
Chantal Keller and Mathias Fleury (Eds.): Seventh Workshop

on Proof eXchange for Theorem Proving (PxTP)

EPTCS 336, 2021, pp. 1–4, doi:10.4204/EPTCS.336.1

© M. P. Bonacina

This work is licensed under the

Creative Commons Attribution License.

Proof Generation in CDSAT

Maria Paola Bonacina

Dipartimento di Informatica, Università degli Studi di Verona, Verona, Italy

mariapaola.bonacina@univr.it

Proofs of unsatisfiability of a negated conjecture, or, equivalently, proofs of validity of the original

conjecture, are an essential output of automated reasoning methods. The transformation, exchange, and

standardization of proofs is a key factor for the interoperability of different automated reasoning systems.

In theorem proving proof reconstruction is the task of extracting a proof from the final state of a derivation

after generating the empty clause. While for several theorem proving methods and theorem provers it is

a standard task, it is never trivial. For example, in parallel theorem proving with distributed search (see

[6] for a recent survey), multiple parallel processes perform inferences and search for a proof. A parallel

theorem proving method has distributed proof reconstruction, if the process that generates the empty

clause can reconstruct the proof from the final state of its database, even if all processes contributed to

the proof [4].

In propositional satisfiability (SAT) solving, the conflict-driven clause learning (CDCL) procedure

generates proofs by resolution, because it uses resolution to explain conflicts [28, 26]. SAT solvers apply

pre-processing steps and simplification techniques that also need to be accounted for in proofs. Further-

more, proofs generated by SAT solvers are so huge that their definition, generation, and manipulation,

involving various proof formats, is an important research topic (e.g., [14]).

Satisfiability modulo theories (SMT) solving represents a middle ground between first-order theorem

proving and SAT solving. Initially, model generation was emphasized over proof generation in SMT,

because the focus was on fragments of first-order theories where satisfiability is decidable, in contrast

with first-order logic where satisfiability is not even semidecidable. Over time, SMT solvers have been

applied more and more to unsatisfiable inputs, including inputs with quantifiers that may fall outside

decidable fragments. SMT solvers have become more similar to theorem provers, and proof generation

is crucial also in SMT. Since most SMT solvers are built on top of the CDCL procedure, their proofs are

proofs by resolution (with the same caveat as above) with proofs of theory lemmas plugged in as leaves

or black-box sub-proofs [17, 2, 12, 23, 1].

CDSAT (Conflict-Driven SATisfiability) is a paradigm for SMT that innovates SMT solving in sev-

eral ways [8, 9, 10, 11]. To begin with, CDSAT solves SATisfiability problems Modulo theories and

Assignments (SMA), which means that the input problem may contain assignments to first-order terms

(e.g., x← 3). The solver has to determine whether there exists a model that satisfies the input formula

and also endorses the input first-order assignments. A model endorses an assignment if it interprets

identically left hand side and right hand side of the assignment. For uniformity, CDSAT views also for-

mulæ as assignments to Boolean terms (e.g., (¬A∨B)← true), and seeks a model that endorses all input

assignments. There is a subtle technical difference between, say, x← 3 and (x ≃ 3)← true, since in the

latter 3 is a constant symbol of the input language, whereas in the former 3 is a value, whose denotation

requires a theory extension. The generalization of SMT to SMA is relevant to approaching optimization

problems by solving iteratively SMA problems, where input first-order assignments are used to exclude

sub-optimal solutions and induce a convergence towards an optimal one [16].

As the name says, CDSAT is a conflict-driven method. In general, a procedure is conflict-driven if it

proposes a candidate model represented by a series of assignments, and performs non-trivial inferences

http://dx.doi.org/10.4204/EPTCS.336.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Proof Generation in CDSAT

only to explain a conflict between the current candidate model and the formulæ to be satisfied. Since in

CDSAT also formulæ are assignments, the separation between candidate model and formulæ disappears.

The state of the computation is simply a sequence of assignments Γ, called a trail, which also contains

the input assignments. A conflict is a subset of Γ that is unsatisfiable.

CDSAT is designed since the start for reasoning in a union of theories, with propositional logic as one

of the theories. CDSAT lifts the conflict-driven style of CDCL from propositional logic to conflict-driven

reasoning in a union of theories; and it reduces to CDCL if propositional logic is the sole theory. Prior

to CDSAT, MCSAT (Model-Constructing SATisfiability) [15, 20, 27, 19, 3, 18] showed how to integrate

CDCL with a conflict-driven theory satisfiability procedure (e.g., [22, 21, 13] and see [5] for a survey

with more references). CDSAT generalizes MCSAT to generic unions of disjoint theories, meaning that

their signatures do not share symbols other than equality on shared sorts. CDSAT resembles MCSAT, if

there are only propositional logic and another theory with a conflict-driven satisfiability procedure.

