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Field data is an invaluable source of information for testers and developers because it witnesses how
software systems operate in real environments, capturing scenarios and configurations relevant to
end-users. Unfortunately, collecting traces might be resource-consuming and can significantly affect
the user experience, for instance causing annoying slowdowns.

Existing monitoring techniques can control the overhead introduced in the applications by reduc-
ing the amount of collected data, for instance by collecting each event only with a given probability.
However, collecting fewer events limits the amount of information extracted from the field and may
fail in providing a comprehensive picture of the behavior of a program.

In this paper we present fragmented monitoring, a monitoring technique that addresses the issue
of collecting information from the field without annoying users. The key idea of fragmented moni-
toring is to reduce the overhead by recording partial traces (fragments) instead of full traces, while
annotating the beginning and the end of each fragment with state information. These annotations
are exploited offline to derive traces that might be likely observed in the field and that could not be
collected directly due to the overhead that would be introduced in a program.

1 Introduction

Fully assessing the quality of software applications in-house is infeasible. Consider for instance the huge
combination of configurations, inputs, and environments that should be verified. Since exhaustively
testing every combination is not practical [22, 16, 15], quality control activities cannot be limited to
in-house verification and validation but must cross organization boundaries spanning the field. This is
why modern testing and analysis techniques often exploit data collected from the field, for example by
collecting crash reports [13, 21, 10] and profiling data [14].

While simple information could be retrieved quite efficiently without affecting the user experience,
such as collecting a snapshot after a system crash [13, 21, 10], extensively collecting field data is chal-
lenging. In fact, monitoring executions, recording runtime data, and shipping the recorded information
to developers are activities that interfere with regular executions. Indeed, they might introduce an an-
noying overhead and cause unacceptable slowdowns. Since preventing any interference with the user
activity is a mandatory requirement, monitoring techniques address the challenge of collecting field data
by reducing the amount of collected data in various ways. For instance, instead of collecting every rele-
vant event, monitoring techniques may collect each event only with a given probability [17, 20], or may
collect only a subset of the relevant data by distributing the monitoring load across many instances of the
same application [25, 4]. Unfortunately, in all these cases, monitoring can only retrieve a subset of the
relevant data that might be extracted from the field to capture the behavior of the software.

Consider for instance the problem of monitoring how some libraries are used within an application,
that is, determining the sequences of calls to library methods produced by the application. Collecting
events probabilistically would retrieve incomplete execution traces, which might be relatively useful if
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the events are collected with low probability. Collecting subsets of events also produces partial informa-
tion about the execution scenarios, which might hinder the applicability of many analysis techniques.

In this paper, we present our initial effort in the design of a monitoring solution that can derive com-
prehensive runtime data without affecting the quality of the user experience. As a monitoring task, we
consider the case of applications whose processes can be monitored independently. The target applica-
tions can thus range from centralized desktop applications to distributed server applications (as long as
the system-level global ordering of events does not need to be extracted).

Our key idea consists of collecting fragments, that is, partial traces with no internal gaps, annotated
with state information. Although fragments include only partial information about a monitored execu-
tion, they are complete when restricted to their time interval (i.e., every monitored event produced by
the application after the first event of the fragment and before the last event of the fragment also occurs
in the fragment). These fragments can be simply obtained by activating and deactivating a monitor that
records every relevant event. Since the monitor is used intermittently, its impact on the user experience
is limited.

A fragment starts and ends with information about the state of the system. The idea is that by
monitoring many executions and collecting many fragments, it should be possible to reconstruct traces
that can likely be observed in the field from the fragments. In particular, fragments can be recombined
offline consistently with the state information, that is, if a fragment ends in a state that matches the
starting state of another fragment, the two fragments can be concatenated into a single fragment. In this
way traces that extensively capture the behavior of a monitored program can be recreated from fragments,
achieving lightweight monitoring without sacrificing the comprehensiveness of the collected data.

