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Recent developments in termination analysis for declarative programs emphasize the use of appro-
priate models for the logical theory representing the program at stake as a generic approach to prove
termination of declarative programs. In this setting,Order-Sorted First-Order Logicprovides a pow-
erful framework to represent declarative programs. It alsoprovides a target logic to obtain models for
other logics via transformations. We investigate theautomatic generationof numerical models for
order-sorted first-order logics and its use in program analysis, in particular in termination analysis of
declarative programs. We useconvex domainsto give domains to the differentsortsof an order-sorted
signature; we interpret therankedsymbols of sorted signatures by means of appropriately adapted
convex matrix interpretations. Suchnumericalinterpretations permit the use of existing algorithms
and tools from linear algebra and arithmetic constraint solving to synthesize the models.
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1 Introduction

In the logical approach to programming, (declarative) programs aretheories of a given logicL and
computation isdeduction in the inference systemof L [14]. The corresponding notion oftermination
of declarative programs is the absence of infinite trees in any proof of a computation [10]. Recently, a
framework toprove termination of declarative programs has been developed [12]. In this framework,
we obtain theproof jumpsassociated to the inference systemI (S ) which is derived from the logic
L which is used to describe the programS . Proof jumps are structuresA ⇑ B1, . . . ,Bn wheren > 0
andA,B1, . . . ,Bn areformulasin the inference rulesB1···Bn···Bn+p

A in I (S ) (for p≥ 0). Proof jumps are
used to capture (infinite) paths in a proof treeT using the rules inI (S ) so that there is ajumpfrom an
instanceσ(A) of A to an instanceσ(Bn) of Bn provided that the corresponding intances ofB1, . . . ,Bn−1

wereproved, i.e.,S ⊢ σ(Bi) for all i, 1≤ i < n. A set of proof jumpsτ is anOT problem. Theinitial OT
problemτI consists of all proof jumps forI (S ). Then, we apply an incremental proof methodology
which simplifiesOT problemsτ in a divide-and-conquer style to eventually prove (or disprove) termi-
nation ofS . In particular, proof jumpsψ : A ⇑ B1, . . . ,Bn can beremovedfrom an OT problemτ by
usingwell-founded relations⊐ as follows: if, for all substitutionsσ , wheneverS ⊢ σ(Bi) holds for alli,
1≤ i < n, we have thatσ(A)⊐ σ(Bn) holds, then we canremoveψ from τ . In [12] we show thatlogical
modelsare useful for this purpose. Any modelA of S satisfies the provable formulas, i.e., ifS ⊢ σ(Bi)
holds, then,A |= σ(Bi) holds. The point is using this fact todefinethe well-founded relation⊐. This
idea is developed in [11] for a systematic treatment of proofs of termination using logical models.

A sufficiently general and expressive framework to represent declarative programs, semantics of
programming languages, and program properties isOrder-Sorted First-Order Logic(OS-FOL), where
the signature consists of a setS of sorts (i.e., names representing sets of values) which are orderedby
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(Rf) t →∗ t (T)
t → t ′ t ′ →∗ u

t →∗ u

(C)
ti → t ′i

f (t1, . . . , ti , . . . , tk)→ f (t1, . . . , t
′
i , . . . , tk) (Re) ℓ→ r

where f ∈ Σw,s, w= s1, . . . ,sk, and 1≤ i ≤ k whereℓ→ r ∈ R

Figure 1: Inference rules for Order-Sorted TRSsR

a subsort relation≤ meaning subset inclusion, and setsΣw,s andΠw of function and predicate symbols,
wheres∈ S and w is a sequences1 · · ·sk of sorts fromS [6]. For instance, in ourrunning example
(Section 1.1) we develop a termination analysis for anOrder-Sorted Term Rewriting System(OS-TRS)
[6, 7], viewed as a particular case of OS-FOL theory with predicate symbols→ and→∗ describing the
one-step rewrite relation→ and the zero-or-more-steps relation→∗, see Figure 1.

In this paper we consider the automatic generation of modelsfor OS-FOL theories. This can be
used in program analysis, in particular to mechanize the termination analysis of declarative programs as
explained above.Semantic structuresA ′ [8] leading todecidable theories Th(A ′) [15] can be used to
provide an effective way tofind logical modelsA for a program or specificationS . This is often possible
by usingtheory transformationsκ from the language ofS into the language ofTh(A ′) to obtain a set
of sentencesS ′ = κ(S ) which is thendecidable. We formalize this view by extending the notion of
derived algebra[5] to logical structures. Targeted languages usually involve symbols (e.g.,+, ×,. . . )
with an intended meaningin the structuresA ′ that define the decidable theoryTh(A ′). We also show
how to transform an OS-FOL theoryS into a derivedparametrictheoryS ♯ of linear arithmetic where
appropriate algorithms and constraint solving techniquescan be used to give value to the parameters thus
synthesizinga modelof S . Theconvex domainsintroduced in [11] provide appropriate means for this.
They can be used to define bounded and unbounded domains for the sorts in the OS signature. Indeed,
the use of different (in particularbounded) domains for some sorts is essential to obtain a simple model
which can be used to prove termination of our running example.

Section 2 summarizes the basics of OS-FOL. Section 3 develops the notion ofderived modeland
shows how to use it to deal with our running examples. Section4 describes our automation approach
using linear algebra techniques and constraint solving. Section 5 explains the generation of OS-FOL
structures based on theconvex domainsandconvex matrix interpretationsintroduced in [11] Section 6
shows how to apply the technique to obtain anautomaticsolution to our case study. Section 7 concludes.

1.1 Running example: termination of an order-sorted rewrite system

The OS-TRSToyamaOS in Figure 2 is based on Toyama’s example [18]. It is given as a (hopefully
self-explanatory) module ofMaude [3]. The unsorted version of this module is nonterminating [18].
Furthermore, ifS1 andS2 are confused into a single sort thenToyamaOS is nonterminating too:

f(g(0,1),g(0,1),g(0,1))→ f(0,g(0,1),g(0,1))→ f(0,1,g(0,1))→ f(g(0,1),g(0,1),g(0,1))→ ···

But with all sort information we can it prove itterminating. For instance, variablex (of sortS2) cannot
be bound to terms of sortS1 which is a supersort ofS2. Thus, the third step, which requires a binding
x 7→ g(0,1), is not possible because the sort ofg(0,1) is S1. Thus the infinite sequence is not possible.

