Typing rules for sessions.

G ⊢ p[[P ]] ‖ q[[Q ]] with G= p!q.ℓ;G and P = q!ℓ;P and Q arbitrary.

Rule [OUT] considers all branches of the global type, since the choice of the sent message is arbitrary.

This rule requires that the session resulting from the output of a branch be typed with the corresponding

branch of the global type.

Rule [IN] requires that the global type and the process read the same messages on the queue. To

this end, it uses the index set of ready messages defined in Definition 3.5, collecting the indices of

the live branches of the global type and of the input process5, and asking them to be equal (condition

rm({〈qi, ℓi,p〉}i∈I ,M ) = rm({〈qh, ℓh,p〉}h∈H ,M ). This set of indices must not be empty (condition

J 6= /0). Only the branches of the global type and of the input process thus selected are compared in the

premises of Rule [IN]. Note that in this way we allow more freedom than in the synchronous subtyping

for session types [8]. In Rule [IN], in order to ensure the condition β 6= ql!p.ℓl for all l ∈ I\J required by

the transition Rule [INSIDE-IN], we want to prevent the enqueuing of messages that would transform a

dead branch of the process or of the global type into a live branch. To this end, we introduce a predicate

which forbids a global type to generate such messages. Let M range over sets of messages.

Definition 4.1 The type G is inactive for the set of messages M, if ι (G,M) holds, where:

ι(End,M) ι(p?{qi.ℓi;Gi}i∈I ,M) if ι(Gi,M) ∀i ∈ I

ι(p!{qi.ℓi;Gi}i∈I ,M) if 〈p, ℓi,qi〉 6∈M and ι(Gi,M) ∀i ∈ I

The predicate ι (G,M) looks for outputs in G which produce messages in M. The regularity of global

types guarantees the computability of this predicate. Notice that ι(G,M) also ensures that the network

cannot produce messages in M. This is due to the typing Rule [OUT] prescribing that messages put on

the queue by the global type be the same as the ones of the network.

For example consider the following sequence of transitions

q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉
q!r.ℓ′

−−−→ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉 · 〈q, ℓ′, r〉
r?q.ℓ′

−−−→ r[[p?ℓ′ ]] ‖ 〈p, ℓ, r〉
Since the input and the message in r[[p?ℓ′ ]] ‖ 〈p, ℓ, r〉 do not match, this session cannot be typed and

therefore also the session q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′ + q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉 should not be typable. Without

checking the inactivity predicate we can type this session by the global type

(∗) r?{p.ℓ;q!r.ℓ′; r?q.ℓ′,q.ℓ′;q!r.ℓ′; r?p.ℓ′}

5As for global types, a branch of the input process is live if it has a corresponding message on top of the queue, and dead

otherwise.
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as follows:
End ⊢ r[[0 ]] ‖ /0

===================
r?q.ℓ′ ⊢ r[[q?ℓ′ ]] ‖ 〈q, ℓ′, r〉

==========================
q!r.ℓ′; r?q.ℓ′ ⊢ q[[ r!ℓ′ ]] ‖ r[[q?ℓ′ ]] ‖ /0

============================================================
r?{p.ℓ;q!r.ℓ′; r?q.ℓ′,q.ℓ′;q!r.ℓ′; r?p.ℓ′} ⊢ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉

The problem here is that Rule [IN] does not check the dead branches of the global type. The role of

the inactivity predicate is just to ensure that the transitions will not awake dead branches. This is done

by checking the outputs in the live branches. In this example the output q!r.ℓ′ is in the branch starting

with the input r?p.ℓ and the queue contains 〈p, ℓ, r〉. So the typing Rule [IN] cannot be applied since

ι (q!r.ℓ′; r?q.ℓ′,{〈q, ℓ′, r〉}) does not hold.

Notice that the session in Example 1.1 has the transition

p[[ r!ℓ ]] ‖ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ ]] ‖ /0
p!r.ℓ
−−→ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ ]] ‖ 〈p, ℓ, r〉

and the resulting session differs from that of the previous example only for the label of the last input.