For an input problem to be satisfiable in a union of theories, the theories need to agree on which

shared terms are equal and on the cardinalities of shared sorts. Beginning with the pioneering work of

Nelson and Oppen [25, 24], most approaches to reasoning in a union of theories are defined as combi-

nation schemes that combine theory satisfiability procedures (see [7] for a survey with more references).

These schemes separate the original problem into sub-problems, one per theory in the union. The com-

pleteness of the combination scheme rests on a combination lemma that states which conditions the

theories need to satisfy in order to agree on the cardinalities of shared sorts. The satisfiability of the orig-

inal input in the union of theories is reduced to the satisfiability of every sub-problem in the respective

theory, where every sub-problem is conjoined with an arrangement. An arrangement is a conjunction

of equalities and disequalities between shared variables, or shared constants, depending on whether free

variables or constants are used to represent shared terms. In a non-deterministic description the arrange-

ment can be guessed. In practice, it is computed by the theory satisfiability procedures. The computation

of the arrangement is the only activity where the theory satisfiability procedures cooperate, typically by

exchanging equalities between shared variables.

In contrast with this traditional setting, CDSAT is defined as a transition system that orchestrates

theory-specific inference systems, called theory modules. An inference system is a set of inference rules,

and a theory module is an abstraction of a satisfiability procedure. Every module has its view of the trail,

called theory view, which contains whatever the module can understand. A theory module can expand

the trail with an assignment that is a decision, encapsulated in the decide transition rule of CDSAT, or

the result of a theory inference, encapsulated in the deduce transition rule of CDSAT. Theory inferences

are used for propagations, and conflict detection and explanation in the respective theory. The latter

applies until the theory conflict surfaces on the trail as a Boolean conflict (e.g., L← true and ¬L← true,

or, equivalently, L← true and L← false). Then the conflict-solving transition rules of CDSAT come

into play. Since the Boolean conflict may descend from first-order assignments, the conflict-solving

transition rules of CDSAT are designed to handle both Boolean and first-order assignments. It does not

matter whether a theory satisfiability procedure is conflict-driven, because CDSAT is conflict-driven for

all theories. At the very least, a theory satisfiability procedure can be abstracted into a black-box theory

module, with an inference rule that detects unsatisfiability by invoking the procedure.

The completeness of CDSAT rests mainly on properties of the theory modules. Every theory module

is required to be complete, meaning that it can expand its view of the trail if it is not satisfied by a model

of its theory. One of the theories in the union needs to be the leading theory. A leading theory is aware

of all the sorts in the union of theories, and its theory module is aware of all the constraints that the

theories may have on the cardinalities of shared sorts. While for the leading theory module it suffices to

be complete, any other module needs to be leading-theory-complete, meaning that it can expand its view



M. P. Bonacina 3

of the trail if it is not satisfied by a model of its theory that concurs with a model of the leading theory on

cardinalities of shared sorts and equality of shared terms.

This description shows that while the traditional combination schemes combine decision procedures

as black-boxes, CDSAT provides a tighter form of integration at the inference level. This has conse-

quences on proof generation. Since the conflict-driven reasoning happens directly in the union of the

theories and not only in propositional logic, resolution does not have a dominant role. CDSAT proofs

can be rendered as resolution proofs, but this is not a necessary choice. Since the theory satisfiability

procedures are not combined as black-boxes, theory sub-proofs are not necessarily black-boxes either.

Since CDSAT solves SMA problems, also first-order assignments may appear in proofs. The theory

inferences may introduce new (i.e., non-input) terms, in order to explain conflicts. Thus, such new terms

may appear in proofs.

The powerful abstractions that characterize CDSAT leads to proof generation approaches also based

on abstraction. The CDSAT transition system can be made proof-carrying, by equipping the transition

rules with the capability to generate abstract proof terms. During proof reconstruction these proof terms

can be translated into different proof formats, including resolution proofs. The resulting proofs can be

dispatched to proof checkers or proof assistants, or otherwise manipulated and integrated. Alternatively,

CDSAT can adopt the LCF style for proofs, which avoids building proof objects in memory altogether.

In LCF style, the prover or solver (e.g., a CDSAT based solver) is built on top of a trusted kernel of

primitive operations. When the reasoner detects unsatisfiability, the refutation is correct by construction,

because otherwise a type error would arise.

