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Recent developments in termination analysis for declaatiograms emphasize the use of appro-
priate models for the logical theory representing the paogat stake as a generic approach to prove
termination of declarative programs. In this setti@gder-Sorted First-Order Logiprovides a pow-
erful framework to represent declarative programs. It ptewides a target logic to obtain models for
other logics via transformations. We investigate dlutomatic generatioof numerical models for
order-sorted first-order logics and its use in program aislyn particular in termination analysis of
declarative programs. We usenvex domain® give domains to the differesbrtsof an order-sorted
signature; we interpret thenkedsymbols of sorted signatures by means of appropriatelytadap
convex matrix interpretationsSuchnumericalinterpretations permit the use of existing algorithms
and tools from linear algebra and arithmetic constraintiaglto synthesize the models.

Keywords: Linear algebra, Logical models, Order-sorted first-ordgid, Program Termination.

1 Introduction

In the logical approach to programming(declarative) programs atbeories of a given logicZ and
computation ideduction in the inference systeh.Z [14]. The corresponding notion éérmination
of declarative programs is the absence of infinite trees ynpanof of a computation [10]. Recently, a
framework toprove termination of declarative programs has been develapeld [h2this framework,
we obtain theproof jumpsassociated to the inference systefi{.”) which is derived from the logic
Z which is used to describe the progra#. Proof jumps are structures 1} Bs,...,B, wheren >0
andA, By, ..., B, areformulasin the inference rulew in 7 () (for p> 0). Proof jumps are
used to capture (infinite) paths in a proof tfeesing the rules in# (.#) so that there is aimpfrom an
instanceo (A) of A to an instances (By,) of B, provided that the corresponding intanceSgf...,B,_1
wereproved i.e.,.” - g(B;) for all i, 1 <i < n. A set of proof jumpg is anOT problem Theinitial OT
problem1; consists of all proof jumps forZ (). Then, we apply an incremental proof methodology
which simplifiesOT problemst in a divide-and-conquer style to eventually prove (or disp) termi-
nation of . In particular, proof jumpsp : A f} Ba,...,Bn can beremovedfrom an OT problent by
usingwell-founded relationss as follows: if, for all substitutionsr, whenever¥ + o (B;) holds for alli,
1<i<n, we have that (A) J o(By) holds, then we caremovey from 1. In [12] we show thatogical
modelsare useful for this purpose. Any modsel of .~ satisfies the provable formulas, i.e. Af+ o (B;)
holds, then,e7 |= 0(B;) holds. The point is using this fact ttefinethe well-founded relatiorn. This
idea is developed in [11] for a systematic treatment of gadftermination using logical models.

A sufficiently general and expressive framework to represiatlarative programs, semantics of
programming languages, and program propertig3rder-Sorted First-Order Logi¢OS-FOL), where
the signature consists of a sebf sorts(i.e., names representing sets of values) which are ordgred
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Figure 1: Inference rules for Order-Sorted TRBs

asubsort relation< meaning subset inclusion, and s&{g and[l,, of function and predicate symbols,
wheres € Sandw is a sequence; --- s of sorts fromS [6]. For instance, in ourunning example
(Section1.11) we develop a termination analysis foilCader-Sorted Term Rewriting Systd@S-TRS)
[6) 7], viewed as a particular case of OS-FOL theory with mae symbols— and—* describing the
one-step rewrite relationy and the zero-or-more-steps relatiert, see Figurell.

In this paper we consider the automatic generation of moel©S-FOL theories. This can be
used in program analysis, in particular to mechanize thmitetion analysis of declarative programs as
explained aboveSemantic structures?’ [8] leading todecidable theories Thy’) [15] can be used to
provide an effective way tbndlogical modelse7 for a program or specificatios’. This is often possible
by usingtheory transformation from the language of” into the language ofh(.«7’) to obtain a set
of sentences”’ = k() which is thendecidable We formalize this view by extending the notion of
derived algebrd5] to logical structures. Targeted languages usually liev@ymbols (e.g.;+, X,...)
with anintended meaningn the structures?’ that define the decidable theofy(.«7’). We also show
how to transform an OS-FOL theory into a derivedoarametrictheory.#* of linear arithmetic where
appropriate algorithms and constraint solving technigqagsbe used to give value to the parameters thus
synthesizinga modelof .. Theconvex domaingitroduced in[[11] provide appropriate means for this.
They can be used to define bounded and unbounded domain®feortis in the OS signature. Indeed,
the use of different (in particuldsoundedl domains for some sorts is essential to obtain a simple model
which can be used to prove termination of our running example

Section 2 summarizes the basics of OS-FOL. Se¢fion 3 devélapnotion ofderived modehnd
shows how to use it to deal with our running examples. Seélidescribes our automation approach
using linear algebra techniques and constraint solving:ti®@€3 explains the generation of OS-FOL
structures based on tlwenvex domainandconvex matrix interpretationmtroduced in[[11] Sectioh]6
shows how to apply the technique to obtaineammomaticsolution to our case study. Sectidn 7 concludes.

