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Hypothetical Datalog is based on an intuitionistic semantics rather than on a classical logic semantics,
and embedded implications are allowed in rule bodies. Whilethe usual implication (i.e., the neck
of a Horn clause) stands for inferring facts, an embedded implication plays the role of assuming its
premise for deriving its consequence. A former work introduced both a formal framework and a
goal-oriented tabled implementation, allowing negation in rule bodies. While in that work positive
assumptions for both facts and rules can occur in the premise, negative assumptions are not allowed.
In this work, we cover this subject by introducing a new concept: a restricted predicate, which allows
negative assumptions by pruning the usual semantics of a predicate. This new setting has been
implemented in the deductive system DES.

1 Introduction

Hypothetical queries are a common need in several scenarios, related mainly with business intelligence
applications and the like. They are also known as ”what-if” queries and help managers to take decisions
on scenarios which are somewhat changed with respect to a current state. Such queries are used, for
instance, for deciding which resources must be added, changed or removed to optimize some criterium
(i.e., a cost function, a notion well related to optimization technologies). Current applications include
OLAP environments [27], business intelligence [11], and e-commerce [26]. Even, major vendors of
relational databases include (quite limited) approaches to hypothetical queries, as for instance the model
clause in Oracle SQL data warehousing [16].

Whilst such systems and applications inherit from and buildupon relational databases and restrict the
use of negation and recursion, earlier works on logic programming fully integrate hypothetical queries in
the inference system. These approaches [13, 14, 9] fit into intuitionistic logic programming, an extension
of logic programming including both embedded implicationsand negation. In particular, Hypothetical
Datalog [3, 5] has been a proposal thoroughly studied from semantic and complexity point-of-views.

A recent work on tabled Hypothetical Datalog [17] extended [5] by adding a number of extensions:
First, allowing to include rules in embedded implication premises, with the intention to allow the user
to assume not only facts but also rules. Second, support for duplicates allowing multiple copies of the
same tuple, whose source can be either extensional (a bag of facts) or intensional (rules delivering such
multiple copies), which in addition can be summarized with aggregates (as counting them). And, finally,
support for strong integrity constraints which enable to reject rules and facts which do not meet the
integrity criterion (in the same line as relational databases do). However, while [17] allows to locally add
tuples (in the context of an embedded implication) to the database, it lacks the ability to locally delete
tuples in the same context. In [4] support for such deletionsare provided, though only for facts.
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In this paper, we extend [17] by allowing deletions of tuples, not only for facts as data providers as
in [4], but also for rules. Then, rules can be used to intensionally specify those facts that must be deleted
in a given context. To this end, we introduce the novel concept of restricted predicates, which include
usual facts (extensional specification) and rules (intensional specification) –which we refer to aspositive
from now on– along with restricted versions of them –which werefer to asnegativefrom now on–. So,
whereas additions are captured with usual predicates, deletions are captured with restricted predicates.
All the features in [17] that extended [5] are preserved in this new deletion setting. In both cases, two
kind of implications are identified: The usual implication (←) which is found as the neck of a logic
clause, and the (hypothetical) intuitionistic implication (⇐) which can be found in the body of a logic
clause. Note that intuitionistic implication is not transitive as the classical logic implication [5].

We have implemented this proposal in the deductive system DES (des.sourceforge.net), com-
pleting the implementation described in [17] with support for negation in bodies and restricted predicates
in premises. Though there have been some works regarding implementations [25], as far as we know
there has not been an implementation of hypothetical Datalog with intensional deletions.

With respect to related work, Date [7] explains the idea behind such “what-if” statements, an ap-
proach that was firstly proposed in [21] for relational databases. A recent work [2] also develops this
idea by generating database scripts that implement a fixpoint computation for building SQL materialized
views as tables. In [6], an approach to hypothetical database query evaluation based on counterfactual
reasoning is proposed. Though it includes both positive andnegative assumptions, it only includes these
in queries, but not in rules. In the logic programming field, Miller and Nadathur worked at developing
and justifying the intuitionistic theory of hereditary Harrop (HH) formulas (see, e.g., [15]), which lead
to the implementation ofλProlog. A more recent work [1] proposesHH¬(C) as a constraint database
framework including negation, but with no negative assumptions.

Organization of this paper proceeds as follows: Section 2 introduces an example to show that neg-
ative assumptions can be handy to solve some queries. Section 3 introduces some examples illustrat-
ing assumptions and the notion of restricted predicate as the device to capture negative assumptions in
premises. Next, some formal background is presented in Section 4. The setting to implement this back-
ground is described in Section 5 as part of the deductive system DES. Finally, Section 6 concludes and
lists some future work.

2 Introductory Example

With respect to logic programming, in the context of deductive databases, the termrelation is used
interchangeably withpredicate, rule with clauseand the termquerywith goal. Also, we identify two
components of a deductive database: The extensional database (EDB) which is composed of predicates
defined only by facts, and the intensional database (IDB) which is composed of predicates defined at
least by one rule. From now on, all examples written in true type can be actually run in DES. Before
introducing the example and others in next sections, we recall the concrete syntax of hypothetical queries,
extending the premise to includerestricting rules. These restricting rules will be useful for answering
questions with embedded implications that are neither possible in [4] nor in [17].

