Modeling Hybrid Systemsin the Concurrent Constraint
Paradigm

Damian Adalid Maria del Mar Gallardo Laura Titolo

Dept. Lenguajes y Ciencias de la Computacion
E.T.S.I. Informatica University of Malaga

[damian,gallardo,laura.titolo]@lcc.uma.es

Hybrid systems, which combine discrete and continuous ijes require quality modeling lan-
guages to be either described or analyzed. The Concurrershi@mnt paradigmacp) is an expres-
sive declarative paradigm, characterized by the use of areamtonstraint store to communicate
and synchronize concurrent agents. In this paradigm, fleenration is stated in the form of con-
straints, in contrast to the variable/value style typidahmperative languages. Several extensions of
ccp have been proposed in order to model reactive systems. Othesd extensions is the Timed
Concurrent Constraint Languagedp) that adds t@cpa notion of discrete time and new features to
model time-out and preemption actions.

The goal of this paper is to explore the expressive powéraifto describe hybrid systems. We
introduce the languagey-tccpas a conservative extensionto€p, by adding a notion of continuous
time and new constructs to describe the continuous dynamhisgbrid systems. In this paper, we
present the syntax and the operational semantiegydtcptogether with some examples that show
the expressive power of our new language.

1 Introduction

In the last years, concurrent, reactive and hybrid systeane hecome essential to model a large number
of modern applications. Often, systems of this kind aresifi@sl as critical, i.e., an error in the software
can have tragic consequences in terms of human lives or moheyis the case of avionic or automotive
software, e-banking, or financial applications.

Description, verification and analysis of concurrent arattiee systems are very hard tasks, due
to the concurrent execution of different agents and to ssafiesynchronization. In the case of hybrid
systems, these phases are even harder due to the combiofatiizcrete and continuous dynamics and
the presence of real-valued variables. Therefore, it iomant to develop high-level description lan-
guages that allow these systems to be modeled with enougtsipreand at the same time that ease the
application of formal methods techniques.

Many formalisms have been developed to describe concussetéms. One of these is ti@on-
current Constraint paradigngccp [10], a simple but powerful model for concurrent systenidiffers
from other paradigms mainly due to the notion of store-asstraint that replaces the classical store-
as-valuation model. In this paradigm, the agents runninganallel communicate by means of a global
constraint store. Th&imed Concurrent Constraint Languaff] (tccpin short) is a concurrent logic lan-
guage obtained by extendimgp with the notion of time and a suitable mechanism to model timts
and preemptions.

*This work has been supported by the Andalusian Excellencie&P11-TIC7659 and the Spanish Ministry of Economy
and Competitiveness project TIN2012-35669

S. Escobar (Ed.): XIV Jornadas sobre Programacion © Adalid, Gallardo & Titolo
y Lenguajes, PROLE 2014, Revised Selected Papers This work is licensed under the
EPTCS 173, 2015, pp. I315, doi:10.4204/EPTCS.173.1 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.173.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

In this paper, we present the languagg-tccp an extension ofccp over continuous time.Hy-
tccpis a non-deterministic and synchronous language thatpocates continuous variables that follow
dynamics determined by an ordinary differential equat®D®E). Its declarative nature facilitates a high
level description of hybrid systems in the style of hybridcemata [8]. Furthermore, its logical nature
facilitates the development of semantics based progranmpmiation tools for hybrid systems (verifiers,
analyzers, debuggers...). Parallel composition of hyhtitbmata is naturally supported iy-tccp
due to the existence of a global shared store and to the symizhtion mechanism inherited frotocp.

By defining Hy-tccp we show that the extension of a declarative constraintuagg with continuous
dynamics is not only possible, but it leads to a powerful aqmiessive language able to describe complex
hybrid systems.

In this paper, we have only considered the modeling of nmattéd [5] hybrid systems, i.e., systems
whose continuous variables follow a constant dynamics. @é¥aw in the future we aim to relax this
restriction in order to describe more complex dynamics sigcthose defined by rectangular sets.

The paper is organized as follows. In Sectidn 2, we brieflyoohice the languag&cp and the
essential aspects of hybrid automata. In Se¢fion 3, wednt® the new languagey-tccptogether with
its operational semantics, and we describe the new feathatshave been added tocp in order to
model hybrid systems. Sectibh 4 contains some examplegldigtit the expressive power efy-tccp.
Section[b presents some related work and, finally, Setlioanélades the paper and outlines future
work.

2 Background

In this section we present some background to clarify théritarions of the paper. In Subsectibnl2.1,
we introduce the languagecp, the starting point for the definition afy-tccp. In Subsectiof 212, we
introduce the basic notions of hybrid automata, which isoh@alism commonly used to describe hybrid
systems.

2.1 TheTimed Concurrent Constraint Language

The Timed Concurrent Constraint Languagecp, [2]) is a time extension ofcp It adds toccp the
notion of time and the ability to capture the absence of mfation. With these features, one can specify
behaviors typical of concurrent and reactive systems.