1.1 Running example: termination of an order-sorted rewrite system

The OS-TRSToyama0s in Figure[2 is based on Toyama’s example![18]. It is given abapéfully
self-explanatory) module d¥laude [3]. The unsorted version of this module is nonterminatitg]{
Furthermore, i§1 andS2 are confused into a single sort thesiyama0s is nonterminating too:

f(g(o7 1),8(0, 1),8(0, 1)) - f(O,g(O, 1),8(0, 1)) - f(O, 17g(o7 1)) - f(g(o7 1),g(0, 1),g(0, 1)) —

But with all sort information we can it prove tierminating For instance, variable (of sortS$2) cannot

be bound to terms of softi which is a supersort &2. Thus, the third step, which requires a binding

x — g(0,1), is not possible because the sorgg, 1) is S1. Thus the infinite sequence is not possible.
Theorder-sorted first-order theorfor the OS-TRS is also shown in Figure 2. It is obtained by spe-

cializing the inference rules in Figuré 1. Sentences in féi@umake explicit the implicit quantification
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mod ToyamaOS is Vt:s(t‘é t) 1)

sorts S S1 S2 . VEist (t—t) )
subsort S2 < S1 . vt uis (t =t/ At 5*u=t—-*u) ?3)
op 0 : 7> 52 VLU, UIST (t— AL —F U=t —* ) @)

op1l:->81.

opf :S18S18S1->8. Vt17t1,t27t3231 (t1—>t1:>f(t17t2,t3)—)f(ti,tg,tg)) 5)
opg: S1S1->81. Wiy, to,15,t3 1 81 (tp = th = £(t1,1,13) — £(ty,15,13)) (6)
var x : 52 . Vg, t,t3,15 1 S1 (t3 — t = £(t1, t2,t3) — £(t1,12,13)) (7)
vars y z : 8L . Vi, bt 1 S1 (= t] = g(ta,to) — g(t],t 8
rl f(0,1,x) = f(X,X,X) . 15 ]_7/2- (1 1/ g(17 2) g(]_7 2)/) ( )
rl g(y,z) => y . Vi, t2,t,t3 1 81 (t2 =t = gty t2) — g(te, 1)) )
rl g(y,z) => z . Vx: 82 (£(0,1,X) = £(X, X, X)) (10)
endn vy : St (g(xy) = X) (11)
Xy :81 (g(xy) =) (12)

Figure 2: Order-sorted version of Toyama’s example andsisciated Order-Sorted First-Order Theory

of the inference rules by taking into account the sorts insigaature and the subsort ordering. In par-
ticular, the only quantification ove¥2 occurs in[(1D). It turns out that such a quantification is i@iuo
obtain a simple proof of termination. In order to prove taration of this OS-TRS we need to find a
model.«7 for the theory in Figur€l2 such that is interpreted as well-founded relatior-. Although
we do not have space to further justify this claim, it easiljdws from the theory in [12].

2 Order-Sorted First-Order Logic

Sorts and Order-Sorted Signatures. Given a set ofsorts S a many-sorted signature is & x S
indexed family of set& = {Zws}ws)es xs containingfunction symbolsvith a given string of argument
sorts and a result sort. If € 2.5, s, then we displayf asf :s;---5, — s. This is called arank
declaration for symbof. Constant symbols (taking no argument) have rank declaratmni — sfor
some sors (whereA denotes themptysequence). An order-sorted signat(®e<,X) consists of a poset
of sorts(S, <) together with a many-sorted signat&2). Theconnected componert$ (S, <) are the
equivalence classég corresponding to the least equivalence relationcontaining<. We extend the
order< on Sto strings of equal length i§* by s;---s, <) ---5,iff § < g foralli, 1 <i <n. Symbols
f can besubsort-overloadedi.e., they can have several rank declarations relateddar<tlordering
[7]. Constant symbols, however, have only one rank dedtaratBesides, the followingnonotonicity
conditionmust be satisfiedf € %, s, N 2w, s, andw; < ws imply 5, <'sp. To avoid ambiguous terms,
we assume thd is sensible meaning that iff : s;---s, — sandf : s} ---5, — s are such thas| = [5],
1<i<n, then[g = [s]. Throughout this papeg, will always be assumedensible An order-sorted
signatureX is regular iff given wo <wj in S* and f € %, g, there is a leastw,s) € S* x Ssuch that
f € Zys andwp < w. If, in addition, each connected componésjtof the sort poset has a top element
Ty € [8], then the regular signature is calledherent

Given anS-sorted set?” = { 25| s€ S} of mutually disjointsets of variables (which are also disjoint
from the signaturex), the set7s (2"), of terms of sortsis the least set such that (}s C .75(2),,
(i) If § <s, thenF5(2)y C F5(2")s and (iii) for eachf : s+ & — sandtj € F5(27)g, L<i <n,
f(ty,....,th) € B(Z)s If 2 =2, we write 75 rather than7s (@) for the set ofgroundterms. Terms
with variables can also be seen as a special case of ground téitheextendedsignature>(.2") where
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variables are considered esnstantsymbols of the apporpriate sort, i.8(.2")) s = Z) sU Zs.

Example 1 The order-sorted signatureS, <,%) for programToyama0S consists of the following com-
ponents:

1. Setof sortsS= {S,S81,52}.

2. Thesubsort relations the least ordering< on S satisfying2 < S1.

3. Thus,(S <) (or S/=.) consists of tw@onnected component§s] = {S} and[S1] = {S2,51}.
4. Note thass is thetop sortT g of [S], ands1 is the top sorfT ;) of [S1].
5

. The Signature ig = 231 UZSQ UZSlSLSl UZSlSl S1,8) with 231 = {1}, ng = {O}, 25151731 = {g},
andXs;s1s15s = {f}.

6. There is no overloaded function symbol, i2eis trivially regular Furthermore, since every con-
nected component has a top sort (see fen{f), %) is acoherensignature.

The set of variables i = 251 U Zs2, With Zs; = {y,z}, and Zs, = {x}.

The assumption thaX is sensible ensures that[d # [s], then 75(27)g N F5(2)g) = @. The set
Iz () of order-sorted terms is5(2") = Uses: 75 (27 )s. An element of any sets (27), is called a
well-formedterm.