Theorder-sorted first-order theoryfor the OS-TRS is also shown in Figure 2. It is obtained by spe-
cializing the inference rules in Figure 1. Sentences in Figure 2 make explicit the implicit quantification
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mod ToyamaOS is

sorts S S1 S2 .

subsort S2 < S1 .

op 0 : -> S2 .

op 1 : -> S1 .

op f : S1 S1 S1 -> S .

op g : S1 S1 -> S1 .

var x : S2 .

vars y z : S1 .

rl f(0,1,x) => f(x,x,x) .

rl g(y,z) => y .

rl g(y,z) => z .

endm

∀t : S (t →∗ t) (1)

∀t : S1 (t →∗ t) (2)

∀t, t ′,u : S (t → t ′∧ t ′ →∗ u⇒ t →∗ u) (3)

∀t, t ′,u : S1 (t → t ′ ∧ t ′ →∗ u⇒ t →∗ u) (4)

∀t1, t ′1, t2, t3 : S1 (t1 → t ′1 ⇒ f(t1, t2, t3)→ f(t ′1, t2, t3)) (5)

∀t1, t2, t ′2, t3 : S1 (t2 → t ′2 ⇒ f(t1, t2, t3)→ f(t1, t ′2, t3)) (6)

∀t1, t2, t3, t ′3 : S1 (t3 → t ′3 ⇒ f(t1, t2, t3)→ f(t1, t2, t ′3)) (7)

∀t1, t ′1, t2 : S1 (t1 → t ′1 ⇒ g(t1, t2)→ g(t ′1, t2)) (8)

∀t1, t2, t ′2, t3 : S1 (t2 → t ′2 ⇒ g(t1, t2)→ g(t1, t ′2)) (9)

∀x : S2 (f(0,1,x)→ f(x,x,x)) (10)

∀x,y : S1 (g(x,y)→ x) (11)

∀x,y : S1 (g(x,y)→ y) (12)

Figure 2: Order-sorted version of Toyama’s example and its associated Order-Sorted First-Order Theory

of the inference rules by taking into account the sorts in thesignature and the subsort ordering. In par-
ticular, the only quantification overS2 occurs in (10). It turns out that such a quantification is crucial to
obtain a simple proof of termination. In order to prove termination of this OS-TRS we need to find a
modelA for the theory in Figure 2 such that→ is interpreted as awell-founded relation>. Although
we do not have space to further justify this claim, it easily follows from the theory in [12].

2 Order-Sorted First-Order Logic

Sorts and Order-Sorted Signatures. Given a set ofsorts S, a many-sorted signature is anS∗ ×S-
indexed family of setsΣ = {Σw,s}(w,s)∈S∗×S containingfunction symbolswith a given string of argument
sorts and a result sort. Iff ∈ Σs1···sn,s, then we displayf as f : s1 · · ·sn → s. This is called arank
declaration for symbolf . Constant symbolsc (taking no argument) have rank declarationc : λ → s for
some sorts (whereλ denotes theemptysequence). An order-sorted signature(S,≤,Σ) consists of a poset
of sorts(S,≤) together with a many-sorted signature(S,Σ). Theconnected componentsof (S,≤) are the
equivalence classes[s] corresponding to the least equivalence relation≡≤ containing≤. We extend the
order≤ on S to strings of equal length inS∗ by s1 · · ·sn ≤ s′1 · · ·s

′
n iff si ≤ s′i for all i, 1≤ i ≤ n. Symbols

f can besubsort-overloaded, i.e., they can have several rank declarations related in the ≤ ordering
[7]. Constant symbols, however, have only one rank declaration. Besides, the followingmonotonicity
conditionmust be satisfied:f ∈ Σw1,s1 ∩Σw2,s2 andw1 ≤ w2 imply s1 ≤ s2. To avoid ambiguous terms,
we assume thatΣ is sensible, meaning that iff : s1 · · ·sn → sand f : s′1 · · ·s

′
n → s′ are such that[si ] = [s′i ],

1 ≤ i ≤ n, then [s] = [s′]. Throughout this paper,Σ will always be assumedsensible. An order-sorted
signatureΣ is regular iff given w0 ≤ w1 in S∗ and f ∈ Σw1,s1, there is a least(w,s) ∈ S∗×S such that
f ∈ Σw,s andw0 ≤ w. If, in addition, each connected component[s] of the sort poset has a top element
⊤[s] ∈ [s], then the regular signature is calledcoherent.

Given anS-sorted setX = {Xs | s∈S} of mutually disjointsets of variables (which are also disjoint
from the signatureΣ), the setTΣ(X )s of terms of sorts is the least set such that (i)Xs ⊆ TΣ(X )s,
(ii) If s′ ≤ s, thenTΣ(X )s′ ⊆ TΣ(X )s; and (iii) for eachf : s1 · · ·sn → s andti ∈ TΣ(X )si

, 1≤ i ≤ n,
f (t1, . . . , tn) ∈ TΣ(X )s. If X = ∅, we writeTΣ rather thanTΣ(∅) for the set ofground terms. Terms
with variables can also be seen as a special case of ground terms of theextendedsignatureΣ(X ) where
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variables are considered asconstantsymbols of the apporpriate sort, i.e.,Σ(X )λ ,s = Σλ ,s∪Xs.

Example 1 The order-sorted signature(S,≤,Σ) for programToyamaOS consists of the following com-
ponents:

1. Set of sortsS= {S,S1,S2}.

2. Thesubsort relationis the least ordering≤ on S satisfyingS2≤ S1.

3. Thus,(S,≤) (or S/≡≤) consists of twoconnected components: [S] = {S} and [S1] = {S2,S1}.

4. Note thatS is thetop sort⊤[S] of [S], andS1 is the top sort⊤[S1] of [S1].

5. The signature isΣ = ΣS1∪ΣS2∪ΣS1S1,S1∪ΣS1S1S1,S, with ΣS1 = {1}, ΣS2 = {0}, ΣS1S1,S1 = {g},
andΣS1S1S1,S = {f}.

6. There is no overloaded function symbol, i.e.,Σ is trivially regular. Furthermore, since every con-
nected component has a top sort (see item 4),(S,≤,Σ) is acoherentsignature.

The set of variables isX = XS1∪XS2, with XS1 = {y,z}, andXS2 = {x}.

The assumption thatΣ is sensible ensures that if[s] 6= [s′], thenTΣ(X )[s] ∩TΣ(X )[s′] = ∅. The set
TΣ(X ) of order-sorted terms isTΣ(X ) = ∪s∈STΣ(X )s. An element of any setTΣ(X )s is called a
well-formedterm.

Order-Sorted Algebras. Given a many-sorted signature(S,Σ), an (S,Σ)-algebraA (or just a Σ-
algebra, ifS is clear from the context) is a family{As | s∈ S} of sets called thecarriersor domainsof A

together with a functionf A
w,s ∈ Aw → As for each f ∈ Σw,s whereAw = As1 ×·· ·×Asn if w= s1 · · ·sn,

andAw is a one point set whenw= λ . Given an order-sorted signature(S,≤,Σ), an(S,≤,Σ)-algebra (or
Σ-algebra if(S,≤) is clear from the context) is an(S,Σ)-algebra such that

1. If s,s′ ∈ Sare such thats≤ s′, thenAs ⊆ As′ , and

2. If f ∈ Σw1,s1 ∩Σw2,s2 andw1 ≤ w2, then f A
w1,s1

∈ Aw1 → As1 equalsf A
w2,s2

∈ Aw2 → As2 onAw1.

Remark 1 Note that overloaded symbols f may be givendifferent functions fAw1,s1
, . . . , f A

wn,sn
depending

on the specific ranks w1 → s1, . . . ,wn → sn of the overload for symbol f . Of course, such functions must
still fulfill condition 2 above.