We called fragmented monitoring the strategy for collecting and combining fragments that we de-
signed to monitor the usage of one or multiple interfaces in a program. Fragmented monitoring uses
an original combination of pre-deployment and post-deployment techniques. Before an application is
deployed, fragmented monitoring uses symbolic execution [19, 5] to automatically identify the relevant
program states that determine if and how an execution can proceed with additional calls to any of the
monitored interfaces. This information is encoded as a set of conditions that can be used to discriminate
the states of the monitored program, that is, two states that produce the same evaluations for these con-
ditions are likely to use the monitored interfaces in a same way. Viceversa, states that produce different
evaluations for these conditions are likely to use the monitored interfaces differently.

The conditions computed before the software is deployed are embedded into the monitor and used
in the field to derive the state information that annotates the fragments. The collected fragments are
retrieved and combined post-deployment to obtain the likely full traces. Although the reconstructed
traces are not guaranteed to be actual traces of the monitored program, this strategy may enable a range
of testing and analysis solutions that can exploit imperfect field data.

The paper is organized as follows. Section 2 overviews the fragmented monitoring approach. Sec-
tions 3 and 4 describe the pre-deployment and post-deployment analysis respectively. Section 5 presents
the main challenges of our ongoing work. Section 6 discusses related work. Section 7 provides final
remarks.

2 Fragmented Monitoring

Fragmented monitoring has been designed based on the results of a preliminary study that we conducted
to investigate the magnitude of overhead that can be tolerated by end-users when using their applica-
tions [9]. In this study we exploited the classification of system response time proposed by Seow [27]
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to compute if and to what extent a monitoring activity might interfere with the user experience. Seow’s
classification indicates the maximum response time of several classes of operations (ranging from click-
ing on menu items to submitting complex queries). We used this information to study if a monitor that
collects function calls might interfere with the quality of the user experience.

Interestingly, we discovered that the overhead is distributed unevenly across operations: a same mon-
itoring activity (for example, collecting function calls) might produce a significantly different overhead
(from negligible to more than 300%) depending on the kind of operation executed by the software. For
example, simple GUI operations like navigating through menu items generate fewer function calls, and
thus show a smaller overhead, compare to computing complex mathematical computations in spread-
sheet applications. Moreover, we discovered that a non-trivial overhead (usually up to 80%) is often
tolerated by end-users.

Fragmented monitoring leverages these results. Since a significant overhead can often be tolerated
by users, fragments of non-trivial length might be feasibly collected from the field, but at the same time,
since the impact of the monitoring activity changes with the operation that is executed, monitoring must
be cleverly limited to prevent the introduction of an excessive overhead for specific operations.
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Figure 1: Fragmented monitoring.

Figure 1 shows the overall fragmented monitoring process. Based on a set of interfaces of interest
(e.g., application APIs), fragmented monitoring first identifies the relevant classes that must be moni-
tored, that is, the classes that may influence the usage of the interfaces (step 1). In practice, the relevant
classes are those that implement methods that can directly or indirectly invoke or be invoked by the
methods defined in the monitored interfaces up to a user-customizable depth. Intuitively, these classes
decide if and what interfaces methods to invoke based on the state of the application.

In the second step, fragmented monitoring analyzes the relevant classes to distill the knowledge about
the conditions that may influence the execution, and thus influence the interaction with the monitored
interfaces. For instance, let us assume that the monitored interfaces control the interaction with the file
system: if a class using the monitored interface may actually open a file only if a string variable text,
which represents the text to be written in the file, is non-empty, the condition synthesis step would output
the condition text.isEmpty()==false to indicate that the evaluation of this condition may influence
the interaction with the monitored interfaces.
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All the conditions produced in step 2 are exploited to generate a Monitor (step 3) that collects frag-
mented executions. These steps are described in details in Section 3.

Fragmented monitoring uses the generated conditions to produce a compact and relevant representa-
tion of the state of the program immediately before and after recording a fragment (step 4). We call this
representation the signature data. For instance, the condition text.isEmpty()==false would con-
tribute to the signature data by producing a single value that depends on the length of the string. Note
that these conditions generate good abstractions of the program state consistently with the conditions that
might be evaluated by the program at any stage of the execution. In this case, since the program does
not check the content of the string but only if it is empty, the signature data does not report information
about its content. If the program would have processed the content of the string, the condition synthesis
step would have also produced conditions for checking the content of the string consistently with the
behavior of the program.