Order-Sorted Algebras. Given a many-sorted signatuf& %), an (S X)-algebra.< (or just aZ-
algebra, ifSis clear from the context) is a familye% | s € S} of sets called thearriers or domainsof ./
together with a function‘\;\‘fs € Ay — s for eachf € Zys whereay = ofg) x - X g, If W=51--- &,
and.e#y is a one point set whem = A. Given an order-sorted signatui® <,), an(S, <,Z)-algebra (or
>-algebra if(S <) is clear from the context) is &%, X)-algebra such that

1. If s,s € Sare such thas < ¢, then.ws C o7y, and

2. If f € Sy, N Zw,s andwy < Wy, thenf o

€ oy, — As, equalstyy o € oy, — As, ON Ay,

Remark 1 Note that overloaded symbols f may be gidéferentfunctions ﬁf’sl,..., fﬁf.Sn depending

on the specific ranks w— s1,...,Wn — S, Of the overload for symbol f. Of course, such functions must
still fulfill condition[2 above.

With regard to many sorted signatures and algebra&S an-homomorphism betweg(is, X)-algebras’
andg/’ is anS-sorted functiorh = {hs : o%s — <%/ | s€ S} such that for eacli € Zyswithw=s,..., 5,
hs(fis(an,. ... a) = fizs (hs (a1), ..., Mg (a)). If w= A, we havehs(f<) = <. Now, for the order-
sorted case, af5, <,%)-homomorphisnh: «# — o/’ between(S, <, ¥)-algebrass and./’ is an(S %)-
homomorphism that satisfies the following additional ctindi if s< s anda € .o%, thenhs(a) = hy(a).
The family ofdomains{.75 (2")}ss together with the operations: (ty,...,t,) — f(t1,...,ty) de-
fine an order-sorted-algebra called thdree algebra onZ" and denotedZ (2"). When 2" = &,
s = J5(2) denotes thaitial Z-algebra, i.e., an algebra having a unigue homomorphism% — o/
to eachz-algebrager. Similarly, 75(2") (itself aZ-algebra) is initial in the class of all(.2")-algebras.
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Predicates and connectives. Following [6], an order-sorted signatuvéth predicatess a quadruple
(S <,Z,M) such thatS <, Z) is an coherent order-sorted signature, Bhe {My, | w € St} is a family

of predicate symbols R, ... We writeP : w for P € M,,. Overloading is also allowed on predicates with
the following conditions([6, Definition 11]:

1. There is an equality predicate symbok lNiff sis the top of a connected component of the sort
posetS.

2. Regularity For eachwg such that there iB € Ny, with wyp <wy, there is a least such thaP € Iy,
andwg < w.

We often writeZ, N instead of(S, <,%,M) if Sand < are clear from the context. The formulgsof

an order-sorted signature with predicae$1 are built up from atom®(ts,...,t,) with P € N, and

t1,...,th € Z5(Z),, logic connectives (e.g/, —) and quantifiersY() as follows: (i) if P € My, w=

1o, andt € F5(27)g for all i, 1<i <n, thenP(ty,...,tn) € Formyn. (i) if ¢ € Formyp, then
¢ € Forms p; (iii) if ¢,¢’ € Formsn, theng A ¢’ € Forms; (iv) if s€ S xe Zs, and¢ € Forms ,

then (Vx: s)¢ € Forms . As usual, we can consider formulas involving other logiarectives and
quantifiers (e.g.v, =, <, 3,...) by using their standard definitions in terms/af—, V. A closed
formula, i.e., whose variables are all universally or exisially quantified, is called sentence

Remark 2 In order to define an order-sorted signature with predicatest can be used to reason about
rewritings with OS-TRSs, we have to provide (at least) asynoarrloads for the computational relation
—* as connected componejst in S/=_: due to axiom (Rf), OS-TRSs are expected to rewrite with
any of the classe%(%)[sl for every connected compongst By coherence of the signature, we can
just let—*¢ Mg Ty for all s€ S. Then, rule (T) requires a corresponding overload-feras well. By
coherence of the signature, we can justl'lle:ftH Ty = {—,—*}forall se S. This will be compatible with
any possible instance of rule (Re) because tetarsd r in rewrite rules/ — r of OS-TRSs must be terms
belonging to.75(2") g for some s= S. By coherence, we know that € ‘%(%)T[s] for some s= S.

Example 2 The order-sorted signaturS <, ) described in Examplé 1 is extended into a order-sorted
signature with predicate6S <, M) wherell = Mgs UMgys1 for Mgs = Msy151 = {—,—*}, which are
the only nonempty sets of predicate symbols. They satestedgularity condition.

Theories, specifications and programs. A theory.”” of Z,I1 is a set of formulas,” C Forms , and

its theoremsare the formulag € Forms n for which we can derive a proof using an appropriate infegenc
systems (.¢) of alogic.Z in the usual way (written” - ¢). Given a logicZ describing computations
in a (declarative) programming language, programs areadexgtheories.s of .Z.

Example 3 In the logic of OS-TRSs, with binary (overloadeskdicates— and —*, the theory for
an OS-TR%7Z = (S <, Z,R) with set of rules R (for instance, our running example) isaoi#d from the
schematidnference rules in Figurel1 aftespecializinghem agC)  for each fe .# andi,1 <i <ar(f)
and (Re), for all p: £ —r € R. Then, inference rule8t=:f» pecomemplicationsBy A --- A By = A.
For instance, with regard to the sentences Toyama0s in Figure[2:

e Sentences [1) andl(2) specialize (Rf) in Figure 1 for the twerloads of—* in Mgg and Mg; g1,
respectively.

e Sentence$[3) andl(4) specialize (T) for the overloadsoind— in Mgg andMs; 51, respectively.

e Sentenced[5).(6), andl (7) specialize (C) for synfbosing the appropriate overloads ef in
Mss andlMs; 51 according to the rank of. Similarly, [8) and[(®) specialize (C) for symhgl
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e Sentences (10, (I11), ard {12) specialize (Re) for eachteevale in Toyama0s.

Note that, according to the variable declaration foiin Toyama0sS, in sentence (10) variable x ranges
on values of sorg2 only.