2.1 Concrete Syntax

The syntax of a hypothetical query in the system DES is as follows:

rule1 /\ ... /\ ruleN => goal

des.sourceforge.net
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where each rulerulei can be a regular (usual) rule or a restricting rule. A restricting rule has a head of
the form-Atom, whereAtom is an atom. For facts, the body is empty (no neck symbol either) and the
atom is ground to ensure safety [24] (rules and queries must be safe as well). Such a hypothetical query
represents that, assuming that the current database is augmented with the regular rules inR ={rulei
| 1 ≤ i ≤ N}, and that the meaning of the restricting rules inR are removed from their corresponding
predicates, thengoal is computed with respect to such modified current database. Note that the implica-
tion symbol=> (intuitionistic implication to the right) is used for the so-called embedded implication in
lieu of the classical implication:- (implication to the left) typically used in logic programming systems.

Such query is also understood as a literal in the context of a rule, so that any rule can contain hypo-
thetical goals (in particular, anyrulei ). Variables in eachrulei are encapsulated w.r.t. the rule (i.e.,
they are neither shared with other rules nor with the goal, even when they might have the same name).
Moreover, a hypothetical literal does neither share variables with other literals nor with the head of the
rule in which it occurs.

As it is usual in logic programming systems, variables startwith upper case or underscore and other
program identifiers either start with lower case or are delimited by single quotes.

2.2 A University Example

Borrowing an example from [4], we consider an extended and adapted rule-based system for describing
a university policy. EDB is composed of:student(S) (meaning thatS is a student),course(C) (C is
a course), andtake(S,C) (studentS takes courseC). And IDB is: grad(S) (studentS is eligible for
graduation). EDB contains facts as:
student(adam). student(scott). course(eng). take(adam,eng). take(scott,his).
student(bob). student(tony). course(his). take(pete,his). take(scott,lp).
student(pete). course(lp). take(pete,eng). take(tony,his).

IDB can contain rules as:grad(S) :- take(S,his), take(S,eng).

A regular query for students that would be eligible to graduate is:
DES> grad(S)
{ grad(pete) }

where the answer is the bag of goal instances delimited between curly brackets.

Example 1 A first hypothetical query for this database asks ”If Tony took eng, would he be eligible to
graduate?”:
DES> take(tony,eng) => grad(tony)
Info: Processing:

answer :- take(tony,eng)=>grad(tony).
{ answer }

Here, the query has been automatically rewritten as a temporary view with nameanswer, i.e., a view
which is added to the database and eventually removed. This allows non atomic goals to be solved, as it
is the case for an implication. The outcome of the query is theresult of the goalanswer, which can be
proved because assuming that premise allows to deduce the consequent. �

Example 2 Also, more than one assumption can be simultaneously stated, as in: ”If Tony tookeng, and
Adam tookhis, what are the students that are eligible to graduate?”:
DES> take(tony,eng) /\ take(adam,his) => grad(S)
Info: Processing:

answer(S) :- take(tony,eng)/\take(adam,his)=>grad(S).
{ answer(adam), answer(pete), answer(tony) } �
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Example 3 Another query is ”Which are the students which would be eligible to graduate ifhis and
lp were enough to get it?”:

DES> (grad(S) :- take(S,his), take(S,lp)) => grad(S)
Info: Processing:

answer(S) :- (grad(S):-take(S,his),take(S,lp))=>grad(S).
{ answer(pete), answer(scott) }

Note that, althoughS occurs in both the premise and the conclusion of=>, they are not actually
shared, and they simply act as different variables. �

Example 4 Let us consider the following question: “Which are the new students that are eligible to
graduate if we consider thathis andlp were enough to graduate?” This query needs to compare the
students under the assumption with the students with no assumption at all. A possible formulation is:

DES> ((grad(S) :- take(S,his), take(S,lp)) => grad(S)), not grad(S)
Info: Processing:

answer(S) :- (grad(S):-take(S,his),take(S,lp)) => grad(S)),not grad(S).
{ answer(scott) }

Note that the assumption affects only to the first goalgrad(S). This assumption does not affect to
the second, negated goalgrad(S). Negation allows to compute the set difference of students. �

Example 5 Next rules represent information about course prerequisites:

pre(eng,lp). pre(hist,eng).
pre(Pre,Post) :- pre(Pre,X), pre(X,Post).