The computation iriccp proceeds as the concurrent execution of several agentsahahonotoni-
cally add constraints in a globatoreor query information from it. As are all the languages frora ¢h
paradigmtccpis parametric w.r.t. &ylindric constraint system

DEFINITION 2.1 (CYLINDRIC CONSTRAINT SYSTEM [I2]) A cylindric constraint system is an alge-
braic structure of the form:

C=(C, <, A, true, false Var, 3)
such that:

1. (C, <, A, true, false) is a complete lattice where s the least upper bound (lub) operator, and true
and false are, respectively, the least and the greatesteziesiofC. We often use the inverse order
+ (theentailmentrelation) instead ok over constraints. Formallyyc,d eC c<d < d+c.

2. Var is a denumerable set of variables.

Adalid, Gallardo & Titolo 3

3. For each element«Var, a function (also called cylindric operatosy:C — C is defined such that,
for any ¢d € C the following axioms hold:

(@) cr3xcC

(b) if c+d then3ycr 3xd
() 3x(caIxd) = 3xcA Ixd
(d) 3x(3yc) = Fy(3xc)

The entailment relatior intuitively states that i€ contains more information thahthenc+ d. The
lub operatorn merges the information from two constraints (exg-0AX>5Ay=9:=x>5Ay=9 and
x=0AX=7:=false. The cylindrification (or hiding) operator is defined in terms of a general notion
of existential quantifier. It is used to project away infotima about the considered variable in order to
make it local to the constraint and hide it from the contexg.(@x(x=0Ay=XxAz>7):=y=0A2z>7).

Thetccpglobal store isnonotonicin the sense that once a constraint is added to the storeynibta
be removed. Thus, given the stote 0Ay > 2 we can add the informatioxn> 5 and obtain the store
x>5Ay> 2. Furthermore, by adding= 0 we obtain the inconsistent stdadsesince the constraint=0
is in contradiction with the information already presenttia store.

The syntax otccpagents is given by the grammar:

A:=stop|tell(c) | A|| A| IxA| XL ask(ci) = A| now cthen Aelse A| p(X)

wherec, c1,...,Cy are finite constraints if, p is a process symbol, amd Var x --- x Var. A tccpprogram
is a pairD. A, whereA is the initial agent an® is a set ofprocess declarationsf the formp(X) : -A.

Theoperational semanticsf tccp[2] is described by a transition systefn= (Conf,—). Configura-
tions in Conf are pairs(A, c) representing the ageAtto be executed in the current global stareThe
transition relation- c Confx Conf is the least relation satisfying the rules in Figlle 1. Eaahdition
step takes exactly one time-unit. The notion of time is idtreed by defining a global clock which
synchronizes all agents.

As can be seen from the rules, #tep agent represents the successful termination of the computa
tion. Thetell(c) agent adds the constrainto the current store by means of theperator and then stops.
It takes one time-unit, thus the constrairit visible to the other agents from the following time ingtan
The choice agerit! ; ask(c;) — A; consults the store and non-deterministically executebégbllowing
time instant) one of the agentg whose corresponding guacdis entailed by the current store; other-
wise, if no guard is entailed by the store, the agent suspértus conditional agentow c then Aelse B
behaves (in the current time instant) like(respectivelyB) if ¢ is (respectively is not) entailed by the
store. This conditional agent is able to procasgative informatior{lack of some information): it can
capture when some information is not present in the stoedime agenB is executed both whenc is
satisfied, but also when neithenor —c are satisfiedA || B models the parallel composition AfandB in
terms of maximal parallelism, i.e., all the enabled agehts andB are executed at the same time. The
agentix Amakes variable local to A, to this end, it uses tha operator of the constraint system. More
specifically, it behaves lik& with x considered local, i.e., the information miprovided by the external
environment is hidden té, and the information o produced byA is hidden to the external world.
In the corresponding rule, the stdrén the agent3 xA represents the store local £&o This auxiliary
operator is linked to the hiding construct by setting théiahiocal store tatrue, thus 3xA:= "exA
Finally, the agenp(X) takes fromD a declaration of the formp(x) : —A and then executes.

4 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

3l<j<ndrg

(tell(<), d) — (stop, cAd) (ST ask(c) - A d) (A}, d)
(A d) > (A, d'),d+c (A,d) A,drc
(now cthen Aelse B, d) — (A, d’) (now cthen Aelse B, d) — (A, d)
(B,d) - (B',d’),dwc (B,d) A#,dwc
(now cthen Aelse B, d) — (B/, d’) (now cthen Aelse B, d) — (B, d)
(Ad) > (A, d) (B, d)~(BC) (A d)—~ (A, d) (B,d)+
(AllB,d)~(A"|| B, d"AC) (AllB,d)~ (A" B, d')
(Bl A d)~ (B[A, d)
(A, I A3xd) - (B, I") p(X):—AeD
(I'xA d) > (3"xB, d A 3«l”) (p(X),d) - (A, d)

Figure 1: The transition system farcp.

2.2 Introduction to hybrid automata

Many real systems have complex behaviors and evolve faligwith discrete and continuous dynam-
ics. These systems are called hybrid systems. For instanoagler system is a hybrid system: it has
two discrete statesof or off) that are chosen according to the temperature of the roonchvevolves
continuously over time.

