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This paper is a tutorial introducing the underlying technology and the use of the tool Liquid Haskell,
a type-checker for the functional language Haskell that can help programmers to verify non-trivial
properties of their programs with a low effort.

The first sections introduce the technology of Liquid Types by explaining its principles and sum-
marizing how its type inference algorithm manages to prove properties. The remaining sections
present a selection of Haskell examples and show the kind of properties that can be proved with the
system.

1 Introduction

This tutorial aims at exposing the reader to a first contact with the Liquid Types technology [14], and in
particular with its application to the language Haskell, a type-checker known as Liquid Haskell [17, 18].
In the view of this author, Liquid Types should be regarded as a computer-assisted verification system
that may increase the reliability of programs by paying a fraction of the effort needed by doing formal
verification by hand.

Program verification is as old as programming. The first formal reasoning about programs was
proposed by Alan Turing in 1949 [16]. The first set of axioms for a high-level programming language,
was given by Tony Hoare in 1969 [8]. After that, the decade of 1970 saw the publication of plenty of
papers and books about formal verification, formal derivation, and of all kind of proposals for applying
formal methods and mathematical logic to reasoning about program correctness.

In spite of such a big effort, and of the fact that many universities include formal program verification
in their curricula, forty years after we should admit that formal verification is far from being part of day-
to-day programming. There are a number of reasons for this situation:

• It takes some effort to formalise the specification of methods by writing a precondition and a
postcondition for each of them.

• It takes much more effort to guess the loop invariants, and other critical intermediate assertions of
programs.

• Even having written all the critical assertions, writing and proving by hand all the verification
conditions, need writing a text between 5 to 10 times the volume of the code being verified.

The general impression is then than formal verification gives us obvious benefits, but the effort investment
needed to get them is too high. As a consequence, formal methods are barely used, and only in a few
safety critical systems such an investment seems to be justified.

Between the two extremes of not verifying anything, or verifying every sentence of a program, some
intermediate scenarios have been tried. Many programming systems (e.g. [4]) offer the possibility of
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including assertions in programs, and optionally executing them. This facility is equivalent to doing
testing while the system is in operation, and may capture some bugs at a low cost. Sometimes, they even
try to prove the assertions statically (e.g. [4, 3]). The kind of properties they prove are usually simple
ones, such as detecting null pointer dereferencing, or array indices out of bounds, but again some bugs
can be captured with a low effort investment.

Liquid Types have managed to find a way of getting many of the benefits of doing formal verification
without paying much of the cost:

1. They usually require the user to give the precondition and the postcondition of functions, although
in simple cases they can even infer them automatically.

2. They do not require to give the loop invariants or other intermediate assertions. The system can
usually infer them.

3. The verification conditions which must hold for the program to be correct, are automatically ex-
tracted and proved by the system.

Their main limitation is the kind of properties which can be proved in this way. Their formulas must
belong to a decidable logic, as they are the logics supported by the SMT provers [11, 2], which are
the underlying proving machinery of Liquid Types. These tools have evolved very quickly in the last
ten years and currently they can deal with formulas including all the logical connectives, some of them
even with existential and universal quantification, and the formulas also support integer and real linear
arithmetic, algebraic types, arrays, and uninterpreted functions.

Liquid Types do not generate quantified formulas. Even though, it is surprising the broad spectrum of
properties they can express and prove, as we will try to show in this tutorial. They include the automatic
verification of many well-known sorting algorithms, and the preservation of the AVL-tree invariant by
their associated operations.

The Liquid Types were originally developed in a functional language framework, and later on they
were applied to some imperative languages such as C [13]. Recently, they have been incorporated
to Haskell [17, 18] in the form of a static type-checker which is independent of the compilers. The
Hindley-Milner Haskell type system, and its extension to type classes, combine very well with the Liq-
uid Types approach, which supports polymorphism, algebraic types, and lambda abstractions. Recently,
even monad support has been incorporated to Liquid Haskell.