Whether adding a new prerequisite implies a cycle can be asked with:

DES> pre(lp,hist)=>pre(X,X)
Info: Processing: answer(X) :- pre(lp,hist)=>pre(X,X).
{ answer(eng), answer(hist), answer(lp) }

The answer includes those nodes in the graph that are in a cycle.
Another option is to avoid cycles by using the following strong constraint (which are defined in [17]):

DES> :-pre(X,X)

which means that it should not be the case of finding a subject that depends on itself. Then, to list
prerequisites assumingpre(lp,hist):

DES> pre(lp,hist)=>pre(X,Y)
Info: Processing:
answer(X,Y) :- pre(lp,hist)=>pre(X,Y).
Error: Integrity constraint violation.
ic(X) :- pre(X,X).
Offending values in database: [ic(lp),ic(eng),ic(hist)]
Info: The following rule cannot be assumed:
pre(lp,hist).
{ answer(eng,lp), answer(hist,eng), answer(hist,lp) }

So, the system informs that there is an inconsistency when trying to assert such offending fact
(pre(lp,hist)), which makes prerequisites to form a cycle (as shown in the offending value list
[ic(lp),ic(eng),ic(hist)]). The system informs about the rules that cannot be assumed but con-
tinues its processing. This is also useful to know the resultfor the admissible assumptions. Note that, in
general, offending facts can be a subset of the meaning of an assumed rule in the context of the current
database. To illustrate this, let’s consider a game that students like to play that consists of tossing a coin:
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% Tails win:
:- win, heads.
win :- heads ; tails.

The predicatewin states that one wins if either heads or tails are got, and the constraint states that
you have to get tails to win. Here, the semicolon “;” denotes disjunction as in Prolog syntax. Then, the
following hypothetical goal states whether assuming headsor tails leads to win.

DES> heads /\ tails => win
Info: Processing:
answer :- heads/\tails=>win.
Error: Integrity constraint violation.
ic :- win, heads.
Info: The following rule cannot be assumed: heads.
{ answer }

As it is informed, heads cannot be assumed in order to win. �

Example 6 Consider a query as: ”If Pete hadnot takeneng, could he have graduated?”, which is
equivalent to say: ”Iftake(pete,eng) were deleted from the database, could we infergrad(pete)?”
This query cannot be solved with the former proposal in [17] but is supported in [4]. �

Example 7 Further, consider the query: ”What would happen if the current prerequisites were the other
way round?” This would imply to remove the intensional rule about prerequisites and add a modified
one. In turn, this is neither supported by [4] nor by [17]. �

The next section introduces restricted predicates as a means to provide semantics to such deletions,
which are referred to asnegative assumptionsin the context of an embedded implication. Then, it will
be possible to specify these last two examples with such implications.

3 Restricted Predicates: Informal Semantics

Here, we introduce the novel concept ofrestricted predicate. The intention is to prune the meaning of a
usual predicate by specifying somerestricting rules. A restricting rule is a rule for which its head is a
restricting atom(a regular atom preceded by a minus sign-). We use the termregular rule to refer to a
rule which is not a restricting rule (i.e., usual Horn logic rules).

The meaning of a restricted predicate is then the tuples deduced from its regular rules minus the
tuples deduced from its restricting rules. Note that a restricting rule does not represent true negation, but
a means to discard positive tuples from the meaning of a predicate. So, bothp and-p can occur in a
program with no contradiction at all in a single model. By contrast, this situation in classical negation
results in contradiction [10].

In our setting, computing a restricted predicatep can be roughly seen as follows: First, compute
its meaningP+ from its regular rules. Then, compute the meaningP− of its restricting rules and build
the meaning forp as the differenceP+−P−. As it will formalized in Section 4.2, adding a restricting
rule for a predicate involves to add a negative dependencyq

¬
←p from any other predicateq depending

on p. This implies that such other predicateq will be located in a higher stratum thanp. Therefore,
from an operational point-of-view, the meaning ofp must be computed before that ofq. This ensures
monotonicity along fixpoint computation as it will not be thecase of considering a given tuple in a
meaning that can be discarded afterwards in another iteration cycle. This is a similar requirement as
done for stratified negation [24] and will be formalized in Section 4.
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Bearing this in mind, we can think of the next example. Let us consider the following number
generator:
DES> /assert p(X) :- X=1 ; p(Y), Y<10, X=Y+1.
DES> p(X)
{ p(1), p(2), ..., p(10) }
Info: 10 tuples computed.

In the first line, a disjunctive rule is added to the current database. Then, the whole meaning of the
predicatep/1 can be retrieved with the queryp(X).

Even numbers can be obtained by adding the following restricting rule to the current database:
DES> /assert -p(X) :- p(X), X mod 2 = 1.
DES> p(X)
{ p(2), p(4), p(6), p(8), p(10) }
Info: 5 tuples computed.

Now, the meaning ofp as specified in the first assertion is changed by removing the tuples defined by
the rule in the second assertion. This way, atomsp(i), with i odd, belong to the negative information
of the program. That is, in particular it is possible to prove:
DES> not p(1)
{ answer }
Info: 1 tuple computed.

Note that the definition of even numbers could be easily done with p(X) :- X=2 ; p(Y), Y<10,

X=Y+2. But this is not the point, what we are looking for is tochangethe meaning of a given predicate
as shown later with the embedded implication. This way, along a given query solving, the meaning of
a given predicate can be changed with such an implication, while its meaning out of the consequence
remains the same. Example 4 is an instance of this.

It is possible to inspect the meaning of the restricted part of a predicate (P− as introduced before). In
general, a restricted atom can occur anywhere an atom is allowed, and, in particular, in a top-level query,
as follows:
DES> -p(X)
{ -p(1), -p(3), -p(5), -p(7), -p(9) }
Info: 5 tuples computed.

