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Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in

many natural and engineering sciences. The number of equations required to describe a system

with high heterogeneity limits our capability of effectively performing analyses. This has motivated

a large body of research, across many disciplines, into abstraction techniques that provide smaller

ODE systems while preserving the original dynamics in some appropriate sense. In this paper we

give an overview of a recently proposed computer-science perspective to this problem, where ODE

reduction is recast to finding an appropriate equivalence relation over ODE variables, akin to classical

models of computation based on labelled transition systems.

1 Introduction

Ordinary differential equations (ODEs) are the primary means to modelling dynamical systems in a wide

range of natural and engineering sciences. When the complexity of the considered system is high, the

number of equations required limits our capability of performing effective analyses. This has motivated

a large body of research, across many disciplines, into abstraction techniques that provide smaller ODE

systems preserving the original dynamics in some appropriate sense (e.g., [1, 40, 49, 15]). In particular,

we refer to a number of techniques whose basic idea is to build a smaller ODE system with less variables

and/or parameters, while preserving most of the original dynamics. Depending on the specific technique

used, the obtained reduced model may be used, e.g., to provide a more compact description that abstracts

from low-level details, or to improve the performance and scalability of required analyses. The develop-

ment of abstraction techniques is widely investigated in many disciplines in the science and engineering

domain that deal with dynamical systems, for instance:

• Ecological systems typically regard massive populations of entities that interact with the environ-

ment, and adapt to it. For this reason, quantitative abstractions have been widely studied in ecology

(e.g., [40]). In this domain, abstraction techniques mainly exploit the fact that entities can range

from molecules to whole organisms in their ecosystem (hence they act at different time scales),

and the fact that there is often a high heterogeneity among the entities, e.g., they can have different

age and metabolism, or can be located in different points in space. In particular, many techniques

focus on the aggregation of large-scale models of ecosystems based on ODEs or difference equa-

tions (the time-discrete homologous of ODEs). Aggregations are obtained as a coarsening of the

state space in terms of macro-variables, each describing a group of original variables (i.e., of enti-

ties in the original ecosystem). Aggregations have been developed to ignore, e.g., age differences

in population models [40] or to exploit the fact that entities act at different time scales (see [3] for

a survey).
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• Cellular automata are a classic example of models used in physics to describe dynamical sys-

tems consisting of simple agents with small state spaces, whose interactions result in complex

phenomena. Abstraction methods identify sets of neighbouring cells for which a coarse-grained

description can still describe the overall behaviour of the original model [39].

• In computational systems biology, many abstraction techniques have been developed to cope with

the combinatorial species and chemical reaction networks (CRN) that arise from the interactions of

basic molecules which can undergo internal changes, or that can bind each other to form complex

species. In particular, we refer to techniques developed for systems of ODEs arising from protein

interaction networks (e.g. [10, 28]). Here, methods have been proposed to consider: a covering of

the state space (where a variable may appear in more than one group) [28]; quotienting, induced

by a partition of the ODE variables (e.g., [29]); and aggregations exploiting time-scale separation

(e.g., [47]).

• Large-scale dynamical systems are common also in control engineering. Here, starting from the

seminal paper [1], many approaches have been proposed to reduce the original model in a way

that preserves controllability, i.e., the capability of driving the system to a desired state by using

appropriate control inputs [51].

More recently, in the computer science community there has been an increasing interest towards

quantitative models of computation based on ODEs, for example to use formal languages to describe

biochemical models [48, 23, 9, 12, 13, 42, 22, 52] or as a deterministic approximation for languages with

stochastic semantics [22, 35, 59].

