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We present models for automotive software that capture quantitative and qualitative aspects of soft-
ware systems and the underlying hardware architecture. In particular, we consider different levels of
computing power. These range from controllers up to the cloud. We present a modeling approach for
software deployment taking different automotive requirements such as criticality, latency, memory,
computational resources, and communication into account. Our models capture automotive software
and hardware system configurations and can serve as digital twins that are digital counterparts of
(usually) physical entities. Furthermore, we highlight connected research areas and challenges.

1 Introduction

In the past decades, software in the automotive domain has gained an increasingly important role: func-
tionality that used to be realized by electronic, electrical and mechanical devices alone is now frequently
controlled by software. Software can run on more than 70 ECUs (Electronic Control Units)[5] inside a
car. In recent times, a consolidation of software and ECUs, i.e., the replacement of several microcon-
trollers by using a more powerful ECU, has gained increased attention. In addition new software-based
functionality and the introduction of additional computational resources such as cloud-computing, have
found their way into the automotive world. This trend is complemented by the increased use of tech-
nology that has its origins in the IT-world such as Ethernet, general purpose computing devices and
operating systems such as Linux.

This paper primarily motivates research challenges on models serving as digital twins with a special
emphasis on quantitative aspects used in the partitioning of software across different ECUs and em-
bedded computers in a car as well as cloud-based services. The term digital twin describes a digital
counterpart of a (usually) physical entity such as a product (e.g., a car), a part of a product (e.g., a car’s
engine) or a machine (see Figure 1). Note, that digital twins can describe non-physical entities as well
such as the software architecture of a system.

Here, we are using a notion of models that goes beyond traditional models in model-based devel-
opment. Models are abstractions of systems and can include aspects such as physical characteristics,
geometrical layout, wiring, communication links, hardware resources (e.g., computational power) and
information on the structure of software such as components, layers and interfaces. Models of systems
such as cars can be used at design and development time, during the car’s life time and even during and
after the decommissioning phase. They can be used for design, documentation, optimization purposes
and present an abstraction of the system and thus serve as digital twins of automotive hardware and
software.

In this paper, we use the following ingredients for interconnected computational devices: Micro-
controller, as devices that are primarily developed to interact with sensors and actuators. Embedded
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Figure 1: Digital Twin

computers, as devices that do typically feature classical IT components such as general purpose mi-
croprocessors, RAM/microprocessor on separate chips and ethernet. The user of a cloud service is in
general unaware of the actual location and resources where the service is provided. In principle services
can be shifted freely between data-centres on different continents. This full flexibility, however, may
cause unpredictable delay times. The strategy to move services closer to the actual controller is some-
times referred to as fog computing [4]. If the services are located at the outer edge of the network the
term edge-computing is used [17].

2 Related work and Research Areas

Typically software running on an ECU is structured in layers such as base software including drivers, and
a runtime environment (RTE) which enables the deployment of application software. Currently, the AU-
TOSAR Classic standard1 and Posix-based operating systems are mainly used. In the rather monolithic
AUTOSAR Classic standard, the application software itself is structured into components which may
further be structured into subcomponents that comprise executable code units (called runnables in AU-
TOSAR). Figure 2 shows the AUTOSAR Classic stack. It can be seen that all communication between
different applications and services from the base software such as network communication is performed
via the RTE. All communication pathes through the RTE are statically generated and can not adapt after
compile time.

Posix-like operating systems such as the adaptive AUTOSAR framework (see, e.g., [11]) allow a
greater amount of reconfiguration, typically require more resources and may have trouble to meet certain
other criteria such as reliability and latency. Figure 3 presents the architectural view of an adaptive
AUTOSAR systems which is realized on-top of a Posix operating system such as Linux. In Posix systems
processes (realizing applications) can be started, stopped, loaded and terminated at run-time of a system.

Mixed Criticality systems is a research area connected to our work (see e.g., [7]) and partitioning of

1https://www.autosar.org/standards/classic-platform/, retrieved 30th November 2018
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Figure 2: AUTOSAR Classic Software Stack

Figure 3: Adaptive AUTOSAR (Posix) Software Stack

software has been addressed in [10]. Scheduling is frequently regarded as an important aspect of Mixed
Criticality Systems (see, e.g. including multi-core challenges [12]). Task scheduling in this context
has been, e.g., studied in [13]. Design Space Exploration in the ISO 26262 context has been studied
in [16] and regards the partitioning of software components to hardware elements. The paper focuses on
criticality aspects of software functions (i.e., ASIL level classification).

Hardware-Software Co-Design (e.g., [9] and [8]) regards the question whether a functionality should
be realized in hardware of software, or if there is a possibility to further partition it into hardware and
software parts. Design-space exploration techniques have been applied to this domain as well.