And, conversely to the negation of the positive part of the program, we can ask if the negation of a
restricted atom can be proven:
DES> not -p(1)
{ }
Info: 0 tuples computed.

Summarizing, all the facts deduced from the restricted partof the program (either extensionally or
intensionally) belong to the negative information of the program.

Restricting rules can also be recursive. The following example looks also for even numbers by
removing odd numbers fromp:
DES> /assert -p(X) :- X=1 ; -p(Y), X=Y+2, X<10.
DES> p(X)
{ p(2), p(4), p(6), p(8), p(10) }
Info: 5 tuples computed.

Coming back to the university example, the unsolved question in Example 6 can now be posed as:
-take(tony,eng) => grad(tony)

Finally, the unsolved question in Example 7 can be posed as:
(-pre(Pre,Post) :- pre(Pre,X), pre(X,Post)) /\
( pre(Pre,Post) :- pre(Post,X), pre(X,Pre)) => pre(Pre,Post)
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4 Formal Framework

This section introduces some formal background to describethe approach to hypothetical Datalog we
are considering, as an extension of function-free Horn logic following [4, 5]. Here, we recall and adapt
the formal framework already presented in [17], presentingthe syntax of the language, safety conditions,
the notion of stratifiable program, and an operational semantics excerpt that extends [17] with negative
assumptions as restricting rules. The main difference of the contents presented here w.r.t. [17] is the
inclusion of restricted predicates.

4.1 Syntax

The syntax of the logic is first order and includes a universe of constant symbols, a set of variables and
a set of predicate symbols (P). For concrete symbols, we write variables starting with upper-case and
the rest of symbols starting with lower-case. Removing function symbols from the logic is a condition
for finiteness of answers, a natural requirement of databaseusers. A rule has the formA← φ , whereA is
either a regular atom or a restricting atom andφ is a conjunction of goals. In addition, since we consider
a hypothetical system, a goal can also take the formG← R, a construction known as an embedded
implication, where the premiseR represents an assumption and takes the form of a rule. Moreover, we
extend [5] by, first, allowing the premise to be a conjunctionof rules

∧
Ri as an assumption, and, second,

allowing eachRi to be a either a regular or a restricting rule. From now on, we use the term rule to refer
to both regular and restricting rules unless needed otherwise.

For solving the conclusionG, regular (restricting resp.) rules in
∧

Ri will be used to augment (prune
resp.) the meaning of their corresponding predicates with respect to the current database. As an embed-
ded implication behaves different from a regular implication [5], it receives a different syntax symbol:
⇒. The following definition captures the syntax of the language, wherevars(T) is the set of variables
occurring inT:

Definition 1 (Syntax of Rules)
R := A←G1∧ . . .∧Gn

G := A | ¬G | R1∧ . . .∧Rm⇒G
whereR andRi stand for rules (both regular and restricting),G andGi for goals,A for an atom (either
regular or restricting),n≥ 0 (for n= 0, R is called afact), m> 0, andvars(Ri) do not occur but inRi.

Strong constraints are also supported in this new setting asrules with no head [17], and in the follow-
ing we assume databases (as a set of rules and constraints) that are safe (with respect to query answers)
and consistent (with respect to constraints) [17].

4.2 Predicate Dependency Graph and Stratification

Introducing negation in literals of body clauses adds another issue: The possibility to have more than
one minimal model [24]. Stratification is a syntactic condition on programs which ensures that only
one minimal model can be assigned to a program. Predicates inthe program are classified into strata
so that negation does not occur through recursion. For building a stratification (i.e., a mapping between
predicate symbols and natural numbers), a device called predicate dependency graph (PDG) is usually
convenient. A PDG depicts the positive and negative dependencies between predicates.

Definition 2 (Dependencies)A predicateP positively(negatively, resp.) depends onQ if P is the predi-
cate symbol ofA in a rule (both a program rule and a rule in a premise)A←G1∧ . . .∧Gn andQ occurs
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either in some positive (either negative or restricting, resp.) atomGi or in G in an embedded implication
G j ≡ R1∧ . . .∧Rn⇒G.

Note that the implication← is the source for dependencies, whereas the embedded implication⇒
is not. However, all the non-atomic rules in the premise of⇒ are involved in adding dependencies.
This fact is propagated to the construction of the predicatedependency graph and the stratification for a
program [17]. The PDG is the set of pairs< N,A>, whereN is the set of predicate symbols in∆ andA
is the set of arcsP←Q such thatP positively depends onQ, andR

¬
← Ssuch thatR negatively depends

onS. The stratification is a mapping from predicates to integerssuch that if there is a dependencyR←S,
then the integer assigned toR must be less or equal than the one assigned toS. If the dependency is
negative:R

¬
← S, then the relation is strictly less.