Our own line of research [21, 56, 18, 20, 65, 19, 17, 38] consists of a computer-science perspective

to the abstraction problem, borrowing ideas from the concurrency theory community. We recast the

ODE reduction problem to that of finding an appropriate equivalence relation over ODE variables, akin

to classical models of computation based on labelled transition systems. We studied such differential

equivalences for two basic intermediate languages, trading expressivity for efficiency:

i) IDOL (Intermediate Drift-Oriented Language) [20] covers a general class of non-linear ODEs

with derivatives containing polynomials, rationals, minima/maxima, and absolute values. This is

enough, e.g., to capture the existing ODE semantics of stochastic process algebras [38, 61, 60,

13]. The largest equivalences of IDOL terms are computed using a symbolic partition-refinement

algorithm that exploits an encoding into a satisfiability modulo theories (SMT) problem;

ii) Reaction networks [17, 19], a slight generalization of chemical reaction networks, characterise

ODEs with polynomial derivatives. In this case, the partition refinement is based on Paige and

Tarjan’s seminal proposal [50], giving an efficient algorithm that runs in polynomial time.

Our framework for ODE reduction has been implemented in the tool ERODE [21] (http://sysma.

imtlucca.it/tools/erode/), allowing us to provide evidence of effective reductions in realistic mod-

els from the literature.

This paper briefly reviews our framework for ODE reduction. A more detailed tutorial-like presenta-

tion unifying the two approaches can be found in [65], while [18, 56] address the more general problem

of computing all differential equivalences of a model.

2 Framework Overview

Differential equivalences. Differential equivalences induce a quotienting of the ODE variables. Two

distinct notions of equivalence for ODEs have been provided in [20]. Forward differential equivalence

http://sysma.imtlucca.it/tools/erode/
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(FDE) allows us to abstract from single variables, and to consider only cumulative information on each

equivalence class. In particular, it guarantees that the original ODE system can be described in terms of a

smaller ODE system having only one macro-variable per equivalence class that describes the sum of the

variables within the equivalence class. For instance, consider the following ODE system with variables

x1, x2, and x3:

ẋ1 =−x1, ẋ2 = k1 · x1 − x2, ẋ3 = k2 · x1 − x3, (1)

where k1 and k2 are constants and the dot’ operator denotes the derivative operator (with respect to time).

It can be shown that the partition of variables H = {{x1},{x2,x3}} is an FDE because

ẋ1 =−x1,
˙(x2 + x3) = ẋ2 + ẋ3 = (k1 + k2) · x1 − (x2 + x3). (2)

In fact, by applying the simple change of variable x2,3 = x2 + x3, this is equivalent to writing

ẋ1 =−x1 ẋ2,3 = (k1 + k2) · x1 − x2,3.

This reduced ODE system contains one variable per equivalence class in H , each of which describes

the sum of the solutions of the variables in the corresponding equivalence class. Thus, setting the ini-

tial condition x2,3(0) = x2(0)+ x3(0) yields that the solution satisfies x2,3(t) = x2(t)+ x3(t) at all time

points t. As discussed in [17], the notion of FDE has proved to be particularly useful in the context

of computational systems biology, where modellers are interested in a few observations of interest, like

the evolution of the concentration of few species only, or of the sums of certain species that represent

different configurations of the same molecule.

Backward differential equivalence (BDE) instead allows us to identify redundant dynamics in the

original system. In fact, it equates variables that have the same solutions at all time points, if initialized

equally. In the ODE system in Equation (1), if k1 = k2, we have that H = {{x1},{x2,x3}} is also a BDE.

Hence, we can reduce the original ODE system by removing either equation between x2 and x3, say x3,

and by rewriting every remaining occurrence of x3 as x2:

ẋ1 =−x1 ẋ2 = k1x1 − x2.

The notion of BDE has proved to be useful in the context of evolutionary biology, where one is interested

in understanding whether a system has evolved into another one preserving the original functionality [14,

15, 16]. In fact, it is well known that using larger networks instead of smaller ones of equal functionality

is beneficial for enhanced stability with respect to stochastic noise [15]. In particular, in [20, 18] we have

shown that BDE succeeded in tracing a certain functionality across two CRNs (by taking the CRN whose

species and reactions are the disjoint union of those from the source and target one).