Hybrid automatd8] are an extension of finite-state automata used to desbsibrid systems. Intu-
itively, the discrete behavior of a hybrid automaton is dedithy means of a finite set of discrete states
(calledlocationg and a set of (instantaneoutiscrete transitiongrom one location to another. The con-
tinuous behavior of hybrid automata is described at eadtitmt by means of some Ordinary Differential
Equations (ODEs) which describe how continuous variables/e over time ¢ontinuous transitions

DEFINITION 2.2 (HYBRID AUTOMATON) A hybrid automatorH is a tuple
(Loc, T, Z, X, Init, Inv, Flow,Jump
where:

* Loc is afinite sefloc;,...,loc, } of discrete states (locations).
» T clLocxLoc is a finite set of discrete transitions.
» 2 is a set of event names, associated with a labelling fundtiol — 2.

« X={xg,...,%n} is a finite set of real-valued variables. The ¥et {Xy,...,%n} represents the first
derivatives of the elements in X. In addition, the set Xx;,...,x;,} represents the updates of the
variables when a discrete transition takes place. In thigise, we assume that discrete variables
are continuous variables whose derivative is zero at alatams.

* The functions Init, Inv and Flow assign predicates to eadation loce Loc. Init(loc) establishes
the possible initial values for the continuous variabledaation loc. In(loc) constrains the
values of the continuous variables at location loc. Htwe) contains the differential equations
describing the evolution of the continuous variables aatan loc.

Adalid, Gallardo & Titolo 5

on T=30 off

Figure 2: Hybrid automaton for the cooler system

» Function Jump assigns to each discrete transitient a guardthat must be satisfied in order to
allow the transition to take place, andrasetpredicate which updates the value and/or the flow of
a continuous variables.

ExAMPLE 2.3 Figure[2 shows a hybrid automaton modeling a cooler systdm.alitomaton has two
locationson andoff and a continuous variable storing the room temperature. When the automaton is
at locationon (the cooler is turned on) the temperature decreases at@die When the location isff
(the cooler is turned off) the temperature increases atHat® Transitions between locations represent
the turning on or off of the cooler. These transitions areded with conditions. For instance, transition
on-off takes place when the temperature is 26, while transafbron takes place when the temperature
is 30.

[]

A hybrid automaton behaves liketimed transition systeTTS), where each step is labelled either
with a positive real valuag (continuous transition of duration) or with ¢ (discrete transition). Let
[X — R] be the set of maps frond to R. An automaton state, called hybrid state from now on, is & pai
(loc,v) € (Locx [X - R]), whereloc € Loc is a location of the automaton, and [X — R] maps each
continuous variable to its current value.

Let p be a predicate ovet uX or X uX’, then[p] denotes all functions ¢ [X — R] that satisfyp.

DEFINITION 2.4 (TRAJECTORIES) LetH={(Loc, T, Z, X, Init, Inv, Flow,Jump be a hybrid automa-
ton. We consider two types of transitions:
Discrete transitions Let (loc,loc’) € T, (loc,v) -4 (loc’,V'), iff v,V € [X = R], and(v,V') € [Jumgt)].
Continuoustransitions For eacht € R*, we have(loc,v) —; (loc,V') iff there exists a differentiable
function f: [0,7] —» R™, f:[0,7] » R™ being its first derivative, such that:
 f(0)=v
o f(1)=V
e V1’ e[0,T], f(7’) € [Inv(loc)]
« (f(1'), (1)) € [Flow(loc)]
A trajectoryis a (possible infinite) sequence of hybrid states sucll@s, Vo) —,, (locy,vi) =,
.. =, (IoCh, V) =y, ..., where for all i> 0, v; € [Inv(loc) | andA; e Ru{o}.
It is worth noting that the system is free to select non-aeteistically at each moment any enabled
transition, either discrete or continuous.

ExAmMPLE 2.5 Considering the hybrid system in Figlirke 2, the followingectory represents a possi-
ble evolution of the automaton starting at hybrid st@g,27): (on,27) -1 (on,26.5) -1 (0n,26) -4
(off,26) —o5 (0ff,27) 15 (0ff,30) = (0Nn,30)... [|

6 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

3 Hy-tcep: an extension of tccp over continuous time

In this section, we present the languagetccp which subsumegcpand includes new agents in order
to model the continuous behavior typical of hybrid systemthe style of hybrid automata. In contrast
to tcep, in Hy-tccpwe consider a notion afontinuougsime by means of a global continuous clock.

Hy-tccpuses @ccpmonotonic store (callediscrete storgto model the information about the current
location and the associated invariants of a hybrid automdd@screte transitions are modeled as instan-
taneous transitions iAy-tccp and they are used to synchronize parallel agents/autortrasummary,
the features offered bigcp are used to model the discrete behavior of hybrid automataveder, hy-
brid automata are characterized by the use of continuousblas whose values change following some
ODEs. For this reason, thecp store is extended by adding a component catledtinuous store The
continuous store is not monotonic, instead it records timanhcal evolution of the continuous variables.

We distinguish the set of discrete variabMar, whose information is accumulated monotonically,
and the set of continuous variabl¥ar, whose values change continuously over tirar Var =).
Constraints irC are now defined ovevaru Var.