Structures, Satisfaction, Models. Given an order-sorted signature with predicat8s<,%,I1), an
(8<%, I'I)—structur@ (or just aZ,IM-structure) is an order-sortd®, <,%)-algebracs together with an
assignment to eadP € Ny, of a subseR C .24, such that[[6]: (i) forP the identity predicate = _: s
the assignment is the identity relation, ie=)., = {(a,a) | a € o%}; and (ii) wheneveP : wy andP : w;
andwy < ws, thenPRy = o, NP7.

Let (S, <,Z,M) be an order-sorted signature with predicates andz’ be (S <,Z, M)-structures.
Then, an(S <,Z,M)-homomorphism h.«/ — &' is an (S, <,%)-homomorphism such that, for each
P:winM,if (as,...,a)) € R7, thenh(ay,...,a,) € R

Given anS-sortedvaluation mappingx : 2° — &7, the evaluation mapping|?, : 75 (2") — & is
the unique(S, <, )-homomorphism extending [7]. Finally, [-]%, : Forms n — Boolis given by:

1. [P(ts,...,t)]% = true for P:wand termdy, ... t if and only if ([t,]%,...,[t]%) € BY;
2. [-¢]% =trueif and only if [¢]9, = false;
3. [¢ A% =trueifand only if [¢p]%, = true and[(P]%, = true;

4. [(¥x:s) ]9, = true if and only if for all a € o7, [¢]°7"% = true;

We say thater satisfiesp € Forms y if there isa € 2" — o7 such thaf¢]?, = true. If [¢]% = true for

all valuationsa, we write.o/ = ¢ and say that7 is amodelof ¢ [8, page 12]. Initial valuations are not
relevant for establishing the satisfiability éntencesthus, both notions coincide on them. We say that
</ isamodel of a set of sentence$ C Forms  (written o7 |= ) iffor all ¢ € .7, & = ¢. And, given

a sentence, we write. |= ¢ if and only if for all models<” of .7, o/ |= ¢. Soundlogics guarantee
that every provable sentengeis true inevery modebf .7, i.e.,. F ¢ implies. = ¢.

3 Derived models

By adecidable theory Tn a given language (often a fragment of first-order logic)mean one having a
decision procedurgvhich can be used to establish whether a given formutelongs tar [15]. In some
cases such theories can be presenteakimsnatization®of algebraic structures” so thatT = Th(«7) =
{¢ | o = ¢}. We often say that/ is theintended modedf T [8, page 32].

Example 4 Presburger’s arithmetic (or arithmetic without multiptiton) can be seen as the set of sen-
tences of the languagesl= {0,’,+,>} which are true in the standard interpretatiort” of the natural
numbers|[2, page 295]. It is well-known thatPT h(./") is decidable.

Assume thatS,<’, 2’ 1’) is an order-sorted signature with predicates afids a%’,MN’-structure such
thatT = Th(«’) is decidable We can define affS, <, X, M)-model for.” C Forms i by means of a map
(theory transformationk : Forms n — Forms: . If . is finite, then, it isdecidablewhetherk () C T.
If K(7) CT,thens’ = k(), i.e., theZ’,[M’-structuress’ is a model ofk (.¥'). If we can definek on
a purely syntactic basis, i.e., as homomorphic extensibnsaps from the syntactic componer8sz,
andl in (S <,%, M), then we are able to make”’ into aderivedZ, MN-structure« so thate/ is a model
of 7, i.e., o/ = .7, as desired. In the following, we further develop this metiogy.

1As in [8], we use ‘structure’ and reserve the word ‘model’ éfer those structures satisfying a given theory.
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3.1 Derived algebras and structures

AppropriateZ-algebras can be obtained derived algebrasf we first consider anewsignatureZ’ of
symbols with ‘intended’ (often arithmetic) interpretat

Definition 1 (Derivor and Derived algebra) [5] Definition 11]LetZ = (S <,%) andY = (S,<, %)
be order-sorted signatures. derivor from X to 2’ is a monotone functiom : S— S (i.e., such that for
alls,s €8S, s<¢ impIie@ 1(s) <’ 1(s)) and a family ¢is: Zws — (F5)rw),1(s)» Wheret(sy, ..., ) =
T(sy),..., () and where(.75 ) () r(s) denotes the set of all’-terms using variablegys, ..., yk} with
y; of sortt(s). Each operation symbol ¢ %, is expressed using a derived operatiagps(f ) of the
appropriate arity. We often use d to denote a deriyord). Now, lete7’ be anX’-algebra. Then, the
d-derived algebra d/’ of o7’ is theZ-algebra with carriers(d.«?’)s = drl(s) for all s € S; and mappings

fd<" for each fe Z defined to bed(f))”’, the derived operator of thE/-term d(f).

Note thatd in Definition[d ishomomorphically extendddto a mappingd : %5 (2) — J5(2Z”).

Example 5 Let (S <,%) as in Exampl€]l. Let'S: {zero,nat} with subsort relation<’ given byzero <’
nat,and¥’ =%} | U, | UZ o . WhereX, oo ={0}, Z) nae = {1}, @aNdZ e = {+}. We define
aderlvorfrom($< 2)to(S,<, ) by1(S) =1(S1) = nat and1(S2) = zero; also d0) =0, d(1 )

d(f) =x+y+z,anddg) =x+y+1. Lets” be the(S, <’ Y’) algebra given by, = {0} and <7/, =

N together with thestandardnterpretanons for0, 1, and+. The derivedS, <,%)-algebra.e/ = do/’ is
given by, = = {0} and o5 = <%, = 4.,, = N, together with the derived interpretations for

each symbol irk.