Differential equivalences guarantee that the relationship between the original model and the abstract

one is exact. However, FDE leads to a loss of information, because information on the individual vari-

ables within an equivalence class may not be recovered in general. Instead, BDE preserves all infor-

mation, however it can be applied only when the initial conditions are coherent with the considered

equivalence classes: i.e., when all backward equivalent variables are initialized equally. Forward differ-

ential equivalence is closely related to the notion of exact ODE lumpability, thoroughly investigated in

the chemistry domain (e.g., [57, 49, 46]). However no automated procedure exists to reduce an ODE

system using this approach (e.g., [63]). To cope with this, i.e., to guarantee that our framework can be

instantiated in a family of fully automatic reduction techniques, restrictions are imposed to be able to

develop minimisation algorithms.
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Symbolic minimisation. In [20] each ODE variable is treated explicitly as a real function and a dif-

ferential equivalence is encoded in a logical formula over ODE variables. Thus, checking whether a

candidate partition is BDE/FDE can be done symbolically using an encoding into satisfiability modulo

theories (SMT) [5]. In fact, differential equivalences belong to the quantifier-free fragment of first-order

logic. It is possible to restrict the admissible ODE systems to those for which an SMT solver for non-

linear real arithmetic e.g. Z3, [24] is a decision procedure. This can be done by, roughly speaking,

excluding trigonometric functions. Hence, e.g., we support rational functions, necessary to encode so-

phisticated biological kinetics like Hill’s one [5], and minima/maxima, necessary to capture the ODEs

arising from terms of stochastic process algebras [35, 59, 36], or from queuing networks [58]. Hence,

the technique is generic enough to be applied to a wide range of dynamical systems.

Let us consider the example in Equation (1), assuming k1 = k2 = 1, for which case we have shown

that H = {{x1},{x2,x3}} is a BDE. The condition for H to be a BDE has been shown to correspond to

requiring that related variables with equal assignments always have equal derivatives [20]. This can be

encoded in a quantifier-free first-order logical formula, which in the specific case of H is:

φH := (x2 = x3) =⇒ (k1 · x1 − x2 = k2 · x1 − x3)

The SMT check sat(¬φH) searches for an assignment of the variables x1, x2, and x3 such that ¬φ holds.

Hence, the partition is a BDE if and only if the procedure returns “unsat”, meaning that φH can not be

falsified. This is the case for our example. More interestingly, in case the solver returns an assignment

which satisfies ¬φH , a witness, then we can use it within an iterative algorithm which computes the

coarsest BDE partition that refines the initial one (i.e., that can be obtained by splitting the blocks of the

initial one). Assume for example that we start from the candidate BDE partition H2 = {{x1,x2,x3}}. It

can be shown that H2 is not a BDE, and hence the SMT check sat(¬φH2
) is satisfiable. For instance, a

witness for the satisfiability of ¬φH2
is (x1 = 1,x2 = 1,x3 = 1), which yields to different evaluations for

the three derivatives:

ẋ1 =−x1 = 1, ẋ2 = k1 · x1 − x2 = 0, ẋ3 = k2 · x1 − x3 = 0

This suggests the implementation of a partition-refinement algorithm that splits the blocks of the current

partition in sub-blocks of variables which cannot be distinguished using the returned witness. In other

words, at the next iteration the candidate BDE partition would be {{x1},{x2,x3}}. A similar algorithm

has been provided also for the FDE case. Note that this algorithm meets an important property often

required for reduction techniques: the reduced model preserves user-defined observables of the original

system. Indeed, each variable of interest for the modeller can be put in a singleton initial block. In the

backward case, this allows us to provide an initial partition coherent with the initial conditions of the

original model (that is, two variables are in the same initial block if their initial conditions are the same),

a necessary condition for the reduced model to faithfully represent the original dynamics.