A continuous storés a function that associates a continuous variable withreabnumbers: its value
and its flow, which indicates how its value changes over timehis work, we consider only ODEs of
the formx = n with neR. In the future, we intend to also consider ODEs of the fora{ri;,n,] with
Ny, N2 € R in order to model rectangular hybrid systems.

We denote ag = [Var — (R x R)] the set of all possible continuous stores, anff@sandfalsethe
empty and the inconsistent continuous store, respectiVédydenote with dorf€) c Var the domain ot
GivenceC andxe dom(&), &(x) = (v, f) means thax has values (denoted as(x).v) and flowf (denoted
asc(x).f). The binary operator : CxC-C merges the information from two continuous stores. In the
case the same variable appears in both stores with diffeegmés or flows, their merge is inconsistent.
Givenc,deC:

cAfrue=¢ ¢&Afalse=false
EAxd=false if 3xec dom(&)ndom(d). &(x) = d(x)

. &(y) if yedom(& 8 .
67\d=)\y.{c(y) Tyedom®) iy« dom(&) ndom(d). &x) = d(x)

d(y) if yedom(d)

We define the operatdr: Varx € — C such that, givers €C andx e Var, 3, & deletes the information about
xin €.

GivenceC, xe dom(€) andv e R, we denote as[¥/x] the continuous store that is equaldtexcept
for the value ofx that becomes.

&[v/x] = Ay. {c(yz ifye d.om(c),y #X
(vE(x).f) ify=x
A Hy-tccpstore is a paifc, €) wherec e C (discrete store) is a monotonic constraint store asap
andceC (continuous store) is such thah Aycgome) (X = €(X).v) # falsg i.e., discrete and continuous
store are consistéht We denote a§ the set of all possiblely-tccp stores. We define the extension of
the entailment relatior overHy-tccpstores as : " x C such that giveric, €) e I andd € C, (c, €)~d if
CA Axedom(e) (X = €(X).v) +d. In other words, a stor¢c, €) entails a constraind if the discrete store

1We assume that our underlying constraint system handlesiggconstraints.

Adalid, Gallardo & Titolo 7

merged with the projection of the current values of the cartis variables entail$ in the underlying
constraint system.

Givent ¢ R* we denote agc, €;) the continuous projection of the stoe €) at timeT: the values of
the continuous variables are updated at timehile the flows are unchanged; =Ay.¢[ny/y] wherey e
dom(€) andny = €(y).v+ (E(y).f + 7). For instance consider the stdpe> 10,y (2,5)), its projection
at time 3 is the storéx> 10,y ~ (17,5)). We say thatc, &) is a continuous projection dt, €) at time
T that satisfies! (denoted agc, €) ~9 (c, &)) if for all T’ € [0,1] (c, &)~d. For instance, the above
projection satisfieg > 0: (x> 10,y +~ (2,5)) «»fo (x>10,y+~ (17,5)).

The update operator, givenc,d ¢ € such that dort&) ndom(d) = {xa,..., %}, updatesc With the
continuous store since the common variables are hiddendmmd replaced by the new values and flows
from d.

In order to model the typical behaviors of hybrid systems meduce two new constructs w.r.t. the
syntax oftccp change andask.

The agentchange updates the current continuous store with a new value affidiorfor a given
continuous variable. It roughly corresponds to thsetpredicate of hybrid automata.

Continuous transitions are modeled by the new constrsidiinv) that makes continuous variables
evolve overcontinuoustime while the invarianinv is satisfied. Theccp choice agent is extended by
allowing the non-deterministic choice between discret@mntinuous transitions in the following way:

Sy ask(ci) - A+ X ask(inv).

Here, theask branches can be non-deterministically selected when tirespmonding invarianinv;
is entailed in the current store. The continuous variabledve over time whileinv; holds and until
another ask branch is selected.

The syntax oHy-tccpagents is given by the following grammar:

A:=stop |tell(c) | A|| A| now cthen Aelse A| IXA| p(X) |
change(y,V, f) | XL ask(ci) > A+ ZTllgsvk(ian)

wherec, ¢ andinv; are finite constraints i@, y is a continuous variable iXar, v, f € R, pis a process
symbol,x e Varu Var, X e (VaruVar) x---x (Varu Var), n> 0 andm> 0.

Theoperational semanticsf Hy-tccpis described by a transition systéim:= (C—Gﬁ?‘,eg,er). Con-
figurations inConf are triples(A, c, €) representing the ageAtto be executed in the current extended
store(c, €). In contrast to théccp approach, the discrete transition relatieg.c Conf x Conf does not
represent the passage of one time unit. Instead, it modelspwtational step which does not consume
time but it is needed to synchronize the agents in parallee dontinuous passage of time is modeled
by the transition relatior-;< Conf x Conf wheret ¢ R* is a (strictly) positive real number that indicates
the duration of the transition. In Figuré 3, we formally dése the operational semantics ef-tccp.
Wherever possible we will use the subindex R* u{ o} to represent both kinds of transitions (discrete
and continuous).