Correspondingly, the global types r?{p.ℓ;q!r.ℓ′; r?q.ℓ′ , q.ℓ′; r?p.ℓ} and r?{p.ℓ;q!r.ℓ′; r?q.ℓ′ , q.ℓ′; r?p.ℓ′}
only differ for the labels of the underlined inputs. Therefore r?{p.ℓ;q!r.ℓ′; r?q.ℓ′ , q.ℓ′; r?p.ℓ} cannot be

derived for the session q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′ + q?ℓ′;p?ℓ ]] ‖ 〈p, ℓ, r〉, since as we just saw the predicate

ι (q!r.ℓ′; r?q.ℓ′,{〈q, ℓ′, r〉}) does not hold. In fact, this is expected since the session can do a transition
q!r.ℓ′

−−−→ that the type configuration cannot mimic. On the other hand, this session can be typed by the

global type

q!r.ℓ′; r?{p.ℓ; r?q.ℓ′ , q.ℓ′; r?p.ℓ}
as follows:

End ⊢ r[[0 ]] ‖ /0
===================
r?q.ℓ′ ⊢ r[[q?ℓ′ ]] ‖ 〈q, ℓ′, r〉

End ⊢ r[[0 ]] ‖ /0
=================
r?p.ℓ ⊢ r[[p?ℓ ]] ‖ 〈p, ℓ, r〉

==================================================
r?{p.ℓ; r?q.ℓ′ , q.ℓ′; r?p.ℓ} ⊢ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ ]] ‖ 〈p, ℓ, r〉 · 〈q, ℓ′, r〉

=======================================================
q!r.ℓ′; r?{p.ℓ; r?q.ℓ′ , q.ℓ′; r?p.ℓ} ⊢ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ ]] ‖ 〈p, ℓ, r〉

In this derivation Rule [OUT] is applied first, and thus Rule [IN] is applied only when the queue contains

the matching messages for both branches. Therefore Rule [IN] checks the continuations of both branches,

and the inactivity predicate holds trivially for each of them.

Notice that bringing forward the output from q to r in the global type (∗) does not enable us to type:

q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉
In fact, we cannot complete the derivation:

End ⊢ r[[0 ]] ‖ /0
===================
r?q.ℓ′ ⊢ r[[q?ℓ′ ]] ‖ 〈q, ℓ′, r〉 r?p.ℓ′ ⊢ r[[p?ℓ′ ]] ‖ 〈p, ℓ, r〉

===================================================
r?{p.ℓ; r?q.ℓ′ , q.ℓ′; r?p.ℓ′} ⊢ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉 · 〈q, ℓ′, r〉

========================================================
q!r.ℓ′; r?{p.ℓ; r?q.ℓ′ , q.ℓ′; r?p.ℓ′} ⊢ q[[ r!ℓ′ ]] ‖ r[[p?ℓ;q?ℓ′+q?ℓ′;p?ℓ′ ]] ‖ 〈p, ℓ, r〉

Indeed, we cannot apply Rule [IN] to derive the top right judgement r?p.ℓ′ ⊢ r[[p?ℓ′ ]] ‖ 〈p, ℓ, r〉, since the

only input does not match the message in the queue.

We can also type the following recursive version of Example 1.1:

p[[P ]] ‖ q[[Q ]] ‖ r[[R ]]
where P = r!ℓ;P, Q = r!ℓ′;Q and R = p?ℓ;q?ℓ′;R+q?ℓ′;p?ℓ;R. A suitable global type is

G= p!r.ℓ;q!r.ℓ′; r?{p.ℓ; r?q.ℓ′;G , q.ℓ′; r?p.ℓ;G}
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as shown by the following derivation:
...