With regard to many sorted signatures and algebras, an(S,Σ)-homomorphism between(S,Σ)-algebrasA
andA ′ is anS-sorted functionh= {hs : As→ A ′

s | s∈ S} such that for eachf ∈ Σw,s with w= s1, . . . ,sk,
hs( f A

w,s(a1, . . . ,ak)) = f A ′

w,s (hs1(a1), . . . ,hsk(ak)). If w= λ , we havehs( f A ) = f A ′
. Now, for the order-

sorted case, an(S,≤,Σ)-homomorphismh : A → A ′ between(S,≤,Σ)-algebrasA andA ′ is an(S,Σ)-
homomorphism that satisfies the following additional condition: if s≤ s′ anda∈As, thenhs(a) = hs′(a).

The family ofdomains{TΣ(X )s}s∈S together with the operationsf : (t1, . . . , tn) 7→ f (t1, . . . , tn) de-
fine an order-sortedΣ-algebra called thefree algebra onX and denotedTΣ(X ). When X = ∅,
TΣ =TΣ(∅) denotes theinitial Σ-algebra, i.e., an algebra having a unique homomorphismhA : TΣ →A

to eachΣ-algebraA . Similarly, TΣ(X ) (itself aΣ-algebra) is initial in the class of allΣ(X )-algebras.
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Predicates and connectives. Following [6], an order-sorted signaturewith predicatesis a quadruple
(S,≤,Σ,Π) such that(S,≤,Σ) is an coherent order-sorted signature, andΠ = {Πw | w∈ S+} is a family
of predicate symbols P, Q, . . . We writeP : w for P∈ Πw. Overloading is also allowed on predicates with
the following conditions [6, Definition 11]:

1. There is an equality predicate symbol=∈ Πss iff s is the top of a connected component of the sort
posetS.

2. Regularity: For eachw0 such that there isP∈ Πw1 with w0 ≤w1, there is a leastw such thatP∈Πw

andw0 ≤ w.

We often writeΣ,Π instead of(S,≤,Σ,Π) if S and≤ are clear from the context. The formulasϕ of
an order-sorted signature with predicatesΣ,Π are built up from atomsP(t1, . . . , tn) with P ∈ Πw and
t1, . . . , tn ∈ TΣ(X )w, logic connectives (e.g.,∧, ¬) and quantifiers (∀) as follows: (i) if P ∈ Πw, w =
s1 · · ·sn, and ti ∈ TΣ(X )si

for all i, 1≤ i ≤ n, thenP(t1, . . . , tn) ∈ FormΣ,Π. (ii) if ϕ ∈ FormΣ,Π, then
¬ϕ ∈ FormΣ,Π; (iii) if ϕ ,ϕ ′ ∈ FormΣ,Π, thenϕ ∧ϕ ′ ∈ FormΣ,Π; (iv) if s∈ S, x∈ Xs, andϕ ∈ FormΣ,Π,
then (∀x : s)ϕ ∈ FormΣ,Π. As usual, we can consider formulas involving other logic connectives and
quantifiers (e.g.,∨, ⇒, ⇔, ∃,...) by using their standard definitions in terms of∧, ¬, ∀. A closed
formula, i.e., whose variables are all universally or existentially quantified, is called asentence.

Remark 2 In order to define an order-sorted signature with predicatesthat can be used to reason about
rewritings with OS-TRSs, we have to provide (at least) as many overloads for the computational relation
→∗ as connected component[s] in S/≡≤ : due to axiom (Rf), OS-TRSs are expected to rewrite with→∗

any of the classesTΣ(X )[s] for every connected component[s]. By coherence of the signature, we can
just let→∗∈ Π⊤[s]⊤[s]

for all s∈ S. Then, rule (T) requires a corresponding overload for→ as well. By
coherence of the signature, we can just letΠ⊤[s]⊤[s]

= {→,→∗} for all s∈ S. This will be compatible with
any possible instance of rule (Re) because termsℓ and r in rewrite rulesℓ→ r of OS-TRSs must be terms
belonging toTΣ(X )[s] for some s∈ S. By coherence, we know thatℓ, r ∈ TΣ(X )⊤[s]

for some s∈ S.

Example 2 The order-sorted signature(S,≤,Σ) described in Example 1 is extended into a order-sorted
signature with predicates(S,≤,Σ,Π) whereΠ = ΠSS∪ΠS1S1 for ΠSS = ΠS1S1 = {→,→∗}, which are
the only nonempty sets of predicate symbols. They satisfy the regularity condition.

Theories, specifications and programs. A theoryS of Σ,Π is a set of formulas,S ⊆ FormΣ,Π, and
its theoremsare the formulasϕ ∈FormΣ,Π for which we can derive a proof using an appropriate inference
systemI (L ) of a logicL in the usual way (writtenS ⊢ ϕ). Given a logicL describing computations
in a (declarative) programming language, programs are viewed astheoriesS of L .

Example 3 In the logic of OS-TRSs, with binary (overloaded)predicates→ and →∗, the theory for
an OS-TRSR = (S,≤,Σ,R) with set of rules R (for instance, our running example) is obtained from the
schematicinference rules in Figure 1 afterspecializingthem as(C) f ,i for each f∈F and i,1≤ i ≤ ar( f )
and (Re)ρ for all ρ : ℓ → r ∈ R. Then, inference rulesB1,...,Bn

A becomeimplicationsB1∧ ·· · ∧Bn ⇒ A.
For instance, with regard to the sentences forToyamaOS in Figure 2:

• Sentences (1) and (2) specialize (Rf) in Figure 1 for the two overloads of→∗ in ΠSS and ΠS1S1,
respectively.

• Sentences (3) and (4) specialize (T) for the overloads of→∗ and→ in ΠSS andΠS1S1, respectively.

• Sentences (5), (6), and (7) specialize (C) for symbolf using the appropriate overloads of→ in
ΠSS andΠS1S1 according to the rank off. Similarly, (8) and (9) specialize (C) for symbolg.
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• Sentences (10), (11), and (12) specialize (Re) for each rewrite rule inToyamaOS.

Note that, according to the variable declaration forx in ToyamaOS, in sentence (10) variable x ranges
on values of sortS2 only.

Structures, Satisfaction, Models. Given an order-sorted signature with predicates(S,≤,Σ,Π), an
(S,≤,Σ,Π)-structure1 (or just aΣ,Π-structure) is an order-sorted(S,≤,Σ)-algebraA together with an
assignment to eachP∈ Πw of a subsetPA

w ⊆ Aw such that [6]: (i) forP the identity predicate= : ss,
the assignment is the identity relation, i.e.,(=)A = {(a,a) | a∈As}; and (ii) wheneverP : w1 andP : w2

andw1 ≤ w2, thenPA
w1

= Aw1 ∩PA
w2

.
Let (S,≤,Σ,Π) be an order-sorted signature with predicates andA ,A ′ be (S,≤,Σ,Π)-structures.