Acknowledgements The author thanks Stéphane Graham-Lengrand for their discussions.

References

[1] Haniel Barbosa, Jasmin C. Blanchette, Mathias Fleury & Pascal Fontaine (2020): Scalable Fine-

Grained Proofs for Formula Processing. J. of Autom. Reason. 64(3), pp. 485–550, doi:10.1007/

s10817-018-09502-y.

[2] Nikolaj Bjørner & Leonardo de Moura (2008): Proofs and refutations, and Z3. In: IWIL-7, CEUR 418, pp.

123–132.

[3] François Bobot, Stéphane Graham-Lengrand, Bruno Marre & Guillaume Bury (2018): Centralizing equality

reasoning in MCSAT. In: SMT-16.

[4] Maria Paola Bonacina (1996): On the reconstruction of proofs in distributed theorem proving: a modified

Clause-Diffusion method. J. of Symb. Comput. 21(4–6), pp. 507–522, doi:10.1006/jsco.1996.0028.

[5] Maria Paola Bonacina (2018): On conflict-driven reasoning. In: AFM-6, Kalpa Publications 5, EasyChair,

pp. 31–49, doi:10.29007/spwm.

[6] Maria Paola Bonacina (2018): Parallel theorem proving. In: Handbook of Parallel Constraint Reasoning,

chapter 6, Springer, pp. 179–235, doi:10.1007/978-3-319-63516-3_6.

[7] Maria Paola Bonacina, Pascal Fontaine, Christophe Ringeissen & Cesare Tinelli (2019): Theory combination:

beyond equality sharing. In: Description Logic, Theory Combination, and All That: Essays Dedicated to

Franz Baader, LNAI 11560, Springer, pp. 57–89, doi:10.1007/978-3-030-22102-7_3.

[8] Maria Paola Bonacina, Stéphane Graham-Lengrand & Natarajan Shankar (2017): Satisfiability mod-

ulo theories and assignments. In: CADE-26, LNAI 10395, Springer, pp. 42–59, doi:10.1007/

978-3-319-63046-5_4.

[9] Maria Paola Bonacina, Stéphane Graham-Lengrand & Natarajan Shankar (2018): Proofs in conflict-driven

theory combination. In: CPP-7, ACM, pp. 186–200, doi:10.1145/3167096.

http://dx.doi.org/10.1007/s10817-018-09502-y
http://dx.doi.org/10.1007/s10817-018-09502-y
http://dx.doi.org/10.1006/jsco.1996.0028
http://dx.doi.org/10.29007/spwm
http://dx.doi.org/10.1007/978-3-319-63516-3_6
http://dx.doi.org/10.1007/978-3-030-22102-7_3
http://dx.doi.org/10.1007/978-3-319-63046-5_4
http://dx.doi.org/10.1007/978-3-319-63046-5_4
http://dx.doi.org/10.1145/3167096


4 Proof Generation in CDSAT

[10] Maria Paola Bonacina, Stéphane Graham-Lengrand & Natarajan Shankar (2020): Conflict-driven satisfiabil-

ity for theory combination: transition system and completeness. J. of Autom. Reason. 64(3), pp. 579–609,

doi:10.1007/s10817-018-09510-y.

[11] Maria Paola Bonacina, Stéphane Graham-Lengrand & Natarajan Shankar (2021): Conflict-Driven Satisfia-

bility for Theory Combination: Lemmas, Modules, and Proofs. J. of Autom. Reason. Submitted, pp. 1–54.

http://profs.sci.univr.it/~bonacina/cdsat.html.

[12] Maria Paola Bonacina & Moa Johansson (2015): Interpolation systems for ground proofs in automated de-

duction: a survey. J. of Autom. Reason. 54(4), pp. 353–390, doi:10.1007/s10817-015-9325-5.

[13] Franz Brauße, Konstantin Korovin, Margarita Korovina & Norbert Müller (2019): A CDCL-style calculus

for solving non-linear constraints. In: FroCoS-12, LNAI 11715, Springer, pp. 131–148, doi:10.1007/

978-3-030-29007-8_8.

[14] Luı́s Cruz-Felipe, Marijn J. H. Heule, Warren A. Hunt Jr., Matt Kaufmann & Peter Schneider-Kamp (2017):

Efficient certified RAT verification. In: CADE-26, LNAI 10395, Springer, pp. 220–236, doi:10.1007/

978-3-319-63046-5_14.

[15] Leonardo de Moura & Dejan Jovanović (2013): A model-constructing satisfiability calculus. In: VMCAI-14,

LNCS 7737, Springer, pp. 1–12, doi:10.1007/978-3-642-35873-9_1.