The fragments are then analyzed offline. The signature data at the beginning and at the end of the
fragment abstractly represent the state of the system at the time the fragment was recorded. Since a
signature data directly depends on the conditions actually computed by the program while interacting
with the monitored interfaces, the signature data is supposed to be representative of how the execution
may proceed, specifically in terms of the interaction with the monitored interfaces. In principle, two
fragments, one ending with a value of the signature data that is the same than the initial value of the
signature data of the other fragment, could be sequentially composed to represent a longer execution that
has been likely produced by the monitored application (step 5).

In the next sections, we describe more in details the pre-deployment and post-deployment analysis
supported by an example.

3 Pre-Deployment Analysis

This section describes the pre-deployment phase. The most important activity performed in this phase is
the identification of the conditions that are later used to produce signature data, that is, the compact and
abstract representation of the program state at the time the collection of a fragment is started or stopped.

We use a small example to present this case. Consider a Java program that includes the Vehicle

class, which represents a generic vehicle considering its weight (attribute weight) and its maximum
velocity (attribute maxVel), and a VehicleService class, which computes various statistics about a set
of vehicles, such as their mean velocity and their mean weight. Let us assume that we want to collect
data about how the program uses the Vehicle class, focusing on the sequences of method calls produced
by the program. In this case, the methods implemented by the Vehicle class represent the interface of
interest. Capturing every call to every method of the Vehicle class might be expensive for operations
extensively using the public methods implemented in the Vehicle class.

3.1 Step 1: Identify Classes

Fragmented monitoring first identifies the relevant classes of the program, that is, the classes that
directly or indirectly determine the sequence of invocations to the methods in the monitored interface.
These classes are determined statically in two stages. The first stage computes the call graph, which
represents the calling relationships between the methods of the application. In our prototype we build
the call graph using the WALA [12] static analysis tool.

The second stage starts from methods in the monitored interface, in our example the public methods
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of the class Vehicle, and determines the callers and the callees of these methods, and the corresponding
classes. The calling relationship is navigated transitively until a user-defined depth. In this example, if
we bound the depth to 1, both the Vehicle class, which is a callee at depth 1, and the VehicleService
class, which is a caller at depth 1, would be selected. Intuitively, the selected classes represent classes
whose behavior is strongly correlated to the usage of the monitored classes.
3.2 Step 2: Synthesize Conditions

Fragmented monitoring uses the relevant classes to extract the conditions that represent how the values
of the state variables may influence the execution of the monitored program. These conditions will be
exploited at runtime to record state information efficiently, that is, representing the state of the application
abstractly with a limited risk of losing information relevant to the program.

For instance, if a program checks if the value of the weight of a vehicle is greater than 5000 to decide
how to use that vehicle, it is enough to record whether the condition weight > 5000 is true or not
when saving state information, with no need of recording the actual weight, which would be irrelevant
to determine how the execution may proceed.

The conditions computed by the monitored program, and in particular the conditions computed in the
relevant classes, are a set of conditions that can be naturally exploited to define an efficient abstraction
strategy that can be applied at runtime to generate the signature data. To extract these conditions from
code, we symbolically execute each method in the selected classed and use the path conditions resulting
from the analysis of each method as conditions for state abstraction. Note that a path condition represents
how the inputs to a method, that is, the values of the parameters and the values of state variables, relate
to the execution of a specific path inside the method.

For instance, if the VehicleService class includes the following methods:

public void weight(){

int weight = 0;

weight += truck.getWeight();

weight += van.getWeight();

weight += car.getWeight();

weightMean = weight / 3;

if (weightMean > 5000)

heavy = true;

}

public void velocity(){

int velocity = 0;

velocity += truck.getMaxVel();

velocity += van.getMaxVel();

velocity += car.getMaxVel();

velocityMean = velocity / 3;

if (velocityMean > 110)

fast = true;

}
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The resulting path conditions would include the following conditions:

(VehicleService.truck.weight + VehicleService.van.weight +

VehicleService.car.weight) / 3 > 5000

(VehicleService.truck.weight + VehicleService.van.weight +

VehicleService.car.weight) / 3 <= 5000

. . .
(VehicleService.truck.maxVel + VehicleService.van.maxVel +

VehicleService.van.maxVel) / 3 <= 110

. . .
These conditions capture relevant state properties and represent the different execution paths, that in

turn may produce different sequences of invocations to the monitored interfaces. Every time fragmented
monitoring evaluates these conditions at runtime, a new instance of the signature data is produced.