Rule[R1 shows the effects of adding a constrairtC to the current discrete store. In RIBd], the
agentchange updates the continuous stafavith a new initial valuev and a new flowf for the variable
y by using the update operator

RulesRZ andRZ’] describe the non-deterministic choice behavior. [RPErepresents the discrete
transition that is performed when one of thek guards is entailed in the current store. In this case the

8 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

corresponding agent is executed in the next step. [R#lenodels the continuous evolution of the system
while one of theask invariants holds in the store. After a continuous transitid durationt, the values

of the variables in the continuous statere updated while the discrete store is unchanged. At the end
of that transition the non-deterministic choice is exedwtgain allowing another discrete or continuous
branch to be selected. In the case no guard or invariant kitklagent suspends.

RulesR3, R3], andR47] describe the behavior of agembw. This agent behaves #sif c is
entailed by the constraint store, otherwise it behavds as

RulelRSrepresents the parallel execution of two discrete tramstin terms of maximal parallelism,
i.e., all the enabled agents AfandB are executed at the same time. represents the parallel
execution of two continuous transitions, note that theiratlan must coincide. RulR7 expresses the
parallel composition of a discrete and a continuous tremmsit In this case, the discrete transition is
executed before the continuous one. FRBstates that when an agent is blocked, the other one performs
its transition (discrete or continuous).

In RuleR9, the agenB(""'x A makes variable local toA. It behaves likeA with x considered local,
i.e., the information ox provided by the external environment is hidden frArby using thed operator,
and, in the same way, the information »produced byA is hidden from the global environment. The
store(l, f) in the agenta{:"")x A represents the store local #o This auxiliary operator is linked to the
hiding construct by setting the initial local store(taue, frue), thus3IxA:= trueTue)y o

Finally, in RulelR10, the agentp(X) takes fromD a declaration of the fornp(X) :— A and executes
A

Let us formalize the notion of behavior oftgy-tccp programP in terms of the transition system
described in Figurg]3. The small-step operational behadiety-tccp collects all the small-step com-
putations associated with (in terms of sequences efy-tccp stores closed by prefix) for each possible
initial store. We assume that subsequent continuous tiamsiare considered as a unique (maximal) one
whose length is equal to the sum of all the subsequent timmé#ingths. For instance, a sequence of con-
tinuous transitions of the forrtAo, o, &) =1, --- =1, (An, Cn, &) is considered as the unique transition

(Ao, Co, &) ~1 (An, Cn, &) whereT = 31, T,

DEFINITION 3.1 Let P=D.A be aHy-tccp program. Thesmall-step (observable) behaviof P is
defined as:

BSS[[D.AH = U {(Co, 60) . <Cl, 61) S (Cn, 6n> | <A, Co, 60) oV <A1, C1, 61)
(co,Co)el

_)AZ —))\n <An,Cn, 6n>, VlSI <n. AHER+U{G}}U{£}

4 Examples

In order to show the expressivity efy-tccp we present some examples of hybrid systems described in
this language. For each case, we presentth&ccp code and the corresponding hybrid automaton.

4.1 Cooler system

In Figure[4 we model irHy-tccp the cooler system introduced in Example]2.5. The initiatestst
the cooler is set toff and the temperaturE initially has value 29 and changes with a rate+@f0. The
temperature value increases continuously over time gBktuntil the temperature is lower than or equal

2\We assume that our system does not exhibit Zeno behaviors.

Adalid, Gallardo & Titolo 9

(tell(c), d, d) »4 (stop, cAd, d) (RD)
(change(y,v, f), d, d) —¢ (stop, d, d < (y ~ (v,))) (RL)
Hlskgl(d,d)ﬁck]] (R2)
(XL ask(c) - A+ XM ask(invy), d, d) —o (A, d, d)
J1<k<m, TeR*(d, d) ~™(d, dp)) (R2)
(XiLask(ci) » A+ X1 ' ask(inv)), d, d) - (X 1ask(c) — A+ X1 ", ask(invj), d, dr)
(A, d,d) >, (A, d,d) A <R*u{o} (d~,d)|—c R
(now cthen Aelse B, d, d) -, (A, d’, d’)
(Ad,dy 4, A ¢R*u{o} (d,d~)|1~c R3)
(now cthen Aelse B, d, d) -4 (A, d, d)
(B.d.d) >, (B',d",d') AcRu{a} (d,~d~> (R4)
(now cthen Aelse B, d, d) -, (B', d’,d’)
(B,d,d) 4, A cRu{o} (d,d~)&~c (R
(now cthen Aelse B, d, d) -4 (B, d, d)
(Ad.d)»o (A d'd') (Bdd) (B d"d) (R5)
(A]B,d,d) »o (A || B, d Ad”, d’ Xd")
(A,d,d) > (A d,d') ~<B,o|,o|”> —>T(B,~d,d~’) TeR? R6)
(Al B,d,d)—>¢ (A B, d,d)
(A, d,d) >, (A, d,d') (B,d,d) —>T(B~d d’) TeR* ®RY)
(A IB d,d)—¢ (A | B,d", d)
(A d,d) > (A, d, d) _ (B,d,d) 41/ A A eR7u{o} (R8)
<A IB,d,d) >, (A" B,d’,d)
(BIIA,d,d)—) (B|| A, d",d')
(A1 3xd, [3,d) —) (B.I", 7y A <R"u{g} R9)
(ANxA d, d) —, (30 7xB, d A3 l’, dA 3,07)
p(X):—AeD (R10)

(p(x)7 da CT) ~o (A7 d’ CT)

Figure 3: The transition system fay-tccp.