4.3 Stratified Inference

Following [5] we define a logical inference system for stratified intuitionistic logic programming, with
the following main differences: Allowing duplicates, integrity constraints, premises with multiple rules,
and enforcing encapsulation of variables in premises. Stratified inference requires an inference system
for each stratum. Inference starts from the lower stratum and its derivations are inputs to the inference for
the next stratum above. For a given stratumi, these derivationsA are inference expressions which are
constructed by the axioms derived in the stratum below and the rules defining the predicates belonging
to stratumi. Input A is the empty set for the first stratum. In the following, we consider programs∆
which are both safe and stratifiable. Otherwise, inference cannot be applied.

Duplicates would require working with bags (multisets) in order to denote the multiple occurrences
of the same atom. Instead, we resort to uniquely identifyingeach rule in a program and work with
expressions tagged with such identifiers.

Definition 3 (Inference Expression)An inference expression for a program∆ is denoted by∆⊢ψ , where
ψ can be either an identified ground atom (either regular or restricting) id : φ , whereid is a rule identifier
andφ a ground atom, or⊥. The inference expression is positive iffφ is positive and negative iffφ is
negative, and inconsistent otherwise.

An inference expression includes the program∆ from which an identified atom can be deduced by an
inference system. By contrast with a Horn-clause logic system, the program∆ is not fixed and can vary
because of the assumptions in the implications. In [17], thedefinition of such an inference system can be
found by using the adapted notion of inference expression inDefinition 3 above. Solving an embedded
implication amounts to add all the rules in its premise to thegiven program∆:

∆∪{R1, . . . ,Rn} ⊢ φ
∆ ⊢ R1∧ . . .∧Rn⇒ φ

where a rule such this in the inference system is read as: If the formulas above the line can be inferred,
then those below the line can also be inferred. Also, recall that an inference expression can include either
a regular atom or a restricting atom. In the first case, we refer to such an axiom as apositive axiom, and,
in the second case, as arestricting axiom. So,∆ ⊢ id : A is a positive axiom ifA is a regular atom, and a
restricting axiom ifA is a restricting atom. Like all Gentzen-style inference systems,ds : A →A enjoys
monotonicity, idempotence and inflationaryness [17], where A denotes the set of inference expressions
for programs.

The positive information of a set of axioms is defined as follows:
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Definition 4 (Positive Information of a Set of Inference Expressions) The positive information of the set
of inference expressionsA is the set of each axiom including a regular atom inA excepting those with
a counterpart restricting axiom (i.e., including a restricting atom) inA for the same context∆.

For example,∆ ⊢ id1 :−take(tony,eng) is the counterpart restricting axiom of∆ ⊢ id2 : take(tony,eng).
The negative information is deduced by applying the closed world assumption (CWA) [24] to infer-

ence expressions. However, due to the restricting atoms in inference expressions, this negative informa-
tion is extended with such expressions, as it is defined next:

Definition 5 (Closed World Assumption of a Set of Inference Expressions) The closed world assumption
of the set of inference expressionsA (written ascwa(A )) is the union of the positive information inA
and the negative inference expression for∆ ⊢ φ such that either∆ ⊢ φ /∈A or ∆ ⊢ φ ∈A whereφ is a
restricting axiom.

This captures the negative information which can be deducedfrom a couple of sources: First, the
intensional notion of negative information due to the classical closed world assumption and, second, the
extensional (explicit) information due to the restrictingpart of the program (i.e., the set of restricting
axioms). This last one is calledrestricting meaningfrom now on.

Definition 13 in [17] describes the unified stratified semantics as the bottom-up construction of the
semantics, stratum by stratum, in which the inductive stepA s+1 = cwa(ds+1(A

s)) for s≥ 0 builds
the semantics of the database in a finite number of steps (the number of strata is finite and no function
symbols are allowed). The meaning of a goalφ w.r.t. a set of axiomsA is defined assolve(φ ,A ) =
{∆ ⊢ id : ψ ∈A such thatφθ = ψ} whereφ is a goal,solvereturns a bag, andθ is a substitution.

5 Implementation

Last section has introduced an operational semantics whichbuilds the semantics of the whole database
in a purely bottom-up fashion. Here, we recall some implementation details from [17] and adapt it to
support negative assumptions and restricted predicates. So, we consider a top-down-driven, bottom-up
fixpoint computation with tabling as implemented in the deductive system DES [19], which follows the
ideas found in [8, 23]. This system is implemented in Prolog and incorporated hypothetical Datalog in
version 3.2 (February, 2013) for the first time1. Version 3.6 (March, 2014) enhanced this by allowing
negative assumptions as well as the dynamic construction ofthe PDG and stratification. Next we describe
implementing tabling, negative assumptions in premises, and some optimizations.

5.1 Tabling

Though there have been some works regarding implementations [25], as far as we know there has not
been an implementation of hypothetical Datalog based on tabling and allowing both embedded implica-
tions and stratified negation. Tabling faces some well-known problems of logic programming implemen-
tations: Unsoundness, repeated computations, and termination, providing some overcomes, and it has
been useful in particular for implementing efficient systems. It has been applied to different fields (logic
programming systems [12, 22]) and in particular to deductive databases (e.g., [20, 18]).

Systems implementing tabling memorize the deduced instances (answers) to goals (calls) in an an-
swer table and call table, respectively, in order to reuse already available deductions. A call tablect
stores the goal calls made along resolution, and an answer table at stores (ground) answers.