We use the JBSE [5] symbolic executor to compute the path conditions from the relevant classes,
bounding the exploration of loops. The signature data that is incorporated before and after each fragment
is obtained by evaluating at runtime the extracted conditions on the concrete state of the program.

3.3 Step 3: Generate Monitor

The conditions are used to generate a monitor that is able to collect fragments during program executions.
The monitor will thus include the ability to start and stop the recording activity, in the example the ability
to start and stop monitoring the calls to the Vehicle class, and will also include the capability to evaluate
the conditions every time the recording is started or stopped. The activation and deactivation of the
monitor might depend on multiple factors, such as the available resources and the nature of the operation
that is executed.

4 Post-Deployment Analysis

This section describes the post-deployment phase. The most important activity performed in this phase
is the reconstruction of traces from fragments. We use the same example of the Pre-Deployment analysis
to present this phase.

4.1 Step 4: Collect Fragments

When the monitored program is executed, fragmented monitoring produces a number of partial traces
consisting of an evaluation of the extracted conditions on the state of the program, a sequence of events,
and again an evaluation of the conditions on the state of the program. Since we capture the state of the
application by evaluating a set of conditions, we use a vector to store the evaluations at runtime. We call
this vector the signature data, because it compactly represents the identity of the current state (e.g., like
a signature does with people).

Each condition is a three valued expression, since there are three possible outcomes: true, false,
and unknown. A condition evaluates to true if the values of the program variables at the time the
condition is evaluated satisfy the condition. Similarly, a condition evaluates to false if the values of
the program variables at the time the condition is evaluated do not satisfy the condition. If some of the
elements that appear in a condition cannot be evaluated, for instance because an object with an attribute
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that should be considered in the evaluation of a condition is null or even non existing, the condition
evaluates to unknown. For example, the condition

(VehicleService.truck.weight + VehicleService.van.weight +

VehicleService.car.weight) / 3 > 5000

evaluates to true if the three weights are 6000, 5000 and 7000, while it evaluates to false if the three
weights are 2000, 1000 and 5000. Finally, it evaluates to unknown if any of the truck, van, and car

objects is null.
Each condition produces an evaluation that is stored in the signature data. Considering our example

with the Vehicle class, a fragment of its execution could take the form

(U, U, F, ..., T) car() car.setWeight() car.setVelocity() ...truck() (T, T, F, ..., T)

where the part between parentheses is the signature data, which includes the evaluation of every condition
identified in the pre-deployment analysis (T, F, U stand for true, false, and unknown, respectively), and the
sequence of labels between the two instances of the signature data is the sequence of events collected at
runtime. If we assume that the condition whose evaluation produces the first element of the signature data
is the aforementioned condition about the average weight of the three vehicles, the fragment indicates
that the condition evaluated to unknown when the recording of the fragment has started, and evaluated
to true when the recording of the fragment has been interrupted.

Fragmented monitoring accumulates fragments during the execution of the monitored application.
Fragments can be collected both for multiple executions of a same application and for multiple executions
of different installations of a same application. Collecting data from multiple installations of a same
application simultaneously (e.g., multiple installations of a productivity suite) might increase by several
orders of magnitude the amount of data available to reconstruct traces compared to the use an installation
only.

4.2 Step 5: Reconstruct Traces

This step processes the fragments recombining them in the attempt to obtain long and comprehensive
traces. In this step, fragmented monitoring does not aim to obtain complete and fully sound traces, it
rather aims at non-intrusively collecting useful traces from the field.

To decide how to concatenate fragments, fragmented monitoring exploits the state information con-
tained in the signature data, that is, if a fragment ends with signature data that matches the signature
data reported at the beginning of another fragment, the two fragments are concatenated into a longer
execution trace, which is still a fragment. Then, this process is iterated to obtain longer traces.