zero

A slight generalization of Definitionl 1 leads to the notiondefrived structure

Definition 2 (Derivor for signatures with predicates / Derived structure) Let ~ = (S <,%,M) and
Y = (8,<,Z, 1) be order-sorted signatures with predicates afrdd) be a derivor from(S <,%)
to (S,<’,2). We extend d to predicate symbols by adding a componefit-é> Formys- such that for
allP e My, withw=s; --- s, d(P) is anatomP’ (1, ... ,t;,) with P € I, and termsy, ... .t € J5(2")
only use variablegys,...,yn} with y of sort7(s). In this new context we also cdlt,d) a derivor. Let
o = (A" 2,1 ) bean(S, < ¥ M)-structure andeyy = (', %) be the underlyindS, <',2')-
algebra. Then, thét,d)-derived structure d7’ of </’ is the (S <,Z,M)-structure that consists of the
Z-algebra de7j with S-sorted set of carriers/ together with interpretations\ﬂy " (for P € M,,) defined
to be
P — {(tagyrs - [tnl§ey) | (taysth) € FB( X))y € X —
diP)=P(t],....th), % =Yar(t],....t),0(yi) =1,1<i<n
"W — A ([0t)]%,...,[0tW)]%) € (P}

Note that(t,d) can be seen now as a transformatibrForms n — Formy ry:

d(P(ty,....tn)) = d(P)ysrs d(ta),...,¥n > d(tn)]
d(-¢) = —d(¢)

d(¢A¢) = d(g)nd(¢")

d((vx:s)¢) = (vx:1(9)d(¢)

The following obvious result formalizes the use of the poegi construction.

2Monotonicity isnotrequired in[[5] where only many-sorted signatures are ctemsi.
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Vit € o (t>1) (13)

Vt € s t>t) (14)

Vit u e o t>tAt >s=t>9) (15)
Vit u e oy (t>t'At >s=1>59) (16)
Vit € s (>t = ti+th+t3 >t +th+t3) (17)
Vit thts€ o (o >th=ti+ta+tz >t +th+t3) (18)
Vit tats € o1 (3>th=ti+th+t3 >t +th+t)) (19)
Vit b € g (>ti=ti+t+1>t+t+1) (20)
Vit thts€ s (>th=ti+tb+1>t+th+1) (21)
VX € oao (04+1+XxX>X+Xx+X) (22)

VXY € g1 (X+y+1>x) (23)
VXY € sy (X+y+1>y) (24)

Figure 3: Derived sentences for the sentences in Figure 2

Theorem 1 Let>X = (S <,2,M)andX = (S,<’,2' 1) be order-sorted signatures with predicates and
(1,d) be a derivor from(S <,Z,M) to (S,<’,2',M’). Let«’ be an(S,<’,%',M')-structure andp €
Formsn. If &' |=d(¢), then do7’ = ¢.

The following corollary of Theorerh]1 formalizes our approarf seeking models of theories through
derived structures.

Corollary 1 (Derived model) LetZ = (S, <,Z,M) and ¥’ = (S,<',Z',1’) be order-sorted signatures
with predicates andr,d) be a derivor from(S <,% ) to (S,<,2', ). Let’ be an(S, <, 2/ I)-
structure and¥” C Forms i be a theory. If for allp € .7, &' =d(¢), then d7’ |= ..

The following example shows how to use Corollaty 1 togethih wn appropriate derived model for
proving termination of the OS-TR®yama0S in our running example.

Example 6 For the OS-TRS in Figurel 2, we use a logical model with theveerialgebra in Example
and predicates» and —* that are interpreted by> and > (over the naturals), respectively. This
model satisfies the sentences in Figure 3 that translateghtences {1)=(12) in Figuid 2. The validity
of (13)-(21) and[(ZB)E(24) is obvious because = «7%5; = N and by reflexivity and transitivity of and
the fact that>C>. With regard to[(2R), it holds due to our specific choice #4,: since.«/s; = {0}, x is
restricted to take valué; thus, the conditio®+ 14 x > x+ x+ x becomed > 0, which is trivially true.
Since> is a well-founded relation ovet/s and o751, termination ofToyamaQs is proved.

Note that the model in Examplé 6 is based omeaidable theorynamely, Presburger’s arithmetic (see
Example_4). Also, note that the interpretation of the omg-sewriting predicate has beerthoserto

be a well-founded ordering, which is essential to concletmination ofToyamaQS from the fact that
</ is a model of the sentences in Figlie 3.

4 Constraint-solving and automation of the analyses

Theautomatic generationf models for a theory” is abottom-upprocess where things remain ‘unspec-
ified’ until an attempt tasolvesome constraints obtained frag succeeds. Theolutionis then used to
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synthesize a structure which is (by construction) a mode¥ofThis is accomplished as follows:

1. The syntactic objects are givearametric interpretation®f a given type, usually chosen accord-
ing to their amenability to automation. For instance, fiorcsymbols are givelinear polynomials
aiX1 + apXo + - - - + aXk + &g, Whereag, ay, ..., ax are parameterswvhich are assumed to lexis-
tentially quantifiedin any formula during the generation process and variahles. ,xx (of sorts
s1,...,%) range on the interpretation domaing for 1 <i <k.

2. Sentenceg € .7 are used to obtain a new set’ of parametricsentences¢* with existentially
quantified parameteis, . ..,a,. Such parameters range over appropriate (constraintnggldio-
mainsD4,...,Dn.

3. Then,.#"? is treated as aonstraintwhose solutionsr = {a—d | 1<i<n}, with d € D for
1<i<n, makeo(¢?) (an instantiation of the parametersdi) true.

In the realm of this paper, thearameterization stefitem (1) above) is part of the definition dérivors
(Definitions[1 andR).

Then, as remarked in iterf] (2) above, the original thegtys transformed into derived theory#*.
In this paper.#* consists of arithmetic sentences, using numeric ordeisgsredicates. Actually, an
important issue is handling parametric formulas contgmmplicationsof the form

Pi
/\ej>dj=ea>d (25)
j=1

where for alli € {1,...,k}, pi > 0and for allj, 1 < j < p;, g; andg arelinear expressionsf the form

Y aX for numbersa, and variablesy, andd;j,d; € R. Implications following the forma{(25) are said

to be inaffine form They are obtained as derived formulas from the theory &edi.g., the theory in
Figure[2). In this setting, the Affine form of Farkas’ Lemmansilered in[[11, Section 5.1] is useful.