The need for clarification of terminology in the automotive software world was proposed in [6]
together with a service hierarchy proposition for embedded automotive software. Behavioral types [3, 18]
are a related formalism that we have introduced to describe state-based properties of both software and
cyber-physical systems. The work described in this paper continues this view by presenting models for
hardware and software systems. State-based behavior can be annotated using the properties featured in
our models. We have investigated the use of models serving as digital twins together with a cloud-based
service infrastructure in the industrial automation domain [2]. An emphasis here was on the remote
response to incidents in industrial facilities.
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3 Models Mirroring the Car

Digital twins as digital mirrors of (mostly physical) entities have gained popularity in the manufacturing
domain [15] especially in the Industrie 4.0 [14, 1] context. Models can serve as digital twins through-
out the development, construction and commissioning, life-time, and decommissioning of a technical
system. Meta-models are the datatypes for models. They outline what information can be kept inside
a particular model. Models can be stored in the cloud and a variety of mechanisms have been devel-
oped to maintain and use models in various stages and tools, such as the open source Eclipse Modeling
Framework 2 that comes with modeling, tool-support, parsers and cloud-based storage mechanisms.

While we put an emphasis on software partitioning at development time, the models for digital twins
introduced in this paper (both software and hardware models) can also serve the following purposes:

• Reconfiguration (see e.g., [19] for work on model support in this context) of software at runtime
(during the operation of a car). This means, that we answer the question which application software
component should run on which ECU.

• Diagnosis, detecting malfunctions and identifying which software components are affected.

• Resolving issues at run-time. For example, if a software component cannot run on a particular
ECU anymore (e.g., due to a hardware failure), its functionality could be shifted to another ECU
or another software component could provide backup functionality.

• Verification and validation of constraints such as requirements on software architecture.

• Tracking of changes that occur during the live-time of a system. Systems may evolve during the
lifetime. Maintenance protocols including the replacement of ECUs and the update history of
software can be archived using models.

• Tracking and helping to gain relevant information during the decommissioning of a system: the
history of a system may provide useful hints on how to best decommission a system.

Figure 4 shows the organization of ECUs in a car using three hierarchical levels plus the cloud.
Shifting functionality between these levels is one goal that we want to draw attention to.

4 Partitioning of Software

In this paper, we are particularly interested in the question where to deploy a piece of software that
realizes a functionality. In order to find an optimal location, we need to develop models that capture both
the system including ECUs and physical buses as well as logical connections between different software
components. Here, we present a mathematical founded model for both hardware and software.

4.1 Proposed Hardware Model

All devices on which software can run (ECUs) and their interconnections are modeled as a graph
(ECU,NL,PH W ) comprising a set of hardware devices ECU, a set of communication links NL :
ECU×2AHE ×ECU and a function PH W : ECU 7→ 2AECU (2AECU denotes the powerset of AECU ). Note,
that the set ECU is quite general in order to capture all kinds of computational devices: Cloud-based
services are in ECU as well as controllers, embedded computers and smart sensors.

2https://www.eclipse.org/modeling/emf/
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Figure 4: Re-Partitioning of Software

Communication links formalize hardware-based links such as buses, but also wireless communica-
tion channels between members of the ECU set. A communication link (ecui,a,ecu j) ∈ NL comprises
a source communication device ecui a set of attributes a ∈ 2AHE that comprises attributes such as speed
and capacity and a target device ecu j. Figure 5 shows a simple example for an automotive bus structure.
ECUs are connected via Ethernet, Flexray, CAN and LIN buses. The figure illustrates that there can be
more than one connection between two ECUs. Note, that the actual communication messages that can be
sent between different ECUs are typically fixed as at an early development stage. Therefore, during the
development we effectively have a one-to-one communication between different ECUs which is captured
in our graph formalization.

For reasoning about a system, we need to describe properties of both computational devices and
communication links. These properties are described as attributes. The link attributes are directly con-
tained in the link, for ECUs the function PH W maps hardware devices to a set of attributes from AECU .
Typical attributes from AECU comprise:

• Computational power, such as the number of available cores, their speed, their architecture.

• Hardware-Architectural features such as lockstep computation, special co-processors.

• Memory characteristics such as RAM/ROM/Flash, on-chip, separate chips, size and speed.

• IO capabilities such as hardware interfaces, available sensors and actuators, general purpose IO
pins.
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Figure 5: A Simplified View on Automotive Buses

• Networking capabilities, such as interfaces to specific bus and other communication infrastructure

4.2 Proposed Software Model

The key idea for describing a software system is to describe the application components and necessary
communication between them. The software system is described as a graph (SWC,E,PS W ) featuring
a set of Nodes SWC, a set of edges E : SWC× 2ASE × SWC and a function PS W : SWC 7→ 2ASWC that
maps nodes to attributes. Our model features the following abstractions:

• Software is broken down into atomic components and each atomic software component becomes
a node ni ∈ SWC.

• Nodes are associated with attributes to indicate resource and other hardware requirements such
as RAM consumption, communication requirements resulting in links and upper bounds on com-
munication time to actuators and sensors as well as the criticality of the functionality realized by
the software component. This is realized using the function PS W which maps a node to a set of
relevant attributes 2ASWC

• Edges (n j,a,nk) ∈ E represent the required communication between atomic software components.
Each edge is associated with a set of attributes a ∈ 2ASE . Typical attributes are the amount and
nature of communication and latency requirements.