Suppose the following fragments have been collected:
(U, U, F, ..., T) car() car.setWeight() car.setVelocity() ...truck() (T, T, F, ..., T)

(T, T, F, ..., T) track.setWeight() track.setVelocity() ...(T, T, T, ..., T)

(T, U, F, ..., T) van() van.setWeight() car() ...(U, T, F, ..., T)

The first fragment could be concatenated with the second, but not with the third one (the signature
data are different). The concatenation of the two fragments produces the following fragment:

(U, U, F, ..., T) car() car.setWeight() car.setVelocity() ...truck() track.setWeight()

track.setVelocity() ...(T, T, T, ..., T)

In addition to exploiting the signature data (i.e., state information), fragmented monitoring can ex-
ploit additional sources of information to increase the precision of the reconstruction process. For exam-
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ple, it can exploit structural information, such as the control-flow graph of the program, to verify that a
merged fragment still represents a feasible execution of the program.

5 Challenges

The design of fragmented monitoring is an ongoing effort. In order to transform this idea into a solid
solution there are still several challenges that must be faced and that we discuss in this section.

• Pre-deployment phase

Complete condition synthesis: Symbolic execution techniques can well serve the purpose of
identifying the relevant conditions computed by a program, but the conditions resulting from
this analysis may use method parameters in addition to state variables. While a condition
that exclusively uses state variables might be simple to evaluate at any point of the execution,
a condition that uses method parameters is not obvious to evaluate at an arbitrary point of
the execution, as required by fragmented monitoring when producing the signature data. In
fact a parameter is defined only when the corresponding method is invoked, while it does not
exist in all the other points in time. Thus, a condition that includes a method parameter could
be evaluated only if the monitoring is activated or deactivated with a call to the method that
includes that parameter.
An obvious option is to drop conditions with method parameters, but this might cause the
loss of too many conditions. Thus, the definition of strategies for rewriting conditions with
parameters might be necessary to produce better sets of conditions.

Effective condition synthesis: Not all the conditions are necessarily useful to abstract a concrete
state, especially when monitoring focuses on some interfaces of interest only. Considering
every condition returned by symbolic execution as a condition for producing the signature
data might be too expensive, eliminating the benefit of producing fragments instead of full
traces. The tradeoff between completeness and effectiveness must be carefully studied to
define a strategy that identifies a small but effective set of conditions.

Monitor synthesis: The generation of a monitor that evaluates the conditions at runtime is not a
big challenge, but it might be challenging to define the strategy to decide when to start and
stop fragments registration. If the fragments are too short, the cost of recording the signature
data might be too high compared to the amount of information incorporated in a fragment.
If the fragments are too long, users might experience some significant slowdowns. Finding
strategies that well balance these two aspects is an open challenge.
In addition to this, defining a strategy to start and stop the monitoring might be driven by the
conditions that must be evaluated, and could consequently affect the effectiveness of the post-
deployment phase. In fact, starting and interrupting the recording activities at some specific
places could in principle make the post-deployment processing of the fragments simpler or
harder.

• Post-deployment phase

Merging fragments: We considered the signature data as the main information to concatenate
fragments. However, there might be other strategies that can be exploited. For instance, frag-
ments could be merged if they partially overlap in terms of the sequences of events included
in the fragments and if the signature data satisfy some consistency rule weaker than equality.
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Even the concatenation may exploit a comparison criterion more flexible than equality. All
these options require experimentation to be defined.

Exploiting additional information: In principle, the post-deployment phase could exploit the
source code of the program for distinguishing feasible and unfeasible traces produced by our
approach. For instance, each trace could be checked against the control-flow of the program
to verify if a specific combination of events could be feasibly produced. In general, static
information could assist the process of reconstructing longer traces from fragments.

6 Related Work

In the scope of techniques that exploit field data, Delgado et al. [10] developed a taxonomy to analyze and
differentiate runtime software fault-monitoring approaches, by classifying elements considered essential
for building a monitoring system. Likewise, Elbaum and Diep [14] assessed profiling techniques such as
full, targeted and sampling profiling and their efficiency in testing activities.