1Release notes indes.sourceforge.net lists all its history.

des.sourceforge.net
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The inference rule for hypothetical goals defined in Section4 amounts to try to prove a goal in the
context of the current database augmented with the premise of the implication. As a literal can be of the
form R1∧ . . .∧Rn⇒ φ , whereRi are rules andφ a goal, the database∆ for which this hypothetical literal
is to be proven must be augmented with{R1, . . . ,Rn}. Deductions delivered in provingφ are only valid
in the context of the augmented database, i.e., in the tabling tree constructed forφ . So, such deductions
must be tagged in order to be only used in its context (contexts will be denoted byχ).

Filling the answer and call tables is due to the so-calledmemo functionwhich proceeds by tabled
SLDNF resolution as detailed in [17]. The memo functionmemo(φ ,∆,χ ,ct,at) is applied, respectively,
to a goalφ , a program∆, a context identifierχ , and input call and answer tablesct andat, and returns the
(possibly) augmented call and answer tablesct′ andat′. An entry in the answer table has the formidχ : A,
whereid is the program rule identifier in the contextχ , andA is either a positive or negative or restricting
atom. The positive information of an answer table is the set of all its entriesidχ : A such thatA is a
regular atom. The answer table is augmented with the head of aprogram clause with the corresponding
substitutions derived from proving each of its literals in the body clause. A literal can be proven if an
atom (either regular or restricting) is found in the closed world assumption of the input answer table
for the current context. Such closed world assumption of an answer table is defined analogously to the
closed world assumption of a set of inference expressions:

Definition 6 (Closed World Assumption of an Answer Table):The closed world assumption of an answer
tableat (written ascwa(at)) in the context of a program is the positive information ofat, and anyε χ :¬A
such that, eitheridχ :−A∈ at or idχ : A /∈ at for any rule identifierid and contextχ , whereε is a fixed,
arbitrary identifier which does not occur in the program.

Filling the answer and call tables is done by strata by ensuring that the meaning of negated atoms
which are required to prove other goals are already stored inthe answer table. So, following the stratifi-
cation for the program for a given goalφ , a goal dependency graph is computed, which is the subgraph
of the PDG such that contains all the reachable nodes fromφ . Then, for each nodepi in the subgraph
such that there is a negative arc coming out frompi , an open goalφi is built with the same arity aspi .
Goalsφi are ordered bystr(∆,φi), so that lower-strata goals will be computed before upper-strata goals.
The goal dependency graph is specified in [17] as the functiongdg(∆,φ) which is applied to a program
∆ and goalφ , returning the pair of nodes and arcs< N,A>.

We refer here to [17] for the definitions of the stratified meaning of a program restricted to a goal
(Definition 19), the fixpoint of the database built with

⊔
n≥0, and the meaning of a tabled goal (Definition

20).

5.2 An Example

Following an analogous example to the one in Section III.B in [17]:
route(X,Y)← connected(X,Y)∨connected(Y,X)
route(X,Y)← route(X,Z)∧ route(Z,Y)
no route(X,Y)← station(X)∧station(Y)∧¬route(X,Y)

for which its PDG is< {station, connected, route, no route}, {route← connected, route← route,
no route← station, no route

¬
← route}>, and a stratification is{(station,1), (connected,1), (route,1),

(no route,2)}. Then, let us consider in addition to this database the predicateclosed/1 that lists stations
that must be closed sometime due to workmanship. The following rule allows to know what are the
possible connections under such an assumption:
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restricted route(X,Y) ← (−connected(A,B)← connected(A,B),closed(A))∧
(−connected(A,B)← connected(A,B),closed(B)) ⇒ route(X,Y)

This new rule adds to the PDG the edges{connected/2← closed/1, connected/2← connected/2,
route/2

¬
← connected/2, restricted route/2← route/2} and the stratification becomes:{(closed/1,1),

(connected/2,1), (station/1,1), (route/2,2), (restricted route/2,2)}, where bothrestricted route/2
androute/2 are located at the second stratum due to the negative assumption onconnected/2 that im-
poses the negative arcroute/2

¬
← connected/2.

5.3 Implementing Tabling

DES implements implications in Prolog as described in [17].Recalling, each time an implication is to
be solved, a new context is created by augmenting the currentdatabase with the rules and facts in the
premise. If the same program point is reached for solving theimplication due to the fixpoint compu-
tation (corresponding to a new iteration), then the database is not changed because the program rules
for the premise are already loaded and tagged for that context. Entries in the call and answer tables are
accordingly tagged so that the outcome for a given context can be identified as well. Solving a goalg in
a stratum greater than 1 proceeds by stratified computation as described in [17], i.e., solving stratum by
stratum the meaning of the involved predicates on whichg negatively depends, and solvingg with the
results for other predicates already stored in the answer table. Next, first the implementation of solving
restricted predicates is depicted and, then, a couple of optimizations are proposed.