Note, that we only look at application components in our model and assume that typical requirements on
the base software and run-time environments can be realized and thus exclude them from our model. In
order to achieve full digital twins, additional attributes can be added to track, e.g., physical locations and
maintenance protocols.

4.3 An Example System

To give an idea of how our models can be used, we provide a small example system. The hardware model
is given: by a set of computational devices: ECU = {Cloud,GW,C1,C2}, comprising the cloud Cloud,
a gateway device realized as an embedded PC GW and two controllers C1, C2.
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We only regard three properties in this example: RAM, the local availability of a sensor Sen and an
actuator Act. Thus, the property function PH W is defined as:

PH W (Cloud) = {′′RAM == in f inity′′}
PH W (GW ) = {′′RAM == 1024MB′′}
PH W (C1) = {′′RAM == 4MB′′,Sen}
PH W (C2) = {′′RAM == 2MB′′,Act}

This means that the cloud has inifinity RAM ressources, the gateway has 1024 MB, the controller C1 has
a local sensor Sen available and 4 MB RAM and the controller C2 has an actuator Act and 2 MB RAM.
The set of communication links is defined as:
{(Cloud,{},GW ),(GW,{},C1),(GW,{},C2),
(GW,{},Cloud),(C1,{},GW ),(C2,{},GW )}.

Links between the cloud and the gateway as well as between the gateway and the controllers are con-
tained. No properties are given in this simple example. Note, that we need to include both directions for
bidiractional communication.
The software model is defined as follows:

1. The set of nodes, representing software components:
SWC = {CtrlS,CtrlA,Comp1,Comp2,Comp3}.
We have five software components: CtrlS is the control component for a sensor, CtrlA a control
component for an actuator, Comp1, Comp2 and Comp3 are other components performing compu-
tations or offering services.

2. Required communication is specified as the set:
{(CtrlS,{},Comp1), (Comp1,{},CtrlA),
(Comp1,{},Comp2), (Comp1,{},Comp3)}.
One can see that the CtrlS component needs to communicate with Comp1. Comp1 needs to com-
municate with CtrlA, Comp2 and Comp3.

3. The properties of the software components are defined by instantiating the property mapping func-
tion PS W :
PS W (CtrlS) = {Sen} PS W (Comp2) = {}
PS W (CtrlA) = {Act} PS W (Comp3) = {}
PS W (Comp1) = {}

The function is used to state requirements of the software components. Here, we have only for-
malized that CtrlS requries the local availability of the sensor Sen and CtrlA requires the local
availability of the actuator Act.

4.4 Goals

The introduced models can be used to achieve at least two different goals when reasoning about good
software partitoning:

1. Finding the right partitioning for a given software system and a given hardware system.

2. Finding a good hardware model for a given software system.

To solve these tasks, we define a solution quality evaluation function:
E :

(ECU,NL,PH W )× (SWC,E,PS W )×
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(SWC 7→ ECU) 7→ int
which takes a hardware model and a software model, furthermore it takes a function SWC 7→ ECU
mapping an atomic software component to an ECU. The function returns a numerical value indicating
the quality of the solution. Higher numbers indicate better solutions. Negative numbers indicate that no
solution has been found.
In our example, the mapping M : (SWC 7→ ECU) given as:
M(CtrlS) =C1 M(Comp2) = GW
M(CtrlA) =C2 M(Comp3) = GW
M(Comp1) = GW

may achieve a satisfying score.The CtrlS is located on C1. Thus, the required proximity to the sensor
is given. Likewise CtrlA is located on C2 and the required proximity to the actuator is also provided.
All other components are located on the gateway. With the formalized requirements, this is a feasible
solution. Another alternative is given below:
M(CtrlS) =C1 M(Comp2) =Cloud
M(CtrlA) =C2 M(Comp3) =Cloud
M(Comp1) = GW

Here, two of the Comp components are located in the cloud. We would need to define more properties
in order to determine if one solution is favorable over another.

Major research questions arise around good ways to find an appropriate mapping M : (SWC 7→ECU).
Typically one would use design-space exploration techniques (see above) to find a solution. A simple
solution is to use search-based algorithms, and search through possible mappings, by simple trying them
out. More intelligent techniques can use constraint-Solvers, e.g., SMT solvers, especially if one takes
resources such as network capacity with numerical values into account. The task gets even more chal-
lenging if the hardware model is not fixed, but has to be discovered as well.

5 Conclusion

We presented models with an emphasis on the partitioning of software in and around cars as well as
connected research challenges and classification of work. Our mathematical founded models are a way
to formally represent digital twins and take different quantitative and qualitative aspects of systems into
account. They can be used during all phases in the life-cycle of a car. However, in this paper, we
particularly proposed the use during design and development time.
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