Then, an(S,≤,Σ,Π)-homomorphism h: A → A ′ is an (S,≤,Σ)-homomorphism such that, for each
P : w in Π, if (a1, . . . ,an) ∈ PA

w , thenh(a1, . . . ,an) ∈ PA
′

w .
Given anS-sortedvaluation mappingα : X → A , the evaluation mapping[ ]α

A
: TΣ(X ) → A is

the unique(S,≤,Σ)-homomorphism extendingα [7]. Finally, [ ]α
A

: FormΣ,Π → Bool is given by:

1. [P(t1, . . . , tk)]αA = true for P : w and termst1, . . . , tk if and only if ([t1]αA , . . . , [tk]αA ) ∈ PA
w ;

2. [¬ϕ ]α
A

= true if and only if [ϕ ]α
A

= false;

3. [ϕ ∧ψ ]α
A

= true if and only if [ϕ ]α
A

= true and[ψ ]α
A

= true;

4. [(∀x : s)ϕ ]α
A

= true if and only if for all a∈ As, [ϕ ]
α [x7→a]
A

= true;

We say thatA satisfiesϕ ∈ FormΣ,Π if there isα ∈ X → A such that[ϕ ]α
A

= true. If [ϕ ]α
A

= true for
all valuationsα , we writeA |= ϕ and say thatA is amodelof ϕ [8, page 12]. Initial valuations are not
relevant for establishing the satisfiability ofsentences; thus, both notions coincide on them. We say that
A is a model of a set of sentencesS ⊆ FormΣ,Π (writtenA |=S ) if for all ϕ ∈S , A |= ϕ . And, given
a sentenceϕ , we writeS |= ϕ if and only if for all modelsA of S , A |= ϕ . Soundlogics guarantee
that every provable sentenceϕ is true inevery modelof S , i.e.,S ⊢ ϕ impliesS |= ϕ .

3 Derived models

By adecidable theory Tin a given language (often a fragment of first-order logic) wemean one having a
decision procedurewhich can be used to establish whether a given formulaϕ belongs toT [15]. In some
cases such theories can be presented asaxiomatizationsof algebraic structuresA so thatT = Th(A ) =
{ϕ | A |= ϕ}. We often say thatA is theintended modelof T [8, page 32].

Example 4 Presburger’s arithmetic (or arithmetic without multiplication) can be seen as the set of sen-
tences of the language LP = {0, ′,+,>} which are true in the standard interpretationN of the natural
numbers [2, page 295]. It is well-known that P= Th(N ) is decidable.

Assume that(S′,≤′,Σ′,Π′) is an order-sorted signature with predicates andA ′ is aΣ′,Π′-structure such
thatT = Th(A ′) is decidable. We can define an(S,≤,Σ,Π)-model forS ⊆ FormΣ,Π by means of a map
(theory transformation)κ : FormΣ,Π → FormΣ′,Π′ . If S is finite, then, it isdecidablewhetherκ(S )⊆ T.
If κ(S )⊆ T, thenA ′ |= κ(S ), i.e., theΣ′,Π′-structureA ′ is a model ofκ(S ). If we can defineκ on
a purely syntactic basis, i.e., as homomorphic extensions of maps from the syntactic componentsS, Σ,
andΠ in (S,≤,Σ,Π), then we are able to makeA ′ into aderivedΣ,Π-structureA so thatA is a model
of S , i.e.,A |= S , as desired. In the following, we further develop this methodology.

1As in [8], we use ‘structure’ and reserve the word ‘model’ to refer those structures satisfying a given theory.
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3.1 Derived algebras and structures

AppropriateΣ-algebras can be obtained asderived algebrasif we first consider anewsignatureΣ′ of
symbols with ‘intended’ (often arithmetic) interpretations.

Definition 1 (Derivor and Derived algebra) [5, Definition 11] Let Σ = (S,≤,Σ) and Σ′ = (S′,≤′,Σ′)
be order-sorted signatures. Aderivor from Σ to Σ′ is a monotone functionτ : S→ S′ (i.e., such that for
all s,s′ ∈ S, s≤ s′ implies2 τ(s) ≤′ τ(s′)) and a family dw,s : Σw,s → (TΣ)τ(w),τ(s), whereτ(s1, . . . ,sk) =
τ(s1), . . . ,τ(sk) and where(TΣ)τ(w),τ(s) denotes the set of allΣ′-terms using variables{y1, . . . ,yk} with
yi of sort τ(si). Each operation symbol f∈ Σw,s is expressed using a derived operation dw,s( f ) of the
appropriate arity. We often use d to denote a derivor〈τ ,d〉. Now, letA ′ be anΣ′-algebra. Then, the
d-derived algebra dA ′ of A ′ is theΣ-algebra with carriers(dA ′)s = A ′

τ(s) for all s∈ S; and mappings

f dA ′
for each f∈ Σ defined to be(d( f ))A

′
, the derived operator of theΣ′-term d( f ).

Note thatd in Definition 1 ishomomorphically extendedinto a mappingd : TΣ(X )→ TΣ′(X ′).

Example 5 Let (S,≤,Σ) as in Example 1. Let S′ = {zero,nat} with subsort relation≤′ given byzero≤′

nat, andΣ′ = Σ′
λ ,zero∪Σ′

λ ,one∪Σ′
nat2nat

whereΣλ ,zero = {0}, Σλ ,nat = {1}, andΣ
nat

2
nat

= {+}. We define
a derivor from(S,≤,Σ) to (S′,≤′,Σ′) byτ(S) = τ(S1) = nat andτ(S2) = zero; also, d(0) = 0, d(1) = 1,
d(f) = x+y+z, and d(g) = x+y+1. LetA ′ be the(S′,≤′,Σ′) algebra given byA ′

zero
= {0} andA ′

nat
=

N together with thestandardinterpretations for0, 1, and+. The derived(S,≤,Σ)-algebraA = dA ′ is
given byAS2 = A ′

zero
= {0} and AS = AS1 = A ′

nat
= N, together with the derived interpretations for

each symbol inΣ.

A slight generalization of Definition 1 leads to the notion ofderived structure.

Definition 2 (Derivor for signatures with predicates / Derived structure) Let Σ = (S,≤,Σ,Π) and
Σ′ = (S′,≤′,Σ′,Π′) be order-sorted signatures with predicates and〈τ ,d〉 be a derivor from(S,≤,Σ)
to (S′,≤′,Σ′). We extend d to predicate symbols by adding a component d: Π → FormΣ′Π′ such that for
all P∈ Πw, with w= s1 · · ·sn, d(P) is anatomP′(t ′1, . . . , t

′
m) with P′ ∈ Π′

w′ , and terms t′1, . . . , t
′
m∈TΣ′(X )

only use variables{y1, . . . ,yn} with yi of sortτ(si). In this new context we also call〈τ ,d〉 a derivor. Let
A ′ = (A ′,ΣA ′ ,Π′

A ′) be an(S′,≤′,Σ′,Π′)-structure andA ′
0 = (A ′,ΣA ′) be the underlying(S′,≤′,Σ′)-

algebra. Then, the〈τ ,d〉-derived structure dA ′ of A ′ is the(S,≤,Σ,Π)-structure that consists of the
Σ-algebra dA ′

0 with S-sorted set of carriersA together with interpretations PdA ′

w (for P∈ Πw) defined
to be

PdA ′

w = {([t1]αdA ′ , . . . , [tn]αdA ′) | (t1, . . . , tn) ∈ TΣ(X )w,α ∈ X → A ,
d(P) = P′(t ′1, . . . , t

′
m),Y = V ar(t ′1, . . . , t

′
m),σ(yi) = ti ,1≤ i ≤ n

∃α ′ : Y → A ′([σ(t ′1)]
α ′

A ′ , . . . , [σ(t ′m)]
α ′

A ′) ∈ (P′)A
′
}

Note that〈τ ,d〉 can be seen now as a transformationd : FormΣ,Π → FormΣ′,Π′ :

d(P(t1, . . . , tn)) = d(P)[y1 7→ d(t1), . . . ,yn 7→ d(tn)]
d(¬ϕ) = ¬d(ϕ)

d(ϕ ∧ϕ ′) = d(ϕ)∧d(ϕ ′)
d((∀x : s)ϕ) = (∀x : τ(s))d(ϕ)

The following obvious result formalizes the use of the previous construction.