5.3.1 Solving Restricted Predicates

Solving a call to a restricted predicatep is also done by stratum because its actual (restricted) meaning
must be computed before any predicate that depends onp. The rationale behind this solving is to compute
both the positive part and the restricted part ofp by considering, respectively, its defining rules with
regular and restricting atoms in the head.

As any predicate with an outgoing negative dependency, the restricted predicatep is located at a
higher stratum than eachqi such thatqi

¬
← p is in the PDG. This implies thatp is to be solved (before

eachqi) in its stratum for an open callp(X1,...,Xn), wheren is the arity ofp andXi are fresh variables.
The next code excerpt illustrates the solving of a single call (either regular, restricted or negative) for

a given stratum:

solve_datalog_stratum(not Q,Stratum,CId,Undefined) :-
solve_datalog_stratum(Q,Stratum,CId,_Undefined), !,
solve_positive_datalog_stratum(not Q,Stratum,CId,Undefined).

solve_datalog_stratum(Q,Stratum,CId,Undefined) :-
solve_pos_res_datalog_stratum(Q,Stratum,CId,Undefined).

solve_pos_res_datalog_stratum(Q,Stratum,CId,Undefined) :-
solve_positive_datalog_stratum(Q,Stratum,CId,Undefined),
functor(Q,N,A),
(restricted_predicate(N/A)
-> solve_positive_datalog_stratum(-Q,Stratum,CId,_Undefined2),

remove_restricted_tuples(Q,CId)
; true).

Here, the predicatesolve datalog stratum is responsible of solving a given call (first argument)
in a stratum (second argument). Its third argumentCId corresponds to the context identifierχ as in-
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troduced already. The last argumentUndefined stands for undefined results, which are got for non-
stratifiable databases2.

For a non negated call (second clause) a possibly restrictedcall is solved withsolve pos res data-

log stratum. This predicate first solves the non-restricted (i.e., positive) meaning of the callQ and, if it
refers to a restricted predicate, then its extensional negative meaning (corresponding to the restricting call
-Q) is computed. After computing-Q, both the positive and extensional negative meanings are already
stored in the answer call, and the actual meaning is changed in the answer call by removing all entries
with a counterpart restricting atom. For example, if{p(1),p(2),-p(2)} are in the answer table after
solving the callsQ and-Q for a given contextχ , then the resulting meaning forp is just{p(1),-p(2)},
wherep(2) has been removed byremove restricted tuples. So, given this answer table for a
contextχ , the call-p(1) does not succeed because-p(1) is not in the restricting meaning ofp for χ .
As well, the call-p(2) succeeds and the call-p(3) does not succeed for analogous reasons.

For a negative callnot Q (first clause),Q is firstly solved as before. This fills the answer table with the
(possibly restricted) meaning ofQ, so its negation can be solved with the callsolve positive data-

log stratum(not Q,...) The negative meaning ofQ is composed of its extensional negative meaning
(restricted part of the predicate) and its intensional negative meaning (which follows SLDNF). So, con-
tinuing with the last example, the callsnot -p(1), not -p(2), andnot -p(3) respectively succeeds,
does not succeed, and succeeds. Note that the callnot p(3) succeeds (asnot -p(3) does) because
p(3) cannot be proven by SLDNF. This is equivalent to say that, with the available information, neither
p(3) nor -p(3) can be proved. Finally, it is not possible to solvenot -p(X) simply because the query
is unsafe (c.f., Section II.B in [17]).

A context can be thought of as the current database along query solving which has been modified
with respect to the original database due to positive and negative assumptions (i.e., by respectively adding
regular and restricting rules). A naı̈ve implementation ofcontexts would be to represent each rule of the
current database in the parameterχ . Instead, we resort to tag each program rule with a context identifier,
which is identified as a list of integers. Each integer in thislist corresponds to the rule identifier in
which an assumption is made. The initial context is the emptylist, and only entries in the answer table
referring to this context are kept, though along the computation, entries for other contexts are kept. Let us
consider the following simple program (where each rule is identified by an integer and a context between
parentheses):
(0,[]): p :- q => r.
(1,[]): r :- q.

After solving the queryp (which succeeds), the answer table includes the (simplified) tuple(p,[]),
indicating thatp is true in the initial context. For solving this query, an assumption is made, which
amounts to locally adding the factq (as a new rule identified by the integer2) to the initial context. This
addition is implemented as the assertion of this new rule forthe context[0] becoming:
(2,[0]): q.

The new rule is asserted only once along fixpoint iterations,and it is removed at the end of query
solving. When assumptions are nested, as inp :- q => r => s, the rule is transformed by removing
nested assumptions:
(0,[]): ’$p0’ :- r => s.
(1,[]): p :- q => ’$p0’.

Here, the new predicate$p0 is automatically created during preprocessing so that eachcontext can
be identified by a single rule.