Syntactic minimisation. More efficient partition refinement algorithms can be provided for ODEs

with derivatives that contain only multivariate polynomials of degree at most two [19]. This is quite a

general class of ODEs, covering linear systems as well as chemical reaction networks. This approach

is based on a syntactic representation of an ODE system in terms of a so-called reaction network (RN),

which slightly generalizes the notion of chemical reaction network by allowing reaction rates to be also

negative. Therefore, one can readily encode any polynomial ODE system as an RN [19]. In particular,

an RN consists of a set of species/variables interacting by means of reactions parameterised by a real

value. Intuitively, we use reaction networks to generalize labelled transition systems (LTS) so to consider
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Figure 1: ERODE’s Architecture.

transitions among multisets of nodes rather than among individual nodes. Hence, there exists a loose

connection between species and nodes of an LTS, and between reactions and transitions of an LTS.

We provide two bisimulation equivalences for such syntactic representation: the forward RN bisim-

ulation (FB), and the backward RN bisimulation (BB), which are related to FDE and BDE, respec-

tively [17]. Continuing the parallel between reaction networks and LTSs, our bisimulations are similar

in spirit to quantitative bisimulations on LTSs, e.g., Larsen and Skou’s probabilistic bisimulation [44].

In particular, the largest RN bisimulations that refine a given input partition can be computed by gener-

alizing Paige and Tarjan’s famous algorithm [50]. In [19] we propose a partition refinement algorithm

along the lines of the best-performing analogues for Markov chain lumping such as [26] and [64], and

for probabilistic transition systems [4]. The algorithm computes the largest FB/BB refining a given input

partition of variables in O(mn logn) time, where m is the number of monomials in the ODE system and

n is the number of variables.

Tool support: ERODE. We implemented our minimisation techniques in ERODE [21], a mature tool

featuring a modern integrated development environment for the evaluation and reduction of ordinary

differential equations. ERODE is on the Eclipse framework, it is multi-platform and does not require any

installation process. The tool is available together with a manual and sample models at http://sysma.

imtlucca.it/tools/erode.

Fig. 1 depicts ERODE’s architecture. It is organized in the GUI layer, and the core layer. Fig. 2

depicts the main components of the GUI layer, including a fully-featured text editor based on the XTEXT

framework which supports syntax highlighting, content assist, error detection, and fix suggestions (top-

middle of Fig. 2). Additionally, this layer offers a number of views, including a project explorer to

navigate among different ERODE files (top-left of Fig. 2); an outline to navigate the parts of the currently

open ERODE file (bottom-left of Fig. 2); a plot view to display ODE solutions (top-right of Fig. 2); and

a console view to display diagnostic information (bottom-right of Fig. 2).

The core layer implements the minimization algorithms and related data structures for FDE, BDE,

http://sysma.imtlucca.it/tools/erode
http://sysma.imtlucca.it/tools/erode
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Figure 2: A screenshot of ERODE.

FB and BB. The algorithms for FB and BB reductions have been provided entirely in Java, while those

for FDE and BDE reductions resort on the Z3 SMT solver, accessed via its Java APIs. The core layer

also features encoding capabilities from RN to ODE (or IDOL) representation, and vice versa, as well

as export/import functionalities for third-party formats, like biochemical models for BioNetGen [9] and

Microsoft GEC [31], or ODEs defined in MATLAB. Also, models can be exported in the SBML format,

an XML-based language for describing biological systems. Finally, this layer provides support for the

numerical solutions of ODEs by means of the Apache Commons Maths library [2]. When the input is a

CRN (i.e. an RN with only positive rates) it can also be interpreted as a CTMC, following an established

approach [32]. Using the FERN library [30], ERODE features CTMC simulation.