2Monotonicity isnot required in [5] where only many-sorted signatures are considered.
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∀t ∈ AS (t ≥ t) (13)

∀t ∈ AS1 (t ≥ t) (14)

∀t, t ′,u∈ AS (t > t ′∧ t ′ ≥ s⇒ t ≥ s) (15)

∀t, t ′,u∈ AS1 (t > t ′∧ t ′ ≥ s⇒ t ≥ s) (16)

∀t1, t
′
1, t2, t3 ∈ AS1 (t1 > t ′1 ⇒ t1+ t2+ t3 > t ′1+ t2+ t3) (17)

∀t1, t2, t
′
2, t3 ∈ AS1 (t2 > t ′2 ⇒ t1+ t2+ t3 > t1+ t ′2+ t3) (18)

∀t1, t2, t3, t
′
3 ∈ AS1 (t3 > t ′3 ⇒ t1+ t2+ t3 > t1+ t2+ t ′3) (19)

∀t1, t
′
1, t2 ∈ AS1 (t1 > t ′1 ⇒ t1+ t2+1> t ′1+ t2+1) (20)

∀t1, t2, t
′
2, t3 ∈ AS1 (t2 > t ′2 ⇒ t1+ t2+1> t1+ t ′2+1) (21)

∀x∈ AS2 (0+1+x> x+x+x) (22)

∀x,y∈ AS1 (x+y+1> x) (23)

∀x,y∈ AS1 (x+y+1> y) (24)

Figure 3: Derived sentences for the sentences in Figure 2

Theorem 1 LetΣ = (S,≤,Σ,Π) andΣ′ = (S′,≤′,Σ′,Π′) be order-sorted signatures with predicates and
〈τ ,d〉 be a derivor from(S,≤,Σ,Π) to (S′,≤′,Σ′,Π′). Let A ′ be an(S′,≤′,Σ′,Π′)-structure andϕ ∈
FormΣ,Π. If A ′ |= d(ϕ), then dA ′ |= ϕ .

The following corollary of Theorem 1 formalizes our approach of seeking models of theories through
derived structures.

Corollary 1 (Derived model) Let Σ = (S,≤,Σ,Π) and Σ′ = (S′,≤′,Σ′,Π′) be order-sorted signatures
with predicates and〈τ ,d〉 be a derivor from(S,≤,Σ,Π) to (S′,≤′,Σ′,Π′). LetA ′ be an(S′,≤′,Σ′,Π′)-
structure andS ⊆ FormsΣ,Π be a theory. If for allϕ ∈ S , A ′ |= d(ϕ), then dA ′ |= S .

The following example shows how to use Corollary 1 together with an appropriatederived model for
proving termination of the OS-TRSToyamaOS in our running example.

Example 6 For the OS-TRS in Figure 2, we use a logical model with the derived algebra in Example
5 and predicates→ and →∗ that are interpreted by> and ≥ (over the naturals), respectively. This
model satisfies the sentences in Figure 3 that translate the sentences (1)-(12) in Figure 2. The validity
of (13)-(21) and (23)-(24) is obvious becauseAS = AS1 = N and by reflexivity and transitivity of≥ and
the fact that>⊆≥. With regard to (22), it holds due to our specific choice forAS2: sinceAS2 = {0}, x is
restricted to take value0; thus, the condition0+1+x> x+x+x becomes1> 0, which is trivially true.
Since> is a well-founded relation overAS andAS1, termination ofToyamaOS is proved.

Note that the model in Example 6 is based on adecidable theory, namely, Presburger’s arithmetic (see
Example 4). Also, note that the interpretation of the one-step rewriting predicate→ has beenchosento
be a well-founded ordering, which is essential to conclude termination ofToyamaOS from the fact that
A is a model of the sentences in Figure 3.

4 Constraint-solving and automation of the analyses

Theautomatic generationof models for a theoryS is abottom-upprocess where things remain ‘unspec-
ified’ until an attempt tosolvesome constraints obtained fromS succeeds. Thesolutionis then used to
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synthesize a structure which is (by construction) a model ofS . This is accomplished as follows:

1. The syntactic objects are givenparametric interpretationsof a given type, usually chosen accord-
ing to their amenability to automation. For instance, function symbols are givenlinear polynomials
a1x1 + a2x2 + · · ·+ akxk + a0, wherea0,a1, . . . ,ak areparameterswhich are assumed to beexis-
tentially quantifiedin any formula during the generation process and variablesx1, . . . ,xk (of sorts
s1, . . . ,sk) range on the interpretation domainsAsi for 1≤ i ≤ k.

2. Sentencesϕ ∈ S are used to obtain a new setS ♯ of parametricsentences∃ϕ ♯ with existentially
quantified parametersa1, . . . ,an. Such parameters range over appropriate (constraint solving) do-
mainsD1, . . . ,Dn.

3. Then,S ♯ is treated as aconstraintwhose solutionsσ = {ai 7→ di | 1 ≤ i ≤ n}, with di ∈ Di for
1≤ i ≤ n, makeσ(ϕ ♯) (an instantiation of the parameters inϕ ♯) true.

In the realm of this paper, theparameterization step(item (1) above) is part of the definition ofderivors
(Definitions 1 and 2).

Then, as remarked in item (2) above, the original theoryS is transformed into aderived theoryS ♯.
In this paperS ♯ consists of arithmetic sentences, using numeric orderingsas predicates. Actually, an
important issue is handling parametric formulas containing implicationsof the form

pi
∧

j=1

ei j ≥ di j ⇒ ei ≥ di (25)

where for alli ∈ {1, . . . ,k}, pi > 0 and for all j, 1≤ j ≤ pi, ei j andei arelinear expressionsof the form
∑akxk for numbersak and variablesxk, anddi j ,di ∈ R. Implications following the format (25) are said
to be inaffine form. They are obtained as derived formulas from the theory at stake (e.g., the theory in
Figure 2). In this setting, the Affine form of Farkas’ Lemma considered in [11, Section 5.1] is useful.
In general, given~c∈ Rn andβ ∈ R, the affine form of Farkas’ Lemma can be used to check whether a
constraint~cT~x≥ β holds whenever~x ranges on the setSof solutions~x∈Rn of a linear systemA~x≥~b of
k inequalities, i.e.,A is a matrix ofk rows andn columns and~b∈ Rk. According to Farkas’ Lemma, we
have tofind a vector~λ of k non-negative numbers~λ ∈ Rk

0 such that~c= AT~λ and~λ T~b≥ β .
Farkas’ Lemma permits theremovalof all variables~x and the transformation of the conditional

constraint into a set of equalities and inequalities that, as indicated in item (3) above, can be handled by
means of tools for arithmeticconstraint solvinglike MULTI SOLVER3. Then, we obtain a model forS .
The following section provides a complete account of this process using our running example.