In general, givert € R" and 8 € R, the affine form of Farkas’ Lemma can be used to check whether a
constrainté™ X > B holds whenevex ranges on the s&of solutionsx € R" of a linear syster\x > b of

k inequalities, i.e.Als a matrix ofk rows andn C(llumns and ¢ R Accqrdingqto Farkas’ Lemma, we
have tofind a vectorA of k non-negative numbers ]R{S such tha€= ATA andATb> B.

Farkas’' Lemma permits theemoval of all variablesX and the transformation of the conditional
constraint into a set of equalities and inequalities thatndicated in item[(3) above, can be handled by
means of tools for arithmeticonstraint solvindike MULTI SOLVERE. Then, we obtain a model fo?’.
The following section provides a complete account of th@pss using our running example.

5 Order-sorted structures with convex domains

The resolution of our running example (Exampple 6) shows flleatbility in the definition of domains

o5 for sortss € Sis an asset: we hawdmultaneously useftue to the presence of sorts) an infinite
domain likeN (which is typical in termination proofs) and the finite dom&0}. In order to provide an
appropriate computational basis to tntomaticdefinition of algebras and structures that can be used in
program analysis with order-sorted first-order specificetj we follow [11] and focus on domains that
are obtained as the solution of polynomial and speclailar constraints.

Definition 3 (Convex polytopic domain) [11], Definition 1]Given a matrixC € R™", andb € R™, the
set O(C,b) = {Xe R" | CX> b} is called aconvex polytopic domain

®http://zenon.dsic.upv.es/multisolver/
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In Definition [3, vectorsX,y € R" are comparedusing the coordinate-wiseextension of the order-

ing > among numbers(by abuse, we use the same symboR:= (X1,...,X))" > (Y1,...,¥n)" =
yifand only ifx; > y1 A--- AXy > Yn. Convex domains can be parameterized by considering a sub-
setN C R (e.g.,N, Z, Q, etc.) withC € N™", andb € N™ and definingDy(C,b) = {X € N" | CX > b}.

Example 7 Intendedinterpretations</® for some usual sorts s as convex domaifis= D(C®, BS) are:

[ Sot | ¢ | b [=D(CD)|
%) (0) (1) %)
Nat (1) (0) [0, +0)
NzNat| (1) (1) [1,400)
Zero | (1,-1DT | (0,07 {0}
Bool | (L,—-1)T | (0,—1)7 [0,1]
Char | (1,—-1)T | (0,—255" [0,255

We discuss the automatic generation of structures basedraex polytopic domains according to the
general scheme in Sectibh 4. We illustrate the develomensing our running example.

5.1 Domains

We interpret sorts € Sas convex domains/ = D(C5, BS), wherd Cs € R™>™s s anms x ns-matrix and
bS € R™. Thus,.«% C R™. Givensc S, we have tdfix my andng according to some criterion. Then,
matricesCs and vector$® can be writterparametrically The exact shape @ (C3,b°) will be settled by
the subsequemonstraint solving process

Remark 3 For 1-dimensional convex domains(tD‘,BS) C R (i.e., intervals, with g= 1), imposing

0 < ms < 2 is appropriate because the existence of more tAaows in CS for a given entry inbS is
useless: they define the same interval that those produbimdetist and bigger values when applying
them toX. In general, if g= 2, thenCs = (C$,C5)™ andb® = (b5, b3)™ means that € > b and Gx > bs.

As shown in Exampléd 7, fixingsre 2 and usingZ as domain for parameters land g is important to
gain flexibility in the definition of convex domains, esplgid bounded domains are desirable. Our
choice, in this 1-dimensional case igm?2 and n,= 1.

5.1.1 Non-empty convex domains

An important requirement in termination analysis is th&tcﬂlmmairD(C,B) C R" where a well-founded
relation> is to be defined shouldot be emptyAt the syntactic level we guarantee this by just adding a
freshconstank of the appropriate so# (to be interpreted bjD(C,B)) in the signaturek : S. Of course,

if such a constant is already part of the specification, ngtlelse is required. At thderivedlevel this
becomes a (vectorial) constraigk’ > b to be satisfied by dummyconstank € R".

5.1.2 Convex domains which are bounded from below

In some applications, it is useful to guarantee that a sémdainain.e/ is bounded from belowin our
setting, the following sentence (which is universally diféed on variablex):

Cx>b=x>d

4In the following, we use write the sostin the superscript of the matrix and vector compone(‘ntsndB of the convex
domain. In this way, we can use the subscripts to identifir tmmponentsrows, columns, etc.
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guarantees that/ = D(C,b) is bounded from below; heré is a freshconstantwhose value will be
established by the constraint solving process.

5.1.3 Compatibility with the subsort relation

Regarding thesubsortrelation, if s < §, then.s% = D(CS,b%) C D(C%,b%) = % must hold. Such a
condition is expressed by the universally quantified foanul

Cx>b*= Cx>b° (26)

5.2 Functions

A many-sorted convex matrix intepretatifor f . s; - - - 5¢ — sis a linear expressiofyx; + - - - + Fx+ Fo
such that (1) for all, 1 <i <k, i € R™*™ arens x ng-matrices and; are variables ranging dR", (2)