2 Liquid Types

Liquid types, an abbreviation of Logically Qualified Data Types, were first introduced in [14]. They were
presented as a “combination of Hindley-Milner type inference with Predicate Abstraction to automati-
cally infer dependent types precise enough to prove a variety of safety properties”. Behind this definition
there are different techniques:

• The Hindley-Milner type inference algorithm, usually associated to modern functional languages.
This is not strictly essential to the approach. Liquid types could be equally applied to programming
languages having a variety of type systems.

• Predicate abstraction [5, 15]. This is a technique based on abstract interpretation which searches
for the strongest predicate satisfying a set of constraints in a finite complete lattice of predicates
related by an entailment relation. This is an essential part of the liquid type approach.
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Γ ` e : t1 Γ ` t1 <: t2
Γ ` e : t2

WEAK
Γ(x) = {ν : B | e}

Γ ` x : {ν : B | x = ν} VAR

valid(JΓK∧ e1⇒ e2)

Γ ` {ν : B | e1}<: {ν : B | e2}
SUBTY PE

Γ ` e1 : bool Γ;e1 ` e2 : t Γ;¬e1 ` e3 : t
Γ ` if e1 then e2 else e3 : t IF

Figure 1: Some liquid typing rules

• Dependent types [1]. These are types that depend on the values computed by the program. It
can be used to express program properties holding in different parts of a program text. In their
full generality, the corresponding type inference problem is undecidable and so heavy manual
intervention by the programmer is needed. Liquid types are a restricted version of dependent types
in which type inference is decidable.

A liquid type has the form {ν : τ | e}, where τ is a Hindley-Milner type and e is a boolean expression
which may contain the ν variable and free variables occurring in the program. This type represents all the
values u of type τ such that the expression e[u/ν ] evaluates to true. For instance, the type {ν : int | ν > x}
represents the type of all the integers greater than the value of the free variable x. This is called a
refinement type of the type int. The ν is called the value variable, and it is assumed to range over the
values of the refinement type.

In a function definition, the type of the result is allowed to depend on the value of the arguments.
Moreover, the type of an argument can depend on the value of a preceding argument. For instance, the
following function receives a polymorphic array, an index within the expected range, and gets the array
element at that position:

get :: ∀α.(a : array α)→ i : {ν : int | 0≤ ν < len a}→ {ν : α | ν = a[i]}

The programming language is given a set of typing rules expressing the relationships that must hold
between the liquid types in order that the program is well-typed. The most important one is that of
subtyping: intuitively, a liquid type τ1 is a subtype of a liquid type τ2, expressed τ1 <: τ2, if the set of
values of τ1 is a subset of the set of values of τ2. In logical terms, if τ1 = {ν : τ | e1} and τ2 = {ν : τ | e2},
this is equivalent to show that the formula e1⇒ e2 is universally valid. But the typing rules do it better:
they collect in the typing environment Γ, not only the types of all the free variables in scope, as usual,
but also the boolean conditions that hold at the text location where the subtype relation is proved. These
conditions are collected from the boolean discriminants of the if expressions. Then, the formula that
must be shown valid is JΓK∧ e1⇒ e2, where JΓK contains these conditions, and also the liquid types of
the variables in scope converted into boolean expressions, i.e. each binding of the form x : {ν : τ | e} is
translated into the boolean formula e[ν/x].

In order to clarify the kind of formulas that the system must prove valid, we show in Fig. 1 some
typing rules taken from [14]. There, B represents a non-functional basic type, and t, t1, . . . represent arbi-
trary liquid types. By using those rules, we are proving correct a max function computing the maximum
of two values, having the following specification

max : x : int→ y : int→{ν : int | ν ≥ x∧ν ≥ y}
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and the following code:
max x y = if x≥ y then x else y

The type derivation collects the following sequence of proof obligations:

by the IF rule [x : int, y : int] ` x≥ y : bool
by the IF rule [x : int, y : int, x≥ y] ` x : {ν : int | ν ≥ x∧ν ≥ y}
by the IF rule [x : int, y : int, ¬(x≥ y)] ` y : {ν : int | ν ≥ x∧ν ≥ y}
by the WEAK, VAR and SUBTYPE rules valid(ν = x∧ x≥ y⇒ ν ≥ x∧ν ≥ y)
by the WEAK, VAR and SUBTYPE rules valid(ν = y∧¬(x≥ y)⇒ ν ≥ x∧ν ≥ y)

Obviously, the typing [x : int, y : int] ` x ≥ y : bool is correct, and the last two formulas are universally
valid, so the function max type-checks.