5 Order-sorted structures with convex domains

The resolution of our running example (Example 6) shows thatflexibility in the definition of domains
As for sortss∈ S is an asset: we havesimultaneously used(due to the presence of sorts) an infinite
domain likeN (which is typical in termination proofs) and the finite domain {0}. In order to provide an
appropriate computational basis to theautomaticdefinition of algebras and structures that can be used in
program analysis with order-sorted first-order specifications, we follow [11] and focus on domains that
are obtained as the solution of polynomial and speciallylinear constraints.

Definition 3 (Convex polytopic domain) [11, Definition 1]Given a matrixC ∈ Rm×n, and~b∈ Rm, the
set D(C,~b) = {~x∈ Rn | C~x≥~b} is called aconvex polytopic domain.

3http://zenon.dsic.upv.es/multisolver/

http://zenon.dsic.upv.es/multisolver/
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In Definition 3, vectors~x,~y ∈ Rn are comparedusing thecoordinate-wiseextension of the order-
ing ≥ among numbers(by abuse, we use the same symbol):~x = (x1, . . . ,xn)

T ≥ (y1, . . . ,yn)
T =

~y if and only if x1 ≥ y1 ∧ ·· · ∧ xn ≥ yn. Convex domains can be parameterized by considering a sub-
setN ⊆ R (e.g.,N, Z, Q, etc.) withC ∈ Nm×n, and~b∈ Nm and definingDN(C,~b) = {~x∈ Nn | C~x≥~b}.

Example 7 IntendedinterpretationsA s for some usual sorts s as convex domainsAs = D(Cs,~bs) are:

Sort C
s ~bs As = D(Cs,~bs)

∅ (0) (1) ∅

Nat (1) (0) [0,+∞)

NzNat (1) (1) [1,+∞)

Zero (1,−1)T (0,0)T {0}
Bool (1,−1)T (0,−1)T [0,1]
Char (1,−1)T (0,−255)T [0,255]

We discuss the automatic generation of structures based on convex polytopic domains according to the
general scheme in Section 4. We illustrate the develoment byusing our running example.

5.1 Domains

We interpret sortss∈ Sas convex domainsAs= D(Cs,~bs), where4 Cs ∈Rms×ns is anms×ns-matrix and
~bs ∈ Rms. Thus,As ⊆ Rns. Givens∈ S, we have tofix ms andns according to some criterion. Then,
matricesCs and vectors~bs can be writtenparametrically. The exact shape ofD(Cs,~bs) will be settled by
the subsequentconstraint solving process.

Remark 3 For 1-dimensional convex domains D(Cs,~bs) ⊆ R (i.e., intervals, with ns = 1), imposing
0 < ms ≤ 2 is appropriate because the existence of more than2 rows inC

s for a given entry in~bs is
useless: they define the same interval that those producing the least and bigger values when applying
them to~x. In general, if ms= 2, thenCs= (Cs

1,C
s
2)

T and~bs= (bs
1,b

s
2)

T means that Cs1x≥ bs
1 and Cs

2x≥ bs
2.

As shown in Example 7, fixing ms = 2 and usingZ as domain for parameters bi and ci is important to
gain flexibility in the definition of convex domains, especially if bounded domains are desirable. Our
choice, in this 1-dimensional case is ms = 2 and ns = 1.

5.1.1 Non-empty convex domains

An important requirement in termination analysis is that the domainD(C,~b)⊆Rn where a well-founded
relation> is to be defined shouldnot be empty. At the syntactic level we guarantee this by just adding a
freshconstantk of the appropriate sortS (to be interpreted byD(C,~b)) in the signature:k : S. Of course,
if such a constant is already part of the specification, nothing else is required. At thederivedlevel this
becomes a (vectorial) constraintCkT ≥~b to be satisfied by adummyconstantk∈Rn.

5.1.2 Convex domains which are bounded from below

In some applications, it is useful to guarantee that a semantic domainA is bounded from below. In our
setting, the following sentence (which is universally quantified on variablex):

Cx≥~b⇒ x≥~α
4In the following, we use write the sorts in the superscript of the matrix and vector componentsC and~b of the convex

domain. In this way, we can use the subscripts to identify their components: rows, columns, etc.
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guarantees thatA = D(C,~b) is bounded from below; here~α is a freshconstantwhose value will be
established by the constraint solving process.

5.1.3 Compatibility with the subsort relation

Regarding thesubsortrelation, if s≤ s′, thenAs = D(Cs,~bs) ⊆ D(Cs′,~bs′) = As′ must hold. Such a
condition is expressed by the universally quantified formula:

C
sx≥~bs ⇒ C

s′x≥~bs′ (26)

5.2 Functions

A many-sorted convex matrix intepretationfor f : s1 · · ·sk → s is a linear expressionF1x1+ · · ·+Fkxk+F0

such that (1) for alli, 1≤ i ≤ k, Fi ∈Rns×nsi arens×nsi -matrices andxi are variables ranging onRnsi , (2)
F0 ∈ Rns, and (3) it ranges onD(Cs,~bs) whenever variablesxi take value on the corresponding domain
D(Csi ,~bsi ), i.e., that satisfies the followingalgebraicity condition:

∀x1 ∈ Rns1 , . . .∀xk ∈ Rnsk

(

k
∧

i=1

C
si xi ≥~bsi ⇒ C

s(F1x1+ · · ·+Fkxk+F0)≥~bs

)

For overloaded symbolsf ∈ Σw,s∩ Σw′,s′ with w ≤ w′, we must haves≤ s′ as well. We have to
guarantee that the interpretationsf A

w,s and f A
w′,s′ coincide onAw (see Section 2) As discussed in Section

5.1, this implies that, withw = s1 · · ·sk andw′ = s′1 · · ·s
′
k, we must havensi = ns′i

for all i, 1 ≤ i ≤ k.

Furthermore,ns = ns′ as well. Therefore, iff A
w,s = ∑k

i=1 Fi~xi +F0 and f A
w′,s′ = ∑k

i=1F ′
i ~xi +F ′

0, the desired
condition can be written as follows:

∀x1 ∈ As1, . . . ,∀xk ∈ Asn,
k

∑
i=1

(Fi −F ′
i )xi +F0−F ′

0 = 0 or, equivalently:

∀x1 ∈ Rns1 . . . ,∀xk ∈ Rnsk(
k
∧

i=1

C
si xi ≥~bsi ⇒

k

∑
i=1

(Fi −F ′
i )xi +F0−F ′

0 = 0)

5.3 Predicates

The interpretation of the (universally quantified) rules ofthe theory for the running example, with over-
loaded predicates→,→∗ (see Example 2), is given by interpreting the overloads of→∗ as≥ (the usual
ordering on numbers) and the overloads of→ as>δ for someδ > 0. The use of this special ordering
over the reals instead of the usual one>R is due to the need of interpreting→ by using awell-founded
ordering in order to obtain a sound termination analysis. According to [9], >δ is well-founded over
subsetsA⊆ R that arebounded from below.