By using a standard laptop machine, in [21] we have shown that our syntactic minimisation algo-

rithms can scale to models with up to 2.5 million variables and 25 million monomials, with runtimes of a

few minutes only. Instead, the symbolic minimisation scales up to 70 thousand variables in the backward

case, and to 1 thousand variables in the forward case. As discussed in [20], the difference in performance

and scalability between the backward and forward symbolic minimisation techniques are due to the fact

that combinatorially many SMT checks among each pair of related variables are required in order to

establish if a partition is FDE, while the BDE case requires only one check.

3 Conclusions

This paper presented two equivalences for ordinary differential equations (ODEs), forward and backward

differential equivalences. In case the ODEs can be described in terms of the IDOL language, which
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essentially restricts to ODEs whose derivates do not contain exponential and trigonometric functions,

then such ODE systems can be minimized up to these notions of equivalence using symbolic reduction

techniques based on SMT solving.

If instead the derivatives of the considered ODE system are multivariate polynomials, then more effi-

cient syntactic minimization techniques can be used, based on an encoding of the notions of differential

equivalence in terms of two probabilistic bisimulations, forward and backward RN bisimulations. In [21]

we have shown that the syntactic minimisation algorithms can scale to systems with millions of variables

and monomials, terminating in a few minutes also in some challenging models. There are, however,

further challenges ahead which we wish to tackle.

Forward bisimulation is only a sufficient condition for FDE; while it provides significant reductions

in practice [17, 19], some other examples from the literature demonstrate that the algorithm may miss

some FDE reductions (see [20]). In ongoing work we are relaxing the notion of forward bisimulation so

to fully characterize FDE (for multivariate polynomial derivatives of degree at most two). Instead, back-

ward bisimulation characterises BDE, and hence the corresponding syntactic minimisation technique

from [19] should be used when dealing with polynomial ODEs of degree at most two. Also, we plan to

extend the RN representation and the two notions of forward and backward RN bisimulations in order to

be able to apply them ti to polynomial derivatives with arbitrary degree.

As regards our symbolic reduction techniques, we used SMT only in a black box fashion. It could be

interesting to study ad-hoc heuristics for SMT solving that could lead to better performance or scalability.

For the same reason, it would be interesting to consider parallelised versions of such symbolic reduction

techniques. Also, another interesting research line related to our symbolic reduction techniques is that

of further exploiting the generality of SMT in order to handle models with uncertainties in rates (a

well-known issue in mathematical biology): here the SMT framework can already be easily extended

to compute partitions that are differential equivalences under all possible assignments of such uncertain

parameters, left as free variables in the satisfiability problem (similarly to the SMT-based parametric

minimisation approach of [25] for probabilistic models written in PRISM [41]).

Lastly, we remark that our techniques regard exact aggregations. In some cases, however, one might

be interested in more permissive, approximate notions that do not discriminate ODE variables with

nearby trajectories (e.g., [54, 11, 34, 62, 37, 27, 43]). Such approximate variants can be considered as

weaker notions that, e.g., allow variability in the parameters, considering the exact versions as a degen-

erate case in which no such variability is needed. We remark that, at least for the numerical benchmarks

considered so far with realistic models, the exact reductions can already be quite effective. Of course,

approximate ones might be able to provide even coarser descriptions. In this case, however, the main

challenge is to be able to relate the variability in the parameters tolerated by the coarsening procedure

with the error incurred when considering an approximate, smaller model, instead of the original one. In

an ongoing research we are developing approximate variants of our differential equivalences, aiming at

maintaining computational tractability, and certified error bounds that do not grow fast with time.

As regards our tool ERODE, we also plan to enrich its family of offered analysis techniques. For ex-

ample, we plan to extend ERODE, and in particular its stochastic simulator, with statistical model check-

ing [45] capabilities. This can be obtained upon integration with the statistical analyser MultiVeStA [55],

which has already proven useful in the analysis of a wide range of scenarios, including software product

lines [6, 7], crowd-steering [53], public transportation systems [33], and swarm robotics [8].

Acknowledgement. The author is indebted to Luca Cardelli, Mirco Tribastone, and Max Tschaikowski
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