Should the user provide the liquid types of all the program variables, then pure type checking would
consist of finding a type derivation for the program by applying the typing rules of the language, and
then discharging all the proof obligations coming from the subtyping relations. In order to prove all the
formulas automatically, a first requirement of the Liquid Type System (LTS) is that they must belong to
a decidable logic. Assuming this, then the system uses an SMT solver to discharge the validity of the
formulas.

But, annotating by hand the liquid types of all the variables would be a heavy burden for the program-
mer. Fortunately, the LTS requires a minimum hand annotation. In most cases, only the type signature of
the function being proved is required, i.e. the types of the arguments and that of the function result. In this
signature, the user must express the dependence between arguments, and also how the result depends on
the arguments. This amounts to giving the function precondition and postcondition, i.e. its specification,
said in classical program verification terms.

With this information, the LTS tries to infer the liquid types of all the intermediate program variables
and program subexpressions. This would be a hopeless search if no restrictions were posed to the shape
of the predicates that may occur in the types. To this aim, the following restrictions are posed:

• The predicates e occurring in liquid types of the form {ν : t | e} are restricted to be conjunctions
of atomic qualifiers q belonging to a set Q∗.
• The set Q∗ is different at each text location. All the sets Q∗ are obtained from an only set Q given

by the programmer, by substituting variables in scope at the corresponding text location for all the
occurrences of the wildcard symbol ? in Q.

• After that, all the ill-typed qualifiers are removed. Only well-typed ones remain in each Q∗.

For instance, assuming that ν ranges over the type int, if Q= {ν ≥ 0,?≤ ν ,ν < len ?}, and the variables
in scope are two integer numbers x, y, and an array a, then Q? = {ν ≥ 0,x ≤ ν ,y ≤ ν ,ν < len a}.
Qualifiers such as a≤ ν ,ν < len x will be generated and then removed for being ill-typed.

These restrictions ensure that the number of candidate predicates at each program location is finite,
so an exhaustive search would do the job by trying, for the (finite) set of program locations, all possible
combinations of predicates. If a combination makes all the proof obligations valid, then the program
type-checks. This brute-force approach is unpractical for even very small programs. The LTS does
it better by organizing the search in a complete lattice of predicates, and then going from the strongest
possible predicate to weaker ones upwards in this lattice. At each step the weakening of a single predicate,
i.e. of a single liquid type, is done in order to make a proof obligation valid. If a solution is found, it is
guaranteed that it is the strongest posssible one. This amounts to saying that the smallest types have been
found for every program variable and program subexpression.
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Of course, even if the program is correct, a solution may not be found for a number of reasons:

• The set of qualifiers given in Q by the programmer is not enough. A solution exists if additional
qualifiers were included in Q.

• Even if Q is big enough, the solution may include some disjuntions of the given qualifiers, and this
is not allowed by the approach.

But, if a typing exists with the given Q, and the restriction of liquid types being conjunctions of
qualifiers, then the system is guaranteed to find it.

3 Liquid Haskell

Liquid Haskell (LH) was first introduced in [17, 18]. It represents the application of the Liquid Type
theory to a full-fledged functional language like Haskell. It consists of a static type-checker for a big
part of the Haskell language. The first phase of LH uses the Haskell compiler GHC [6] in order to solve
the external references, to type-check the program in the Hindley-Milner sense, and to transform it to its
internal Core representation. This transformation simplifies the work of LH, since it then only deals with
a few syntactic constructions.

The Liquid type annotations are provided by the programmer in the input file as Haskell comments
of the form {-@ annotation @-}. These, of course, are ignored by GHC and are instead processed by
LH. As a result, a set of type constraints are generated in the second phase, which are solved in a third
phase with the help of a SMT solver, such as Z3 [11] or CVC4 [2]. The input file also contains the set
of qualifier fragments from which the inferred liquid types are to be built. Due to a judicious choice
of defaults, by which the qualifier fragments are directly extracted from the type annotations, this set is
most of the times empty.