6 Automatic treatment of the running example

Since we deal with three different sortsS, S1, andS2, we consider three convex domains:

AS = D(CS,~bS) AS1 = D(CS1,~bS1) AS2 = D(CS2,~bS2)
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whereCS,CS1,CS2 ∈ R2×1 and~bS,~bS1,~bS2 ∈ R2. By requiring non-emptyness, we obtain the first con-
straints for our running example:

CS
1k≥ bS

1∧CS
2k≥ bS

2 (27)

CS1
1 k′ ≥ bS1

1 ∧CS1
2 k′ ≥ bS1

2 (28)

wherek andk′ aredummyelementsk,k′ ∈ R for S andS1. However, sinceToyamaOS already includes
a symbol1 of sortS1, constraint (28) is not really necessary and could be avoided (see constraint (34)
below). And, although there is no constant symbol of sortS, functionf takes arguments of sortS1 (which
is not empty) and yields a term of sortS. Thus, sortS is not empty; this is guaranteed by means of other
constraints like (35)-(36) below. Thus, (27) could be avoided too.

We guarantee thatAS andAS1 are both bounded from below with the following constraints:

CS
1x≥ bS

1∧CS
2x≥ bS

2 ⇒ x≥ α (29)

CS1
1 x≥ bS1

1 ∧CS1
2 x≥ bS1

2 ⇒ x≥ α ′ (30)

for constantsα andα ′, wherex is universally quantified (butα andα ′ are treated as new, existentially
quantified, parameters). SinceS2≤ S1, we add the following sentence (universally quantified inx):

CS2
1 x≥ bS2

1 ∧CS2
2 x≥ bS2

2 ⇒CS1
1 x≥ bS1

1 ∧CS1
2 x≥ bS1

2

However, since this sentence isnot in affine form (due to the conjunction in the consequent of the
implication), we decompose it as a conjunction of two implications as follows:

CS2
1 x≥ bS2

1 ∧CS2
2 x≥ bS2

2 ⇒CS1
1 x≥ bS1

1 (31)

CS2
1 x≥ bS2

1 ∧CS2
2 x≥ bS2

2 ⇒CS1
2 x≥ bS1

2 (32)

With regard to function symbols, sincens = 1 for all s∈ S, componentsFi for each symbolf ∈ Σ are
numbers, actually. We giveparametric interpretationsto eachf ∈ Σ as follows:

[0] = z0 [1] = u0

[f](x,y,z) = f1x+ f2y+ f3z+ f0 [g](x,y) = g1x+g2y+g0

and thealgebraicity conditionsare (withx,y,z universally quantified in all formulas):

CS2
1 z0 ≥ bS2

1 ∧CS2
2 z0 ≥ bS2

2 (33)

CS1
1 u0 ≥ bS1

1 ∧CS1
2 u0 ≥ bS1

2 (34)
2
∧

i=1

CS1
i x≥ bS1

i ∧
2
∧

i=1

CS1
i y≥ bS1

i ∧
2
∧

i=1

CS1
i z≥ bS1

i ⇒ CS
1( f1x+ f2y+ f3z+ f0)≥ bS

1 (35)

2
∧

i=1

CS1
i x≥ bS1

i ∧
2
∧

i=1

CS1
i y≥ bS1

i ∧
2
∧

i=1

CS1
i z≥ bS1

i ⇒ CS
2( f1x+ f2y+ f3z+ f0)≥ bS

2 (36)

2
∧

i=1

CS1
i x≥ bS1

i ∧
2
∧

i=1

CS1
i y≥ bS1

i ⇒ CS1
1 (g1x+g2y+g0)≥ bS1

1 (37)

2
∧

i=1

CS1
i x≥ bS1

i ∧
2
∧

i=1

CS1
i y≥ bS1

i ⇒ CS1
2 (g1x+g2y+g0)≥ bS1

2 (38)

where (35) and (36) are actually obtained from a single algebraicity condition after splitting the con-
junction in the consequent of the implication to obtain implications in affine form (as in Section 5.1.3).
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Similarly for (37) and (38)). Note also that, even though0 and1 are constant symbols, (33) and (34) are
also necessary to guarantee that they receive a value according to theirsort (S2 andS1, respectively).

Using the interpretations for sorts, function symbols, andpredicates, we obtain the following derived
sentences:

1. Instances of thereflexivity rule (Rf), corresponding to sentences (1) and (2) in Figure 2, with t
universally quantified:

CS
1t ≥ bS

1∧CS
2t ≥ bS

2 ⇒ t ≥ t (39)

CS1
1 t ≥ bS1

1 ∧CS1
2 t ≥ bS1

2 ⇒ t ≥ t (40)

Note that the two sentences above trivially holdunder the current interpretation of≥ as a quasi-
ordering (a reflexiveandtransitiverelation). Thus, (39) and (40) could beremoved.

2. Instances of thetransitivity rule (T), corresponding to (3) and (4):

2
∧

i=1

CS
i t ≥ bS

i ∧
2
∧

i=1

CS
i t ′ ≥ bS

i ∧
2
∧

i=1

CS
i u≥ bS

i ∧ t ≥ t ′+δ ∧ t ′ ≥ u⇒ t ≥ u (41)

2
∧

i=1

CS1
i t ≥ bS1

i ∧
2
∧

i=1

CS1
i t ′ ≥ bS1

i ∧
2
∧

i=1

CS1
i u≥ bS1

i ∧ t ≥ t ′+δ ∧ t ′ ≥ u⇒ t ≥ u (42)

3. Instances of thecongruencerule (C), corresponding to (5)-(9), where we uset ∈ AS1 instead of
CS1

1 t ≥ bS1
1 ∧CS1

2 t ≥ bS1
2 :

3
∧

i=1

ti ∈ AS1∧ t ′1 ∈ AS1∧ t1 ≥ t ′1+δ ⇒ f1t1+ f2t2+ f3t3+ f0 ≥ f1t
′
1+ f2t2+ f3t3+ f0+δ (43)

3
∧

i=1

ti ∈ AS1∧ t ′2 ∈ AS1∧ t2 ≥ t ′2+δ ⇒ f1t1+ f2t2+ f3t3+ f0 ≥ f1t1+ f2t
′
2+ f3t3+ f0+δ (44)

3
∧

i=1

ti ∈ AS1∧ t ′3 ∈ AS1∧ t3 ≥ t ′3+δ ⇒ f1t1+ f2t2+ f3t3+ f0 ≥ f1t1+ f2t2+ f3t
′
3+ f0+δ (45)

2
∧

i=1

ti ∈ AS1∧ t ′1 ∈ AS1∧ t1 ≥ t ′1+δ ⇒ g1t1+g2t2+g0 ≥ g1t
′
1+g2t2+g0+δ (46)