=====================
G ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[R ]] ‖ /0

==================================
r?q.ℓ′;G ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[q?ℓ′;R ]] ‖ 〈q, ℓ′, r〉

...
=====================
G ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[R ]] ‖ /0

=================================
r?p.ℓ;G ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[p?ℓ;R ]] ‖ 〈p, ℓ, r〉

========================================================================
r?{p.ℓ; r?q.ℓ′;G , q.ℓ′; r?p.ℓ;G} ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[R ]] ‖ 〈p, ℓ, r〉 · 〈q, ℓ′, r〉
=====================================================
q!r.ℓ′; r?{p.ℓ; r?q.ℓ′;G , q.ℓ′; r?p.ℓ;G} ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[R ]] ‖ 〈p, ℓ, r〉
===================================================

G ⊢ p[[P ]] ‖ q[[Q ]] ‖ r[[R ]] ‖ /0

Our type system enjoys the properties of Session Fidelity and Subject Reduction. Moreover, it en-

sures the semantic property of Lock-freedom. Since every participant can freely perform outputs, to

prove this property we only have to show that all inputs can be enabled. For lack of space we only give

the most interesting case in the proof of Subject Reduction.

Theorem 4.2 (Session Fidelity) If G ⊢ N ‖ M and G ‖ M
β
−→ G′ ‖ M ′, then N ‖ M

β
−→ N

′ ‖ M ′ and

G′ ⊢ N
′ ‖ M ′.

Theorem 4.3 (Subject Reduction) If G ⊢N ‖M and N ‖M
β
−→N

′ ‖ M ′, then G ‖M
β
−→ G′ ‖ M ′ and

G′ ⊢ N
′ ‖ M ′.

Proof. The proof is by induction on d = depth(G,p) where p= play(β ). Notice that N ‖ M
β
−→N

′ ‖ M ′

implies p ∈ Players(N), which together with G ⊢N ‖ M implies p ∈ Players(G). Then d > 0. Moreover

d is finite since G is bounded.

Let d > 1 and G= r?{qi.ℓi;Gi}i∈I with r 6= p. Since G ⊢N ‖M must be derived using Rule [IN], we get:

N≡ r[[Σh∈Hqh?ℓh;Rh ]] ‖ N0 G j ⊢ r[[R j ]] ‖ N0 ‖ M j for all j ∈ J ι(G j,M) for all j ∈ J

where J = rm({〈qi, ℓi,p〉}i∈I ,M ) = rm({〈qh, ℓh,p〉}h∈H ,M ) and M ≡ 〈q j, ℓ j, r〉 ·M j for all j ∈ J and

M = {〈ql , ℓl, r〉 | l ∈ (I ∪ H) \ J & ql 6= q j ∀ j ∈ J}. The condition r 6= p ensures that the transition

N ‖ M
β
−→ N

′ ‖ M ′ does not modify the process of participant r and does not dequeue any message with

receiver r from M . Therefore we get N′ ≡ r[[Σh∈Hqh?ℓh;Rh ]] ‖N
′
0 and M ′ ≡ 〈q j, ℓ j, r〉 ·M

′
j for all j ∈ J.

Moreover the transition can be done also if the process Σh∈Hqh?ℓh;Rh is replaced by an arbitrary process

and top messages with receiver r are dequeued. Therefore

r[[R j ]] ‖N0 ‖ M j
β
−→ r[[R j ]] ‖N

′
0 ‖ M ′

j for all j ∈ J

It is easy to verify that depth(G j,p) < depth(G,p). Then by induction we get G j ‖ M j
β
−→ G′

j ‖ M ′
j

and G′
j ⊢ r[[R j ]] ‖ N

′
0 ‖ M ′

j for all j ∈ J. Let G′ = r?{qi.ℓi;G
′
i}i∈I where G′

l = G j0 for some j0 ∈ J and

all l ∈ I\J. From G j ‖ M j
β
−→ G′

j ‖ M ′
j we get G j ‖ M

β
−→ G′

j ‖ M ′ for all j ∈ J. Then we derive

G ‖ M
β
−→ G′ ‖ M ′ by Rule [INSIDE-IN]. The condition ι (G j,M) for all j ∈ J ensures that M ′ cannot

contain a message 〈qk, ℓk, r〉 with k ∈ (I ∪H) \ J and qk 6= q j for all j ∈ J. The condition r 6= p ensures

that the transition
β
−→ cannot dequeue a message with r as receiver. Hence rm({〈qh, ℓh,p〉}h∈H ,M

′) = J.