The output of LH is a simple word SAFE, in the case that every function in the input file type-
checks. Otherwise, type errors are reported at different text locations, indicating the inferred types and
the constraints which have been violated. The error reports are usually informative enough to detect and
repair the problem. They constitute a big help for debugging the program.

In order to install LH and to get a complete tutorial with exercises, visit the following pages;

https://github.com/ucsd-progsys/liquidhaskell (1)

http://ucsd-progsys.github.io/liquidhaskell-tutorial/ (2)

You will need a Haskell installation, and also to install Z3, CVC4, or other SMTLIB compatible
solver.

Liquid Haskell has been applied to over 10.000 lines of Haskell code belonging to different popular
libraries, as reported in [17]. The properties specified and proved range from totality and termination of
functions, to safe access of indexed structures, and preservation of data type invariants. In sections 5 and
6 we show a selection of case studies taken from [17] and from the above cited tutorial.

We finish this section by enumerating some of the annotations that a programmer may include in a
LH input file:

type This allows to define an alias for a liquid type. The definition may include as arguments type
variables (in lower case) and value variables (in upper case).
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data Similar to the data declaration of Haskell to introduce algebraic types, but here the programmer
may indicate that the type of a constructor argument depends on the value of prior argument.

measure This annotation specifies the name of a Haskell function as a measure. A measure is a possibly
recursive function which can be used in type definitions. Examples of measures are the length of
a list, or the height of a tree. We will give examples using measures in sections 5 and 6.

Function signature This allows to give a liquid type to a function. Its definition will be normal Haskell
code.

4 Totality

Very frequently in Haskell, we define partial functions such as the one getting the head element of a list:
head :: [a] -> a

head (x:_) = x

The translation of this definition made by GHC is:
head y = case y of

x:_ -> x

[] -> patError "head"

Very frequently also, we get runtime errors when a part of the program is calling a partial function outside
of its definition domain:
*** Exception: Prelude.head: empty list

LH can help us to verify at compile time that this kind of errors will not happen at runtime. The first
thing to do is defining a so-called boolean measure:
{-@ measure notEmpty @-}
notEmpty :: [a] -> Bool

notEmpty [] = False

notEmpty (_:_) = True

Measures are Haskell total functions having a very restricted syntax, that LH converts into uninter-
preted functions of the underlying SMT theory satisfying a set of axioms. It gives the following types to
the list constructors:
[] :: {v: [a] | notEmpty v = False}
(:) :: a -> [a] -> {v: [a] | notEmpty v = True}

After that, we strengthen the signature of head by giving it the following type:
{-@ type NEList a = {v:[a] | notEmpty v}

head :: NEList a -> a @-}
LH succeeds in type-checking the above definition for head. To verify its (Core) definition, LH checks
the body expression with a Γ typing environment having the restriction notEmpty y. The first case
branch succeeds, since y is matched with x: and then notEmpty y holds. In the second case branch y

is matched with [], and then we get the contradiction:
y :: notEmpty y && not (notEmpty y)

A type refinement False is an unhabited type. So, LH concludes that the call to patError is dead code,
and this confirms the totality of head.

With this type, now the burden is on the side of the users of head. For every call to it, LH must
ensure that the list passed as an argument is in fact non-empty. If it succeeds in this checking, then the
above pattern error will never happen at runtime.
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5 Case Study: sorted lists

In [10], the original idea of liquid types is extended to recursive algebraic datatypes, giving rise to the
so-called recursive refinements. There, the type of an argument of a data constructor may depend on the
value of a prior argument. Together with a recursive definition, this feature is powerful enough to allow
defining interesting invariants of data structures such as sortedness of lists:

{-@ data IncList a = Emp

| (:<) { hd::a, tl::IncList {v:a | hd <= v}} @-}

Here, an increasing sorted list is defined by restricting the list tail elements to be not smaller than the
head. This property is recursively propagated to all the sublists. LH interprets this definition by assigning
the following types to the data constructors:

Emp :: IncList a

(:<) :: hd:a -> tl:IncList {v:a | hd <= v} -> IncList a

Given this invariant, and the appropriate signature for a function insert inserting an element in a sorted
list, LH is able to type-check the following definition:

insert :: (Ord a) => a -> IncList a -> IncList a

insert y Emp = y :< Emp

insert y (x :< xs) | y <= x = y :< x :< xs

| otherwise = x :< insert y xs

Notice in the last line that LH needs to infer the type IncList ({v:a | a <= x}) for the subex-
pression insert y xs in order this equation to type-check, which is far from being trivial. Using the
signature just proved for insert, it is less surprising that LH also type-checks the following code for the
insertion sort algorithm:

insertSort :: (Ord a) => [a] -> IncList a

insertSort [] = Emp

insertSort (x:xs) = insert x (insertSort xs)

Similarly, we can give the following signature and code of a function merging two sorted lists into a
single sorted one:
merge :: (Ord a) => IncList a -> IncList a -> IncList a

merge xs Emp = xs

merge Emp ys = ys

merge (x :< xs) (y :< ys)

| x <= y = x :< merge xs (y :< ys)

| otherwise = y :< merge (x :< xs) ys

LH is able to type-check this definition and, again, the types inferred for the subexpressions merge xs

(y :< ys) and merge (x :< xs) ys are far from being trivial. In the first case, it is IncList ({v:a
| a <= x}), and in the second one it is IncList ({v:a | a <= y}). Assuming implemented a func-
tion split::[a] -> ([a],[a]) splitting a list into two, LH successfully type-checks the following
signature and code for the mergesort algorithm:
mergeSort :: (Ord a) => [a] -> IncList a

mergeSort [] = Emp

mergeSort [x] = x :< Emp

mergeSort xs = merge (mergeSort ys) (mergeSort zs)

where (ys, zs) = split xs
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Figure 2: An example of AVL tree

If the types provided by the programmer in the signatures are not strong enough, then LH will com-
plain, and the error reports may help him/her to repair the problem. Let us assume the following definition
for the quicksort algorithm:

quickSort :: (Ord a) => [a] -> IncList a

quickSort [] = Emp

quickSort (x:xs) = join x lessers greaters

where lessers = quickSort [y | y <- xs, y < x ]

greaters = quickSort [z | z <- xs, z >= x]

join :: a -> IncList a -> IncList a -> IncList a

join z Emp ys = z :< ys

join z (x :< xs) ys = x :< join z xs ys

LH will complain about the type given to join. It cannot deduce that the result list is sorted from just
the fact that the two input lists are sorted. It would need stronger types for the two input lists. After some
trial and error, the programmer would eventually arrive at the following correct type:

join :: x:a -> IncList ({v:a | v <= x}) -> IncList ({v:a | x <= v}) -> IncList a

Notice, again, that in order to type-check the second equation of join, LH infers for the subexpres-
sion join z xs ys the type IncList ({v:a | x <= v}), which is a refinement of the result type
IncList a.

6 Case Study: AVL trees

Another important data structure whose invariant can be elegantly expressed with liquid types are binary
search trees:

{-@ data BST a = Leaf

| Node { root :: a

, left :: BST {v:a | v < root }
, right :: BST {v:a | root < v } } @-}

In this case, the recursive property is that, in every nonempty subtree, all the elements of the left child
are smaller than the value at the root, and all those of the right child are greater than the root.



76 An Introduction to Liquid Haskell

But, in order to ensure a time cost in O(logn) for all the tree operations, AVL trees [9, Chap. 10],
have an invariant stronger than that of BST. In addition to that invariant, they require to be reasonably
balanced, and by this it is meant that the difference of heights between the left and right children of every
subtree is at most one. In Fig. 2 we show an example of such a tree. We will define below a type AVL

very similar to BST but keeping a new field in the nodes holding the height of the subtree having that
node as its root. This will ease the checking of the balance property.