2
∧

i=1

ti ∈ AS1∧ t ′2 ∈ AS1∧ t2 ≥ t ′2+δ ⇒ g1t1+g2t2+g0 ≥ g1t1+g2t
′
2+g0+δ (47)

4. Instances of thereplacementrule (Re), corresponding to (10)-(11):

CS2
1 x≥ bS2

1 ∧CS2
2 x≥ bS2

2 ⇒ f1z0+ f2u0+ f3x+ f0 ≥ f1x+ f2x+ f3x+ f0+δ (48)

CS1
1 x≥ bS1

1 ∧CS1
2 x≥ bS1

2 ∧CS1
1 y≥ bS1

1 ∧CS1
2 y≥ bS1

2 ⇒ g1x+g2y+g0 ≥ x+δ (49)

CS1
1 x≥ bS1

1 ∧CS1
2 x≥ bS1

2 ∧CS1
1 y≥ bS1

1 ∧CS1
2 y≥ bS1

2 ⇒ g1x+g2y+g0 ≥ y+δ (50)
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6.1 Synthesis of the model

The conjunction of all previous sentences (27)-(50) (perhaps dropping some of them, as suggested in
previous sections) yields an∃∀-sentence (the∃ concerns existential quantification ofk, k′, α , α ′, δ , and
all parameters in domain descriptions and algebraic interpretations) where allintroduced parametersare
existentially quantified (on appropriate domains of coefficients, see Section 4) and allsemantic variables
(i.e., those ultimately coming from the description of the problem and required by the semantic inter-
pretation of symbols) are universally quantified (over the reals). As mentioned in Section 4, we can use
now the techniques discussed in [11] together with standardconstraint solving techniques to obtain an
assignment of values to the parameters which defines the desired model. Given a matrixA of k rows and
n columns,~b∈ Rk,~c∈ Rn andβ ∈ R, the application of the affine form of Farkas’ Lemma to prove that
the universally quantified sentenceA~x ≥~b ⇒~cT~x ≥ β holds tries tofind a vector~λ of k non-negative
numbers~λ ∈ Rk

0 such that theconstraints~c= AT~λ and~λ T~b≥ β hold.

Example 8 We apply the Affine form of Farkas’ Lemma to sentence (29) as follows: the associated ma-
trix A is actually a vector(CS

1,C
S
2)

T and~b= (bS
1,b

S
2)

T ; we have that~c= (1)T is a one-dimensional vector

and finallyβ = α . Then, we seek a vector~λ = (λ1,λ2)
T with λ1,λ2 ≥ 0 that satisfies the (in)equations:

1=CS
1λ1+CS

2λ2 λ1bS
1+λ2bS

2≥α λ1,λ2 ≥ 0

The satisfiability of these inequations (a constraint solving problem for parameters CS1, CS
2, bS

1, bS
2, λ1, λ2

andα), is equivalent to the satisfiability of (29).

Example 9 Sentence (50) isnot in affineform, but we can easily fix it as follows:

CS1
1 x≥ bS1

1 ∧CS1
2 x≥ bS1

2 ∧CS1
1 y≥ bS1

1 ∧CS1
2 y≥ bS1

2 ⇒ g1x+(g2−1)y≥ δ −g0 (51)

Now, we apply Farkas’ lemma to each of them. The associated matrix A has four rows (correspond-
ing to the four atoms in the conjunction of the antecedent of the implication) and two columns (cor-
responding to variables x and y): A= (CS1

1 ,0 ; CS1
2 ,0 ; 0,CS1

1 ; 0,CS1
2 ). Vector~b has four compo-

nents:~b = (bS1
1 ,bS1

2 ,bS1
1 ,bS1

2 )T . Now,~c = (g1,g2 − 1)T and β = δ − g0. Thus, we want now a vector
~λ = (λ1,λ2,λ3,λ4)

T that satisfies:

g1=CS1
1 λ1+CS1

2 λ2 g2−1=CS1
1 λ3+CS1

2 λ4

λ1bS1
1 +λ2bS1

2 +λ3bS1
1 +λ4bS1

2 ≥δ −g0 λ1,λ2,λ3,λ4≥0

for some values of the parameters.

Remark 4 Note that each implication processed using Farkas’ Lemma can use adifferentvector~λ , but
we have tosolve a single set of inequations corresponding to a single solution which produces a single
model that makes all sentences valid.

The following assignment:

CS
1 =1 CS

2 =1 CS1
1 =1 CS1

2 =1 CS2
1 =1 CS2

2 =−1

bS
1=0 bS

2=0 bS1
1 =0 bS1

2 =0 bS2
1 =0 bS2

2 =0

f1=1 f2=1 f3=1 f0=0 g1=1 g2=1 g0=0 z0=0 u0=1

k=0 k′=0 α =0 α ′=0 δ =1
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(where we disregard the different~λ required by the application of Farkas’ Lemma asadministrative
symbols) makes all sentencestrueandgeneratesthe modelA for the theoryS in our running example:

AS = [0,+∞) AS1 = [0,+∞) AS2 = {0}

fA
S1S1S1,S(x,y,z) = x+y+z gA

S1S1,S1(x,y) = x+y+1 0A

λ ,S2 = 0 1A

λ ,S1 = 1

t →A
SS

t ′⇔ t >1 t ′ t (→∗)A
SS

t ′⇔ t ≥ t ′ t →A
S1S1

t ′⇔ t >1 t ′ t (→∗)A
S1S1

t ′⇔ t ≥ t ′

7 Related work and conclusions

Our extension of derived algebras [5] to derived models for order-sorted first-order theories follows some
of the ideas in [6]. The generation ofhomogeneous algebrasusing parametric interpretations followed
by a constraint solving process is standard in termination analysis of term rewriting [4]. However, no
systematic treatment of the generation ofdomains for sortsand heterogeneousfunctions for ranked
symbolsin many-sorted or order-sorted algebras has been attemptedto date. And the generation of
predicates as part of the generation of a model is also new. This work is also a step forward in the practical
use of logical models in proofs of operational termination of programs. This was a main motivation of
[11] after understanding the practical role of using modelsin proofs of termination in the OT-Framework
[12, 13]. This paper also generalizes our previous experience in termination to envisage a generic, logic-
oriented approach to abstraction in program analysis, which is based on defining appropriatemodelsfor
the logic which is used to describe the computations. Focusing on an order-sorted first-order logic to
describe programs and program properties, we have generalized theconvex domainsandconvex matrix
interpretationsintroduced in [11] to the order-sorted setting. Such a generalization leads to a flexible
framework to define different domains for different sorts whereas it is still amenable for automation by
using existing algorithms and techniques from linear algebra [17]. Indeed, the use ofboundedconvex
domains for some sorts (as{0} for sortS2 in ToyamaOS) has been essential to obtain a simple solution
of the corresponding problem. A first implementation of the techniques presented in this paper has
been reported in [16], including the generation of convex domains and convex interpretations along the
lines of Section 5. The use of convex domains in termination analysis is also available as part of the
tool MU-TERM [1]. Their usefulness has been recently shown in the 2015 International Termination
Competition held in August as part of CADE 2015, where convexdomains have been successfully used
to prove operational termination ofconditional term rewriting systems.
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