Fo € R™, and (3) it ranges ob(CS,b%) whenever variables; take value on the corresponding domain
D(Cs b ), i.e., that satisfies the followingigebraicity condition

k
VX1 € R™1, .. vy € R™ (/\ CSx > b = CS(Fixg + - + R + Fo) 265>
i=1

For overloaded symbol$ € ZysN Xy ¢ With w < W, we must haves < s' as well. We have to
guarantee that the interpretatiol‘;gS and fvﬁ’i ¢ coincide ong, (see Sectiohl2) As discussed in Section
5.1, this implies that, wittw = s;---sc andw = s;--- 5, we must havens = Ny foralli, 1<i<k
Furthermorens = ny as well. Therefore, iif\,ﬁé = z!‘:l FX + Fo and fvffg = Zik:1 F/% + FJ, the desired
condition can be written as follows:

k
VX1 € ey, VX € Hg,, Zl(F. —~F)x +Fo—F;=0 or, equivalently:

k k
Vxg € R™ ... Wx € R™( A\ Cx > b% = Zl(F, —F )% +F—F,=0)
i=1 is

5.3 Predicates

The interpretation of the (universally quantified) ruleghad theory for the running example, with over-
loaded predicates>, —* (see Examplgl2), is given by interpreting the overloadss¢fas> (the usual
ordering on numbers) and the overloads-efas > s for somed > 0. The use of this special ordering
over the reals instead of the usual ang is due to the need of interpreting by using awell-founded
ordering in order to obtain a sound termination analysis. Accordmd9], > is well-founded over
subsetA C R that arebounded from below

6 Automatic treatment of the running example
Since we deal with three different sogssS1, andS2, we consider three convex domains:

ofs = D(CSDbS) ofs; = D(CSLb) sy = D(C2 bR
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whereCS, CS, C2 € R2*1 andbS, b, b € R2. By requiring non-emptyness, we obtain the first con-
straints for our running example:

Cik > b ACSk > b5 (27)
C3K > bL ACSK > b5t (28)
wherek andk’ aredummyelementk, k' € R for S andsS1. However, sinc&€oyama0s already includes
a symbol1 of sortS1, constraint[(2B) is not really necessary and could be adofdee constrainf (34)
below). And, although there is no constant symbol of Spftinctionf takes arguments of sa@t (which
is not empty) and yields a term of s@t Thus, sorts is not empty; this is guaranteed by means of other

constraints like[(35):(36) below. Thu§, (27) could be aedidoo.
We guarantee that/s and.«%; are both bounded from below with the following constraints:

CXx>bACK>bS = x>a (29)
CIX>DbPACSIX> DSt = x>a (30)

for constantsx anda’, wherex is universally quantified (butr anda’ are treated as new, existentially
guantified, parameters). Singe < S1, we add the following sentence (universally quantified)in

C3x > bP ACPXx > b5 = Cx > bt ACSIXx > b3t

However, since this sentence nst in affine form (due to the conjunction in the consequent of the
implication), we decompose it as a conjunction of two imgicns as follows:

CPx > bP ACPx > b2 = Cilx > bt (31)
CPx > bP ACPx > b3 = C3lx > bt (32)

With regard to function symbols, sincg = 1 for all s€ S components$; for each symbof € X are
numbersactually. We givgparametric interpretationgo eachf €  as follows:

0] = % [1] = w
[£](xy.2) = fix+fy+faz+fo  [gl(xy) = gix+gy+do
and thealgebraicity conditionsare (withx,y, z universally quantified in all formulas):
C¥z0 > b NC5°20 > b3 (33)
Ciluo > b A CFlup > b3 (34)
2 2 2
ACIx>bTIA ACly > b A ACTz>b = CP(fix+ foy+ faz+ fo) > b7 (35)
i=1 i=1 i=1
2 2 2
ACIX>BEAACY > b3 A ACTz> 0T = C3(fix+ foy+ faz+ fo) > b3 (36)
i=1 i=1 i=1
2 2
ACHx=btA ACPy=bf = CPH(gix+gay+0o) = bt (37)
i=1 i=1
2 2
ACIx>bTIA ACTy>bT = CSHgix+goy+0o) > b3 (38)
i=1 i=1

where [35) and(36) are actually obtained from a single aljeity condition after splitting the con-
junction in the consequent of the implication to obtain iivations in affine form (as in Secti¢én 5.1..3).
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Similarly for (37) and[(3B)). Note also that, even thouwgand1 are constant symbols, (33) and|(34) are
also necessary to guarantee that they receive a value augtodheirsort (S2 ands1, respectively).

Using the interpretations for sorts, function symbols, predlicates, we obtain the following derived
sentences:

1. Instances of theeflexivity rule (Rf), corresponding to sentencés$ (1) dnd (2) in Figlrevith t
universally quantified:

Ct>biACt>bS=t >t (39)
Ct>bPACt > bl =t >t (40)

Note that the two sentences above trivially holtler the current interpretation ¢ as a quasi-
ordering (areflexiveandtransitiverelation). Thus,[(39) and (#0) could bemoved

2. Instances of theansitivity rule (T), corresponding t0{3) and] (4):

2 2 2
ACX>BPA ACY >BPA ACU>bBPAt >t + AL >u=t>u (41)
i=1 i=1 i=1
2 2 2
ACH>bIAACH > b A ACTU> BNt >+ AT >u=t>u (42)
i=1 i=1 i=1

3. Instances of theongruenceule (C), corresponding td {5)4(9), where we tse <%, instead of
C3lt > bt ACSMt > b3h:

3
J\ti € Ha1 At] € g Nty >t1+ 8 = fats + fato + fats+ fo > fitg + foto + fatz+ fo+ 5 (43)
i=1
3
A\t € Hor Ay € o Ao >ty + 8 = fats + Fata + fats + fo > fats + faty + fats + fo+ 5 (44)
i=1
3
J\ti € Fa1 Atz € sy N3 > 13+ = fats + fato + fats+ fo > fity + foto + fatz+ fo+ 3 (45)
i=1
2
\ti € a1 At € sy ANy >t1+ 3= giti +ata + 0o > ity + Gata + Qo+ (46)
i=1