[16] Leonardo de Moura & Grant Olney Passmore (2013): Exact global optimization on demand (Presentation

only). In: ADDCT-3. Available at https://userpages.uni-koblenz.de/~sofronie/addct-2013/.

[17] Pascal Fontaine, Jean-Yves Marion, Stephan Merz, Leonor Prensa Nieto & Alwen Tiu (2006): Expressive-

ness+automation+soundness: towards combining SMT solvers and interactive proof assistants. In: TACAS-

12, LNCS 3920, Springer, pp. 167–181, doi:10.1007/11691372_11.

[18] Stéphane Graham-Lengrand, Dejan Jovanović & Bruno Dutertre (2020): Solving bitvectors with MCSAT:

explanations from bits and pieces. In: IJCAR-10, LNAI 12166, Springer, pp. 103–121, doi:10.1007/

978-3-030-51074-9_7.

[19] Dejan Jovanović (2017): Solving nonlinear integer arithmetic with MCSAT. In: VMCAI-18, LNCS 10145,

Springer, pp. 330–346, doi:10.1007/978-3-319-52234-0_18.

[20] Dejan Jovanović, Clark Barrett & Leonardo de Moura (2013): The design and implementation of the model-

constructing satisfiability calculus. In: FMCAD-13, ACM and IEEE.

[21] Dejan Jovanović & Leonardo de Moura (2013): Cutting to the chase: solving linear integer arithmetic. J. of

Autom. Reason. 51, pp. 79–108, doi:10.1007/s10817-013-9281-x.

[22] Dejan Jovanović & Leonardo de Moura (2012): Solving non-linear arithmetic. In: IJCAR-6, LNAI 7364,

Springer, pp. 339–354, doi:10.1007/978-3-642-31365-3_27.

[23] Guy Katz, Clark W. Barrett, Cesare Tinelli, Andrew Reynolds & Liana Hadarean (2016): Lazy proofs for

DPLL(T)-based SMT solvers. In: FMCAD-16, ACM and IEEE, pp. 93–100, doi:10.1109/FMCAD.2016.

7886666.

[24] Greg Nelson (1983): Combining satisfiability procedures by equality sharing. In: Automatic Theorem Prov-

ing: After 25 Years, AMS, pp. 201–211, doi:10.1090/conm/029/11.

[25] Greg Nelson & Derek C. Oppen (1979): Simplification by Cooperating Decision Procedures. ACM Trans.

on Prog. Lang. and Syst. 1(2), pp. 245–257, doi:10.1145/357073.357079.

[26] Natarajan Shankar (2009): Automated deduction for verification. ACM Comput. Surv. 41(4), pp. 507–522,

doi:10.1145/1592434.1592437.

[27] Aleksandar Zeljić, Christoph M. Wintersteiger & Philipp Rümmer (2016): Deciding bit-vector formulas with

mcSAT. In: SAT-19, LNCS 9710, Springer, pp. 249–266, doi:10.1007/978-3-319-40970-2_16.

[28] Lintao Zhang & Sharad Malik (2003): Validating SAT solvers using an independent resolution-based

checker: practical implementations and other applications. In: DATE 2003, IEEE, pp. 10880–10885,

doi:10.5555/789083.1022835.

http://dx.doi.org/10.1007/s10817-018-09510-y
http://profs.sci.univr.it/~bonacina/cdsat.html
http://dx.doi.org/10.1007/s10817-015-9325-5
http://dx.doi.org/10.1007/978-3-030-29007-8_8
http://dx.doi.org/10.1007/978-3-030-29007-8_8
http://dx.doi.org/10.1007/978-3-319-63046-5_14
http://dx.doi.org/10.1007/978-3-319-63046-5_14
http://dx.doi.org/10.1007/978-3-642-35873-9_1
https://userpages.uni-koblenz.de/~sofronie/addct-2013/
http://dx.doi.org/10.1007/11691372_11
http://dx.doi.org/10.1007/978-3-030-51074-9_7
http://dx.doi.org/10.1007/978-3-030-51074-9_7
http://dx.doi.org/10.1007/978-3-319-52234-0_18
http://dx.doi.org/10.1007/s10817-013-9281-x
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1109/FMCAD.2016.7886666
http://dx.doi.org/10.1109/FMCAD.2016.7886666
http://dx.doi.org/10.1090/conm/029/11
http://dx.doi.org/10.1145/357073.357079
http://dx.doi.org/10.1145/1592434.1592437
http://dx.doi.org/10.1007/978-3-319-40970-2_16
http://dx.doi.org/10.5555/789083.1022835