For expressing the latter, first we need to define a function height giving us the height of a tree and
to inform LH that this is a measure for the type AVL:

{-@ measure height @-}
{-@ height :: AVL a -> Nat @-}
height Leaf = 0

height (Node _ l r _) = 1 + max (height l) (height r)

where the type Nat has been previously defined as:

{-@ type Nat = {v:Int | 0 <= v} @-}

Measures may return any type (not only boolean values) but, as we have said, they have severe
restrictions:

1. They must be total, and have exactly an equation per data constructor.

2. They may be recursive but the recursive function must be applied only to pattern variables. This
ensures termination.

3. The terms in the righthand expressions must belong to the underlying SMT theory.

In order to simplify the definition of the AVL type, we introduce the following declarations, taken
from (2)1:

{-@ type AVLL a X = AVL {v:a | v < X} @-}
{-@ type AVLR a X = AVL {v:a | X < v} @-}
isReal h l r = h == nodeHeight l r

nodeHeight l r = 1 + max (height l) (height r)

isBal l r n = 0 - n <= d && d <= n -- difference in height is at most n

where d = height l - height r

The first type describes the AVLs that could be correctly installed as left children of a root with value
X . The second one is symmetrical for right children. The third definition is a predicate that the fourth
component h of a node having l and r as children should meet: to exactly hold the height of the subtree
having as its root such a node. The last one is a predicate expressing a balancing property between two
subtrees l and r. The AVLs satisfy isBal l r 1.

Now, an AVL is a binary search tree that additionally is balanced:

{-@ data AVL a = Leaf

| Node { key :: a

, l :: AVLL a key

, r :: {v:AVLR a key | isBal l v 1}
, ah :: {v:Nat | isReal v l r}
} @-}

Let us do a first attempt of defining an insert function inserting an element into an AVL:

1 This refers to the tutorial whose URL was given in Sec. 3.
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{-@ insert :: (Ord a) => a -> AVL a -> AVL a @-}
insert y t@(Node x l r _) | y < x = node x (insert y l) r

| x < y = node x l (insert y r)

| otherwise = t

insert y Leaf = Node y Leaf Leaf 0

where node is a smart constructor, taking care of not to violate the AVL invariant:

{-@ node :: x:a -> l:AVLL a x -> r:{v:AVLR a x | isBal l v 1}
-> AVLN a (nodeHeight l r) @-}

node x l r = Node x l r h

where h = 1 + max hl hr

hl = getHeight l

hr = getHeight r

Function getHeight just gets the height field of the root node, or returns 0 if it is an empty tree, and the
auxiliary type AVLN a H defines the trees AVL a of height H:

{-@ type AVLN a N = {v: AVL a | height v = N} @-}
{-@ measure getHeight @-}
{-@ getHeight :: t:AVL a -> {v:Nat | v == height t} @-}

getHeight Leaf = 0

getHeight (Node _ _ _ h) = h

The above definition for insert is wrong, and LH will complain that its result need not be an AVL.
The obvious reason is that no effort has been done to preserve the balance property. As a consequence,
unbalanced trees may be obtained. For instance, the term:

insert 3 (insert 2 (insert 1 Leaf))

will fail at the subexpression node 1 Leaf (Node 2 Leaf (Node 3 Leaf Leaf 1) 2) in which the smart
constructor node refuses to join two trees with a height difference of 2.

By following the AVL version of [12, Chap. 7], first we replace in the above definition for insert
the smart constructor node by a smarter version equil that checks the height difference of the two
children. Should this difference be at most one, then the constructor node would be called, as the
AVL invariant would not be violated. The other possibility is the height difference to be exactly two.
In that case, equil will decide whether the bigger tree is the left or the right one. In the first case,
a function leftUnbalance will repair the unbalance by doing a left rotation. In the second case, a
symmetric function rightUnbalance will be called. Let us see for the moment, the specification and
the implementation of equil:

{-@ equil :: x:a -> l:AVLL a x -> r:{v:AVLR a x | isBal l v 2}
-> AVLE a {height l} {height r} @-}

equil x l r | isBal l r 1 = node x l r

| hl == hr + 2 = leftUnbalance x l r

| hr == hl + 2 = rightUnbalance x l r

where hl = getHeight l

hr = getHeight r

where the type AVLE expresses the expected height of the resulting AVL as a function of the input heights:
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{-@ type AVLE a H1 H2 = {v: AVL a |