Ohmann et al. [23] worked on a technique for optimizing the placement of the instrumentation for
collecting program coverage on applications running in the field. On the other hand, Jin and Orso [18]
proposed BugRedux, an approach for supporting in-house debugging of field failures. In their work, they
found that collecting method calls is the best type of data that can be extracted from the field to reproduce
field failures in a controlled environment among the considered strategies.

Clause and Orso [7] studied how to efficiently monitor the interactions between an application and
its environment to determine the information that can be cost-effectively extracted from the field to re-
produce failures. In the same perspective, Pavlopoulou and Young [26] presented a technique to validate
in the field the functionalities that have not been fully tested in-house, specifically considering code
coverage analysis.

Orso et al. [24] also worked on a technique for a selectively capturing and replaying program execu-
tions. This technique allows to select a subsystem of interest, capture the interactions of the applications
with its subystem, and then replaying the recorded interactions in a controlled environment.

All these approaches either collect partial information without considering the problem of collecting
comprehensive information about the runtime behavior of a program, or they assume that the overhead
induced by the monitoring framework does not interfere with users. However, initial studies in this direc-
tion show that the monitoring overhead distributes unevenly across operations for identical monitoring
tasks, sometimes, significantly impacting the user experience [9, 8]. Ignoring this challenge may result
in monitoring techniques that perturbate the interaction with the system annoying end-users.

The cost-effectiveness of the monitor is the main objective of our work. Current approaches dealing
with this aspect exploits two kinds of solutions.

The first class is based on Distributive Monitoring, which divides the monitoring tasks between
multiple installations of the same application, lowering the overhead introduced in each installation.
This approach has been mainly developed by Orso et al. [25, 4] who defined the Gamma System which
relies on software tomography to optimize the placement of probes across several installations of the
same application to minimize the runtime overhead. Bauer and Falcone [3] considered a similar version
of this problem by addressing the challenge of distributing the monitoring activities required for checking
a formal specification in component-based systems, with the objective of avoiding to use a central data
collection point.

The second class of solutions exploits Probabilistic Monitoring, which reduces the overhead by mon-
itoring each instrumentation point only with a certain probability. Probabilistic monitoring thus reduces
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the overhead by collecting random subsets of the traces. Liblit et al. [20] have exploited probabilistic
monitoring to isolate bugs by profiling a large, distributed user community and using logistic regres-
sion to find the important program predicates that could be faulty. Similarly, Jin et al. [17] presented
a monitoring framework called Cooperative Crug Isolation to diagnose production run failures caused
by concurrency bugs. This technique relies on sampling to monitor different types of predicates while
keeping the overhead low.

A work similar to Probabilistic Monitoring, but in a different domain, is the one by Bartocci et al. [2].
They presented Adaptive Runtime Verification, a monitoring technique that controls the overhead by
enabling and disabling runtime verification of events according to overhead target levels. This framework
determines the probability of an application property (based on observable actions of the monitored
system) of being violated, and based on this value it assigns a higher or lower level of overhead to the
monitored property. When verifying a certain property is not possible (e.g., due to a high overhead level)
the framework estimates the probability that a property can be satisfied, instead of monitoring the actual
property, thus reducing the load of runtime verification.

Despite the benefits of these approaches, distributive and probabilistic monitoring have been devel-
oped with the goal of collecting partial information about the execution, while fragmented monitoring
aims at deriving comprehensive traces.

Some monitoring tasks could be particularly expensive, for instance when the monitor collects para-
metric traces the runtime overhead introduced in the system might be significant [6, 1]. In this domain,
the cost reduction that can be achieved with fragmented monitoring could be particularly relevant. In
fact, systematically and extensively collecting parametric traces in object oriented applications can be
hardly feasible without introducing sophisticated optimization strategies.

In some cases, the optimizations could operate in the post-deployment phase rather than at runtime.
For example, Diep et al. [11] presented a technique for analyzing the traces produced by applications
with the objective to identify and drop the redundant traces. As long as the relative frequency of traces is
not concerned, this optimization strategy could be exploited in various contexts to reduce the cost of the
post-deployment analysis, including fragmented monitoring.