10 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

init:— I St T (tell(St= [off | _]) || change(T,29,+2.0) | tell(T > 26AT <30) || cooler(StT))

cooler(StT):- 3 sf(ask(St=[off | AT <30)
+ask(St=[off | JAT =30) — (tell(St=[off | St']) || tell(St = [on] -]) || change(T,30,-0.5) || cooler(St,T))
+ask(St=[on|_]AT > 26)
+ask(St=[on|_] AT = 26) — (tell(St=[on| St]) || tell(St = [off |]) || change(T,26,+2.0) | cooler(sf,T)))

Figure 4:Hy-tccpmodel for the cooler system

to the value of 30. When the temperature reaches this lihgtcooler is turned on and the flow of the

temperature changes fron2.0 to —0.5 (first ask). At this point, the temperature starts decreasing until
it reaches the value of 26 (secoak). When this happens, the cooler is turned off and the flow ef th
temperature is changed again#®.0 (secondsk).

It is worth noting that, due to the monotonicity of the didereonstraint store, streams (written
in a list-fashion way) are used to modeiperative-stylevariables[[2]. A stream is a list of the form
St=[on| St] where the headn represents the current value $f and the tailSt is a free variable that
will be instantiated with the future values 8t Observe that we use the global constrdimt26AT < 30
to add a global invariant of the cooler system ensuring tiatémperature always stays in the interval
[26,30].

The following partial trace represents the small-step biehdsee Definitiori 3.1) otooler(StT)
starting from the initial storéSt=[off | _]AT >26AT <30, T ~ (29,+2.0)). This means that, initially, the
cooler is turned off and the temperature has a value of 29 #lowvaf +2.0. Moreover, the temperature
is constrained to be between the values 26 and 30. Observéheovalueson andoff are accumulated
in the streantStin order to model the evolution of the state. The curreniestairresponds to the last
value added to the stream. We ude indicate that the tail of the streaBtis a free variable that can be
instantiated with future values. The continuous variablesve over time until another discrete transition
is executed. The repeated equal stores occurring in the t@cespond to the discrete computational
steps taken imy-tccp (as well as intccp) to evaluate one of thesk guards or to perform a procedure
call. These steps are necessary to synchronize parallelsageor sake of clarity, we explicitly indicate
the kind of transition occurring between two states (weenitfor discrete transitions and the duration
T € R* for continuous ones).

St
St
St
St

off |_JAT >26AT <30, T ~ (29,+2.0)) -5 (St=[0ff | _JAT >26AT <30, T ~ (30,+2.0))-¢
off |_JAT >26AT <30, T ~ (30,+2.0)) -5 (St=[off,on| JAT > 26AT <30, T > (30,-0.5))-¢
off,on| _JAT >26AT <30, T ~ (30,-0.5)) -g (St= [off,on| _]AT >26AT <30, T ~ (26,-0.5))-¢

(
(
(
(St=[off,on| JAT >26AT <30, T — (26,-0.5)) -¢ (St= [off,0n,off | _JAT >26AT <30, T > (26,+2.0))...

=[
=[
=[
=[

4.2 Cat and mouserace

We consider the cat and mouse problem proposed]|in [7] (sagefhy for the corresponding hybrid
automaton). Theily-tccpcode of this model is shown in Figure 6. The positions of theand the mouse
are modeled by two continuous variables, calleandM respectively. A mouse starts running from the
point of origin at a speed of 10 meters/seconbhafige(M,0,10.0)) towards a hole that is 100 meters

Adalid, Gallardo & Titolo 11

true C<100 M <50 M < 100

_ go m C=100|enc: _ M =50]| go mM=100|enq¢|
C=00 C=200 M =100 M =100
sleeping chasing 1sthalf 2nd.half

winner

Figure 5: Hybrid automata for the cat and mouse problem

init :— mouse || cat || controller
mouse :— 3IM (chang;e(M707 10.0) ||
(ask(M < 50)
+ask(M =50) — (tell(go) || (ask(M < 100)
+ask(M =100) — (tell(endn) || ask(winm) — claimPriz€...)
+ask(wing) — stop)))))

cat i- HC(ask(go) — (change(C,0,200) |
(ask(C < 100)
+ask(C =100) — (tell(end) || ask(winc) — claimPrizg...)
+ask(winm) — stop))))

controller :— ask(endn) — tell(winm) + ask(end) — tell(wing)
Figure 6:Hy-tccpmodel for the cat and mouse race

away. After it has run 50 meters it sends a signal to thetei{go)) and continues its run. When the cat
receives the signgo, it starts chasing the mouse from the point of origin at a 80 meters/second
(change(C,0,20.0)). The cat wins if it catches the mouse before it reaches the btherwise it loses.
At the end of their run, the mouse and the cat send a messape tortroller (endy andend:,
respectively), which decides non-deterministically thiamer and informs of it through a signakip,

or wing). The winner, at this point, can claim his prize.