((H2 <= H1 && H1 <= H2 +1) => height v = H1 + 1)

&& ((H1 <= H2 && H2 <= H1 +1 ) => height v = H2 + 1)

&& (H1 = H2 + 2 => (H1 <= height v && height v <= H1 + 1))

&& (H2 = H1 + 2 => (H2 <= height v && height v <= H2 + 1)) } @-}

The first two lines of the height property express what hapens when no rotation is needed, and then
constructor node is invoked. The third line expresses what happens when a left rotation is needed, and
the last one, is the symmetrical property for a right rotation.

This definition is type-checked by LH, provided the following signatures for leftUnbalance and
rightUnbalance are given:

{-@ leftUnbalance :: x:a -> l:AVLL a x -> r:{v:AVLR a x | height l == height r + 2}
-> AVLE a {height l} {height r} @-}

{-@ rightUnbalance :: x:a -> l:AVLL a x -> r:{v:AVLR a x | height r == height l + 2}
-> AVLE a {height l} {height r} @-}

The code of leftUnbalance implements the so-called LL and LR rotations. In the first one, the
unbalance is produced by the left child of the left child. Let us call it ll, and lr to its sibling. If h is the
height of the right subtree r, then hll = h+1, and hlr = h, or hlr = h+1. By rearranging the subtrees in
the order shown in the code below, the final tree will have a height h+2 in the first case, or h+3 in the
second one, and it will satisfy the AVL invariant.

In an LR rotation, the unbalance is produced by the right child of the left child, call it lr, which has a
height h+1 (and then its parent has a height h+2), while the right subtree has a height h. This ensures
that lr is not empty, so it could be decomposed into its constituent pieces. By rearranging these pieces in
the order shown in the code below, it is easy to check that the final tree is balanced, and it has a height
h+2. The following code will be then type-checked by LH:

leftUnbalance x (Node y ll lr _) r

| hll >= hlr = node y ll (node x lr r)

| otherwise = node z (node y ll lrl) (node x lrr r)

where hll = getHeight ll

hlr = getHeight lr

Node z lrl lrr _ = lr

The code for rightUnbalance is symmetrical to that of leftUnbalance, and it is not shown.
By using the above smart constructor equil, the implementation of a function delete, removing an

element from an AVL, is straightforward. It just consists of substituting the smart constructor equil for
all the occurrences of the constructor Node in a standard implementation of delete for binary search
trees. The reader may consult [12, Chap. 7] for more details.

7 Conclusions

The paper has presented the tool Liquid Haskell, and has illustrated its use with a selection of exam-
ples of increasing complexity, ranging from preventing pattern matching errors, to proving correct the
implementation of AVL-trees. Many more examples can be found in the tutorial recently written by the
authors and referenced in (2)(see Sec. 3). In the preliminary sections, we have presented the Liquid Type
technology, of which Liquid Haskell is just an example.
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The combination of recursive refinements for recursive data types, expressing restrictions on the
contents of a data structure (e.g. that its elements are sorted), and measures for defining its structural
properties (e.g. restrictions on its length, or on its height), gives the system an unexpected big power to
express and prove complex properties. The limitations of the Liquid Type approach are those derived
of the undecidability of the formula satisfaction problem. If the property being specified needs complex
formulas to be proved valid, then the system will give up. For instance, the validity of most universally
quantified formulas is undecidable, and these are frequently needed in program verification.

Nevertheless, we believe that this family of systems is worth to be studied because they may change
the way in which programmers will think of programs in the future. Rather than following the usual
cycle of first write, then compile, then test, and then edit, they could follow a more interesting and prof-
itable one: write type signatures, write code, type-check, and edit. This methodology might drastically
lower the number of errors that programmers unadvisedly introduce in programs, without investing much
additional effort. The tool is presented as a type-checker, which is already familiar to programmers. So,
they might look at it as just a type-checker slightly more evolved than the usual ones, while what in fact
is happening under the hood is that they are doing formal verification. This is possible because most of
the tedious and routine proving work is done by the system running in the back.
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