7 Conclusions

Collecting data from the field is challenging because monitoring solutions must satisfy two competing
requirements: they must collect a relevant amount of data but they must also avoid interfering with
the user activity. Since not interfering with users is usually the requirement with the highest priority,
monitoring solutions tend to sacrifice the amount and kind of collected data in favour of a lower overhead.

In this paper we presented our initial effort in the attempt to design Fragmented Monitoring, an ef-
ficient monitoring solution that combines pre- and post-deployment analysis. The technique satisfies
the need of collecting a limited amount of data per execution and the need of producing comprehensive
information about the runtime behavior of an application. The key intuition underlying fragmented mon-
itoring consists of recording executions fragments only, to limit the overhead, while annotating fragments
with state information. The annotations enable the possibility to reconstruct the runtime behaviour of the
system in a post-processing phase.

The state information that must be sampled to annotate fragments is determined in a pre-deployment
analysis phase that considers the structure of the program, together with the dependencies between the
components and interfaces, as well as the conditions computed in the program.

Fully designing fragmented monitoring poses several challenges, some of which are still open. We
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plan to address these challenges in the near future and design experiments to compare the cost and effec-
tiveness of fragmented monitoring to the cost and the effectiveness of other state of the art monitoring
solutions.
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[5] P. Braione, G. Denaro & M. Pezzè (2013): Enhancing symbolic execution with built-in term rewriting and
constrained lazy initialization. In: Proceedings of the Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
doi:10.1145/2491411.2491433.

[6] F. Chen & G. Rosu (2009): Parametric Trace Slicing and Monitoring. In: Proceedings of the International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 5505, Springer,
pp. 246–261, doi:10.1007/978-3-642-00768-2 23.

[7] J. Clause & A. Orso (2007): A technique for enabling and supporting debugging of field failures. In: Pro-
ceedings of the International Conference on Software Engineering (ICSE), doi:10.1109/ICSE.2007.10.

[8] O. Cornejo (2017): Flexible in-the-field monitoring. In: Proceedings of the International Conference on
Software Engineering (ICSE) - Companion, doi:10.1109/ICSE-C.2017.37.

[9] O. Cornejo, D. Briola, D. Micucci & L. Mariani (2017): In the Field Monitoring of Interactive Applications.
In: Proceedings of the International Conference on Software Engineering: New Ideas and Emerging Results
Track (ICSE-NIER), doi:10.1109/ICSE-NIER.2017.19.

[10] N. Delgado, A. Q. Gates & S. Roach (2004): A taxonomy and catalog of runtime software-fault monitoring
tools. IEEE Transactions on Software Engineering (TSE), doi:10.1109/TSE.2004.91.

[11] M. Diep, S. Elbaum & M. Dwyer (2008): Trace normalization. In: Proceedings of the Symposium on
Software Reliability Engineering (ISSRE), doi:10.1109/ISSRE.2008.37.

[12] J. Dolby, S. J Fink & M. Sridharan (visited on June 23 2017): TJ Watson libraries for analysis (WALA).
http://wala.sourceforge.net/.

[13] Eclipse Community (visited on June 24 2017): Eclipse. http://www.eclipse.org.

[14] S. Elbaum & M. Diep (2005): Profiling deployed software: Assessing strategies and testing opportunities.
IEEE Transactions on Software Engineering (TSE), doi:10.1109/TSE.2005.50.

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-642-35632-2_18
http://dx.doi.org/10.1007/s10703-016-0253-8
http://dx.doi.org/10.1145/586094.586099
http://dx.doi.org/10.1145/2491411.2491433
http://dx.doi.org/10.1007/978-3-642-00768-2_23
http://dx.doi.org/10.1109/ICSE.2007.10
http://dx.doi.org/10.1109/ICSE-C.2017.37
http://dx.doi.org/10.1109/ICSE-NIER.2017.19
http://dx.doi.org/10.1109/TSE.2004.91
http://dx.doi.org/10.1109/ISSRE.2008.37
http://wala.sourceforge.net/
http://www.eclipse.org
http://dx.doi.org/10.1109/TSE.2005.50


68 Fragmented Monitoring

[15] L. Gazzola (2017): Field Testing of Software Applications. In: Proceedings of the International Conference
on Software Engineering (ICSE) - Companion, doi:10.1109/ICSE-C.2017.30.
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