4.3 Gear shift system

The hybrid automaton in Figufé 7 represents a car gear sfsifies. Each location models a gear (1, 2
or 3) and the fact that the speed is either increasing or dsiorg (or | respectively). When the speed
increases (respectively decreases) over time and it reachiwen threshold, the current gear is changed
to the upper (respectively lower) one. When a signal of dafdy) is received, the system changes
the current gear to the lower one and the speed starts dexyeds this point, when a signal of safe
situation éafé is received, the system is allowed to stay in the currerdtion as well as to increase the

12 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

V<20 V <60A -dng V <100 -dng

Figure 7: Hybrid automaton for the gear shift system

speed. The latter case is modeled by the transitions froatitot 1| to location 1f, and from 2| to 21.

The Hy-tccp program modeling this system is shown in Figure 8. The str&astores the evolution
of the gear state. Thask statements model the five locations of the automaton of Eiguri.e., the
possible cases in which a continuous transition is perfdrmig is worth noting that the invariant of
each location is modeled by the guard of the corresponsikgtatement. The first thresk statements
model thegearbox shifting automatically into a higher (respectively lowggar if the speed reaches
the upper (respectively lower) threshold of the current.gEaewatcher informs to thegearbox about
the current external situation (danger or safe), througineBlWG Whengearbox receives a danger
signaldngand the speed is growing (fourth and fifi¢k branches), it moves to a lower gear, and changes
the speed flow from positive to negative by means dfange agent. Otherwise, when it receives a safety
signalsafeand the speed is decreasing (sixth and sevestbranches), it is allowed to change the speed
flow from negative to positive.

5 Reated Work

In [7], hcc was introduced as the first extension over continuous timgh@fconcurrent constraint
paradigm. Although botiHy-tccp and hcc are declarative languages with a logical nature, there are
some important differences between them. First ofralktccpis a non-deterministic language, while
hccis deterministic. We believe that this is an essential feator modeling hybrid systems, which are
inherently non-deterministicHy-tccp has been defined as a modeling language for hybrid systems in
the style of hybrid automata. This means that we aim to olpteagrams with a structure similar to that

of hybrid automata, but described in a more abstract way. fidmedeterministic choice is a powerful
construct that allows the set of all possible transitionarohybrid automata to be expressed as a list of
ask andask branches. Furthermore, it the information on the value and flow of continuous variable

is modeled as a constraint of the underlying continuoustcains system. On the contrary, Hy-tccp,

Adalid, Gallardo & Titolo

init:— 3 V,G,WG(tell(G=[11]_]) || change(V,0,+4.0) || tell(V > 0AV < 100) || gearbox(G,WG,V) || watcher (WG))

gearbox(G,WGV) :— 3 G'7WG'(

ask(G =
+ask(G =
+ask(G=
+ask(G=
+ask(G=
+ask(G=

+ask(G=
+ask(G=

+ask(G=

[11]_]AV <20) +ask(G=[21] -] AV <60AWG= [dng| _]) +ask(G = [31] -] AV < 100A WG+ [dng| _])
[14]JAV 20)+ask(G=[2}] .]AV = 20)

[11]-]AV =20) - (tell(G=[11]G']) || tell(G’ = [21] -]) || change(V, _,+5.0) || gearbox(G',WG,V))
[21]-]AV =60) - (tell(G=[21|G']) || tell(G’ = [31] -]) || change(V,_,+6.0) || gearbox(G',WG,V))
[24]-]AV=20) - (tell(G=[2|G']) || tell(G’ = [1 4| -]) || change(V,_,—4.0) || gearbox(G',WG,V))
[21] JAWG= [dng]) — (tell(G=[21]G']) || tell(G' = [14]) || tell (WG = [dng| WG]} |

change(V,_,-4.0) || gearbox(G',WG,V))
[31] AWG= [dng| .]) (tell(G=[31/G']) | tell(G' = [24] .]) | tell (WG= [dng| WG]) |
change(V,_,-5.0) || gearbox(G',WG,V))
[14|-]AWG= [safe|] AV <20) - (tell(G=[1|G']) || tell(G’ = [11]_]) || tell(WG= [safe| WG]) ||
change(V,_, +4.0) || gearbox(G',WG,V))
[21]| -] AWG= [safe| .]AV <60) — (tell(G=[2{|G']) || tell(G’ = [21]_]) || tell(WG= [safe| WG]) ||
change(V,-,+5.0) || gearbox(G',WG',V)))

watcher(WG) :— 3 WG'(ask(true)

+ask(true) - (tell(WG=[safe| WG']) || watcher (WG'))
+ask(true) — (tell(WG=[dng| WG]) || watcher(WG')))

Figure 8:Hy-tccpmodel for a gear shift system

13

14 Modeling Hybrid Systems in the Concurrent Constraint Pigrad

there is a clear distinction between discrete and contimwatables. Irhccthe positive information in
the store must be transferred by using the agente. In contrast, inHy-tccpthe positive information
in the discrete store is transferred automatically from stee to the next.