2
I\t € Fa1 Ath€ sy Na >+ = giti + Gata + 0o > Gats + Gats + Qo+ O (47)
i~1

4. Instances of theeplacementule (Re), corresponding tb (110)-(11):

CE2x > bR ACEX > b5 = f120+ folg+ fax+ fo > fix+ fox+ fax+ fo+ 3 (48)
CP'x > bP' ACS'x > b5 ACTy > b ACS'Y > b5 = giX+ G2y + Qo > X+ & (49)
CIx > b ACSIX > bSEACSy > L ACSYy > b5t = 91X+ goy+ Qo > y+ 0 (50)
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6.1 Synthesis of the model

The conjunction of all previous sentences](27)-(50) (peshdropping some of them, as suggested in
previous sections) yields aiv-sentence (thé concerns existential quantification kfk’, a, a’, §, and

all parameters in domain descriptions and algebraic irg&pons) where alhtroduced parameterare
existentially quantified (on appropriate domains of cogdfits, see Sectidd 4) and amantic variables
(i.e., those ultimately coming from the description of threlgem and required by the semantic inter-
pretation of symbols) are universally quantified (over ts&s). As mentioned in Sectidh 4, we can use
now the techniques discussed inl[11] together with standandtraint solving techniques to obtain an
assignment of values to the parameters which defines theedesbdel. Given a matriA of k rows and
ncolumnsp € R¥, g c R" andf € R, the application of the affine form of Farkas’ Lemma to prdvatt
the universally quantified sentenég > b = €'X > 8 holds tries tofind a vectorA of k non-negative
numbersi € R such that theonstraintsc = ATA andATb > B hold.

Example 8 We apply the Affine form of Farkas’ Lemma to sentenck (29)llasvia the associated ma-
trix A is actually a vecto(C?,C3)T andb= (b$,b5)T; we have that= (1)" is a one-dimensional vector
and finally3 = a. Then, we seek a vectdr= (A1,A2)T with A1, A, > 0 that satisfies the (in)equations:

1=CA1 +C3A; b3+ AbS> o A, A2>0

The satisfiability of these inequations (a constraint s@yproblem for parametersCC3, b3, b5, A1, Az
and a), is equivalent to the satisfiability df_(29).

Example 9 Sentencd (30) isotin affineform, but we can easily fix it as follows:
Cix > b ACE'x > bS' ACP'y > b ACS'y > b3' = gix+ (g2 — 1)y > 5~ go (51)

Now, we apply Farkas’ lemma to each of them. The associatadxmahas four rows (correspond-
ing to the four atoms in the conjunction of the antecedentefimplication) and two columns (cor-
responding to variables x and y): A& (C$1,0 ; CS1,0 ; 0.C ; 0,CS). Vectorb has four compo-

nents: b = (b$%, bSt, bS bSHT. Now,€ = (91,02 — 1)T and8 = 5 — go. Thus, we want now a vector
A = (A1,A2,A3,A4)7 that satisfies:

o1= C181)\1 + CZSI)\z g—1= C181)\3 + CZSI)\4
Alb?+)\2b§1+)\3b§1+)\4b2$.2 5_90 )\17)\27)\37)\420
for some values of the parameters.

Remark 4 Note that each implication processed using Farkas’ Lemnmausz adifferentvectorA, but
we have tasolve a single set of inequations corresponding to a siralgisn which produces a single
model that makes all sentences valid

The following assignment:
Ci=1 C3=1 C'=1C5'=1 C®=1 CP=-1
BS=0 bS=0 b=0 b§'=0 b=0 bP=0
fi=1 f,=1 fs=1 f3=0 g]_:l 92:1 go:0 =0 uy=1
k=0 K=0 a=0 a'=0 d=1
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(where we disregard the different required by the application of Farkas’ Lemmaaministrative
symbols) makes all sentendiege andgenerateshe modeles for the theory. in our running example:

s = [0,+0) g1 = [0, 40) Ao = {0}
fhs1s1s(X YD) =X+Y+Z  ghsisi(XY) =x+y+1 O}C\{sg =0 1}{31 =1
t s et >t t(=NGUet>t  tofg taet>t t(=H)fgteot>t

7 Related work and conclusions

Our extension of derived algebras [5] to derived models fdepsorted first-order theories follows some
of the ideas in[[6]. The generation hbmogeneous algebrasing parametric interpretations followed
by a constraint solving process is standard in terminatitalyais of term rewriting[[4]. However, no
systematic treatment of the generationdoimains for sortsand heterogeneousgunctions forranked
symbolsin many-sorted or order-sorted algebras has been attenptddte. And the generation of
predicates as part of the generation of a model is also neswidk is also a step forward in the practical
use of logical models in proofs of operational terminatidpi@grams. This was a main motivation of
[11] after understanding the practical role of using mode[sroofs of termination in the OT-Framework
[12,[13]. This paper also generalizes our previous expegi@mtermination to envisage a generic, logic-
oriented approach to abstraction in program analysis, wiksibased on defining appropriateodelsfor

the logic which is used to describe the computations. Fagusih an order-sorted first-order logic to
describe programs and program properties, we have gereztdlieconvex domainandconvex matrix
interpretationsintroduced in[[11] to the order-sorted setting. Such a gdization leads to a flexible
framework to define different domains for different sortsendas it is still amenable for automation by
using existing algorithms and techniques from linear aigdh7]. Indeed, the use dfoundedconvex
domains for some sorts (46} for sortS2 in Toyama0S) has been essential to obtain a simple solution
of the corresponding problem. A first implementation of teehhiques presented in this paper has
been reported in [16], including the generation of convemdims and convex interpretations along the
lines of Sectio 6. The use of convex domains in terminatioalyesis is also available as part of the
tool MU-TERM [1]. Their usefulness has been recently shown in the 20lrational Termination
Competition held in August as part of CADE 2015, where cordemains have been successfully used
to prove operational termination obnditional term rewriting systems
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