2Such behaviour is allowed for teaching purposes in order to highlight the problems in trying to compute non-stratifiable
databases.
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5.3.2 Dynamic PDG and Stratification

Section 4.2 introduced the construction of the predicate dependency graph by considering all the rules
defined in the program, including those in the antecedent of embedded implications. However, a more
refined approach can be considered by building a PDG and stratification for each context. Indeed, rules
that do not form part of a given context may introduce negative dependencies which imply to solve the
completemeaning of a given predicate, instead of considering only its actual context. For instance,
let us consider the rulesp(X)← t(X) and q(X)← (p(Y)← t(Y)∧¬r(Y))⇒ s(X). The arcs in the
corresponding PDG are{p/1

¬
← r/1, p/1← t/1,q/1← s/1}, and a possible stratification is{(q/1,1),

(r/1,1), (s/1,1), (t/1,1), (p/1,2)}. So, consider the goalp(1), whose solving proceeds by stratum:
First, the open goalr(X) is solved in the first stratum (providing the complete meaning of r/1 in the
answer table), then the goalp(1) is solved in the second stratum (no other predicates are considered since
the computation is restricted to the goal dependency graph). But consider thatr can contain millions of
tuples, and all of them are computed when they are not really needed. If only one tuple oft matched the
call for p then only one tuple would be needed. The negative dependencythat forcesp to be in stratum
2 comes from a premise that is not involved in the current solving. So, we build a specific (dynamic)
predicate dependency graph and stratification for each context, which are correspondingly tagged and
therefore avoids such wasteful computations. Thus, the arcs in the PDG and stratification for the goal
p(1) are, respectively,{p/1← t/1,q/1← s/1}, and all nodes remain in a single stratum. Solvingp(1)
fills only one tuple of the answer table fort/1 and no one forr/1.

In the concrete implementation, this program is written as follows (where identifiers have been in-
cluded as before):
(0,[]) p(X) :- t(X).
(1,[]) q(X) :- (p(Y):-t(Y), not r(Y)) => s(X).

The PDG and strata for the top-level context[] can be inspected with:
DES> /pdg
Nodes: [p/1,q/1,s/1,t/1]
Arcs : [p/1+t/1,q/1+s/1]
DES> /strata
[(p/1,1),(q/1,1),(s/1,1),(t/1,1)]

whereP+Q (P-Q) denotes that the predicateP positively (negatively, resp.) depends on the predicateQ.
When solving the queryq(X), the following PDG and strata are computed for the new context

[1] due to the assumption in rule(1,[]), which can be displayed by enabling verbose output (with
/verbose on).
DES> q(X)
...
Info: Building hypothetical computation context [1] for:
p(Y) :- t(Y), not r(Y).
Info: PDG:
Nodes: [p/1,q/1,r/1,s/1,t/1]
Arcs : [p/1-r/1,p/1+t/1,q/1+s/1]
Info: Strata:
[(q/1,1),(r/1,1),(s/1,1),(t/1,1),(p/1,2)]
...

The PDG and strata are incrementally built for each modification (rule addition or deletion) in the
database. So, when an assumption is made, they are updated according to the assumption (recall that an
assumption always adds a rule, either regular or restricting). Upon entering into a new context, the old
PDG and strata are saved and eventually restored when the computation for the new context is finished.
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5.3.3 Reusing Answers from Previous Contexts

Solving an embedded implication as presented requires to recompute from scratch the given goal for all
the involved strata. While this is a conservative approach,former computations in previous contexts can
be reused to avoid some recomputations, i.e., reusing entries in the answer table. For the database re-
stricted to the goal consisting only of a single stratum, this reusing is safe as only additions to the answer
table are possible. So, retrievals from the answer table canbe done from the first context up to the current
one. However, when negation is involved in this restricted database, some already deduced information
in a former context might be not true anymore. Consider, for instance, the program consisting of the
identified rules(1,[]): p←¬q and(2,[]): r ← q⇒ p. The goalp succeeds in the initial context
[], but fails in the context[2] when solving the conclusionp. A straightforward implementation for
facing this issue is simply to avoid the reusing for strata greater than 1, which can be done by adding a
new parameter to the predicates stating the current stratum. Another, more refined implementation is by
identifying those predicates which do not depend on assumedinformation, either directly or indirectly,
and avoiding the reusing of their deduced information, committing only to the current context.

6 Conclusions and Future Work

This work has presented a novel add-on to deductive databases: hypothetical rules with negative as-
sumptions in the premise of embedded implications, extending both [5] and [17]. The work [5] has
been extended with restricting rules in the premise (not only facts), retaining also the extensions in [17]
(duplicates and strong constraints). Also, [17] has been extended by providing the novel concept of
restricted predicates as a means to prune the meaning of predicates due to negative assumptions. In addi-
tion, a dynamic construction of the PDG has been proposed as well as another optimization for pruning
computations. We have described an implementation for our proposal as part of the publicly available
system DES. Since SQL queries in DES are translated into Datalog rules, this technique also supports
negative assumptions in SQL queries (Version 3.10, January2015). As future work, first we envision to
implement the optimization for pruning computations. Performance data can be taken to highlight the
gains of the proposed optimizations. Second, it should not be hard to devise the non-encapsulated vision
of premises, by setting the scope of variables in the premiseto the whole rule or goal in which it occurs.
Finally, we are currently widening the semantics and implementation for allowing guessing in premises,
i.e., to infer the hypothetical data in the antecedent to prove a given consequent.
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