It is easy to verify that ι (G j,M) implies ι (G′
j,M) for all j ∈ J. From G′

j ⊢ r[[R j ]] ‖N
′
0 ‖M ′

j for all j ∈ J

we get Players(G′
i) \ {r} = Players(N′

0) for all i ∈ I. Then all premises of Rule [IN] hold and we can

derive G′ ⊢N
′ ‖ M ′. �

Theorem 4.4 (Lock-freedom) If G ⊢ N ‖ M and p[[P ]] ∈ N, then N ‖ M
τ ·β
−−→ with play(β ) = p for

some τ , β .



I. Castellani, M. Dezani-Ciancaglini and P. Giannini 21

As expected, since queues in type configurations can arbitrarily grow, our type system is undecidable.

Theorem 4.5 (Undecidability) Typing is undecidable.

In order to recover from this undecidability result, we can define an inductive version of typing, thus

obtaining a sound algorithm. This inductive definition follows the standard pattern to deal with regular

structures for global types, and it requires the same queue at the beginning and at the end of each cycle.

5 Related Work and Conclusion

We proposed flexible choice operators for an asynchronous multiparty session calculus, in order to ensure

the classical session correctness properties for a larger class of protocols than is usually done. Several

other proposals for relaxing the constraints of the original choice operator of [11] were already mentioned

in Section 1. We now discuss some of them in more detail.

In [3], which builds on [13], we pushed this flexibility even further by allowing input choices with

different senders in processes, without restrictions. The same approach was followed in [5]. However,

this liberal approach turned out to be incorrect, as pointed out in [10], as it allows the following (syn-

chronous) network to be typed, while it is not deadlock-free. Indeed, this network can reach a deadlock

if p chooses its second branch, leading both s and t to choose their second branch too. Then, if r chooses

its first branch, it will be unable to complete it.

p[[ (s!a;t!a; r!d)⊕ (s!b;t!b) ]] ‖ r[[ (s?c;t?e;p?d)+ (t?e;s?c) ]] ‖
s[[ (p?a; r!c)+ (p?b; r!c) ]] ‖ t[[ (p?a; r!e)+ (p?b; r!e) ]]

In fact, this session is not race-free according to the race-freedom condition proposed in [10]. Note that

the asynchronous session obtained by composing this network with the empty queue is not typable in

our type system. Indeed, its typability would contradict Subject Reduction or Lock-freedom, since it has

the derivative r[[p?d ]] ‖ /0 which is stuck. This session cannot be typed in [14] either, since participant

r does not satisfy the required well-formedness conditions. Also the type system of [17] rejects this

session, the reason being that participant r can read the same message in more than one branch. More

precisely, participant r can read the message c from participant s and the message e from participant t

in both branches. This control is realised by annotating projections with the set of available messages.

We take advantage of queues in type configurations for a similar but less refined control, which uses the

predicate ensuring that a global type is inactive for a given set of messages.

As future work, we plan to investigate three different variations of our typing. The first one would

be a weakening of condition ι(G,M) in Rule [IN], taking into account the order of sent messages and

the expected inputs. The second one would be a strengthening of our typing in order to forbid orphan

messages. The last one would be a weakening of our typing in order to allow optional participants in the

branches of choices, possibly using connecting communications as in [13, 3].

Another direction that would be worth investigating is the relationship between our approach and

input races for sessions based on Classical Linear Logic, see [15, 18].

To make our type system more efficient we will design two algorithms, taking inspiration from [7],

one for inferring global types for networks and the other one for checking the correctness of global types

for queues, allowing also cycles in which queues increase.
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