In [1] and [4], two process algebras for hybrid systems haenbdefinedHybrid Chi andHyPa,
respectively. The process algebgbrid Chi[1] shares withHy-tccp the separation between discrete
and continuous variables, the synchronous nature and tieepb of delayable guard (corresponding
to the suspension of the non-deterministic choicklyPa [4] was introduced as an extension of the
process algebrACP. It differs from Hybrid Chi mainly in the way time-determinism is treated, and in
the modeling of time passing.

6 Conclusions

In this paper we have presenteg-tccp, an extension ofccp over continuous time with the aim of
modeling hybrid systems in a declarative and logical way lstracting away from all the implemen-
tation details. Hy-tccp has been introduced as a synchronous and non-determilaisjoage defining
computations similar to that of hybrid automata.

Hy-tccp has several advantages that make it suitable for modelibgchgystems. Its declarative
nature facilitates a high level description close to thatyddrid automata. In addition, the logical nature
of Hy-tccpeases the development of formal methods techniques fotdtie analysis and verification of
hybrid systems. Furthermore, singg-tccpis a conservative extension tfcp, it is possible to describe
with the same syntax concurrent, reactive and hybrid system

In the future, we plan to develop a framework for the desimipand simulation ofy-tccpprograms.

In this way, we will be able to model complex hybrid systemsijatccp. Given the affinity of the two
formalisms, we are interested in defining a translationsrgigstem fromHy-tccp to hybrid automata
and viceversa, in order to transfer verification and anslyssults from one formalism to the other.
Furthermore, we plan to use model checking and abstracpnetation techniques to verify temporal
properties of hybrid systems written Hy-tccp (as done in[[5] for SPIN and in_[3] faccp. Another
feature we would like to explore is the adjustment of the leagge to make it compatible with rectangular
hybrid automata [9].

References

[1] D. A. van Beek, K. L. Man, M. A. Reniers, J. E. Rooda & R. R.$thiffelers (2006)Syntax and consistent
equation semantics of hybrid ChiJournal of Logic and Algebraic Programmigg(1-2), pp. 129-210,
doi{10.1016/}.jlap.2005.10.005.

[2] F. S. de Boer, M. Gabbrielli & M. C. Meo (2000A Timed Concurrent Constraint Languagkformation
and Computatiof61(1), pp. 45-83, d0i:10.1006/inc0.1999.2879.

[3] M. Comini, L. Titolo & A. Villanueva (2014):Abstract Diagnosis fotccp using a Linear Temporal Logic
Theory and Practice of Logic Proy4(4-5), pp. 787-801, d0i:10.1017/S1471068414000349.

[4] P. J. L. Cuijpers & M. A. Reniers (2005Hybrid process algebraJournal of Logic and Algebraic Program-
ming62(2), pp. 191-245, doi:10.1016/j.jlap.2004.02|001.

[5] C. Daws & S. Yovine (1995):Two Examples of Verification of Multirate Timed Automatahwktronos
In: Proceedings of the 16th IEEE Real-Time Systems SympqsRirsS '95, IEEE Computer Society,
Washington, DC, USA, pp. 66—75, d0i:10.1109/REAL.19954%).

http://dx.doi.org/10.1016/j.jlap.2005.10.005
http://dx.doi.org/10.1006/inco.1999.2879
http://dx.doi.org/10.1017/S1471068414000349
http://dx.doi.org/10.1016/j.jlap.2004.02.001
http://dx.doi.org/10.1109/REAL.1995.495197

Adalid, Gallardo & Titolo 15

[6] M. M. Gallardo & L. Panizo (2013)Extending Model Checkers for Hybrid System Verificatiore ¢ase
study of SPIN Software Testing, Verification and Reliabiljtgtoi!10.1002/stvr.1505.

[7] V. Gupta, R. Jagadeesan, V. A. Saraswat & D. G. Bobrow 4)98rogramming in Hybrid Constraint Lan-
guages In P.J. Antsaklis, W. Kohn, A. Nerode & S. Sastry, editokbrid Systems |l Lecture Notes in
Computer Scienc@99, Springer, pp. 226—251, d0i:10.1007/3-540-604.22-3

[8] T. A. Henzinger (1996):The theory of hybrid automataln: Proceedings of the 11th Annual IEEE Sym-
posium on Logic in Computer SciencelCS '96, IEEE Computer Society, Washington, DC, USA, pp.
278-292.

[9] P. W. Kopke (1996)The Theory of Rectangular Hybrid Automatechnical Report, Ithaca, NY, USA.
[10] V. A. Saraswat (1989)Concurrent Constraint Programming Languag&.D. thesis, Pittsburgh, PA, USA.

http://dx.doi.org/10.1002/stvr.1505
http://dx.doi.org/10.1007/3-540-60472-3_12

	1 Introduction
	2 Background
	2.1 The Timed Concurrent Constraint Language
	2.2 Introduction to hybrid automata

	3 hy-tccp: an extension of tccp over continuous time
	4 Examples
	4.1 Cooler system
	4.2 Cat and mouse race
	4.3 Gear shift system

	5 Related Work
	6 Conclusions

