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When modeling concurrent or cyber-physical systems, non-functional requirements such as time are

important to consider. In order to improve the timing aspects of a model, it is necessary to have

some notion of what it means for a process to be faster than another, which can guide the stepwise

refinement of the model. To this end we study a faster-than relation for semi-Markov decision

processes and compare it to standard notions for relating systems. We consider the compositional

aspects of this relation, and show that the faster-than relation is not a precongruence with respect to

parallel composition, hence giving rise to so-called parallel timing anomalies. We take the first steps

toward understanding this problem by identifying decidable conditions sufficient to avoid parallel

timing anomalies in the absence of non-determinism.

1 Introduction

Timing aspects are important when considering real-time or cyber-physical systems. For example, they

are of interest in real-time embedded systems when one wants to verify the worst-case execution time for

guaranteeing minimal system performance or in safety-critical systems when one needs to ensure that

unavoidable rigid deadlines will always be met [13].

Semi-Markov decision processes are continuous-time Markov decision processes where the residence-

time on states is governed by generic distributions on the positive real line. These systems have been

extensively used to model real-time cyber-physical systems [17, 27].

For reasoning about timing aspects it is important to understand what it formally means for a real-time

or cyber-physical system to operate faster than another. To this end we consider a notion of faster-than

relation for semi-Markov decision processes. The definition of faster-than relation we propose in this

paper is a reactive version of an analogous notion of faster-than relation previously introduced in [21] for

the case of generative systems. According to this relation, a semi-Markov decision process is faster than

another one when it reacts to any sequence of inputs with equal or higher probability than the slower

process, within the same time bound.

Often, complex cyber-physical systems are organised as concurrent systems of multiple components

running in parallel and interacting with each other. Such systems are better analysed compositionally,

that is, by breaking them into smaller components that are more easily examined [5]. However, it is not

always the case that an analysis on the components carries over to the full composite system. A well

known example of this, occurring in real-time systems such as scheduling for processors [4, 14], are

timing anomalies, that is, when locally faster behaviour leads to a globally slower behaviour [12].

In this paper we study the compositional aspects of the faster-than relation for semi-Markov decision

processes. We are interested in the situation depicted in Figure 1 where we have a composite system

consisting of a context W and a component V , and we want to understand what happens when we replace

V with another component U that is faster than V . We consider common notions of parallel composition,
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Figure 1: The context W operates in parallel with the component V . If the component U is faster than V ,

then if we replace V with U , we would expect the overall behaviour to also be faster.

and show that timing anomalies can occur using our faster-than relation, even in the absence of non-

determinism. This shows that timing anomalies are not caused by non-determinism, but arise from the

linear timing behaviour of processes.

As a first step toward recovering the compositional reasoning for the faster-than relation, we identify

a condition, called monotonicity, to be checked on the components taking part to the parallel composi-

tion which guarantees that timing anomalies cannot occur. Our condition is parametric in the parallel

composition operator and applies to all the notions of parallel composition considered in this paper.

Presently, we do not know whether the monotonicity condition is decidable or not, however we

introduce another condition, called strong monotonicity, still parametric on the parallel composition

operator, that we show to be decidable. This decidability result is remarkable for a series of reasons.

In [21], the faster-than relation over generic semi-Markov processes was proven to be undecidable and

Positivity-hard if restricted to processes without non-determinism. The Positivity-hardness relates the

faster-than problem to the Skolem problem, an important problem in number theory, whose decidability

status has been an open for at least 80 years [20, 1]. In the light of these results, it is not surprising that

strong monotonicity condition only applies to processes with no non-determinism.

Related Work. The notion of a faster-than relation has been studied in many different contexts

throughout the literature. The work most closely related to ours is that of Pedersen et al. [21], which

considers a generative version of the faster-than relation, whereas we study the reactive version. The

focus of [21] is on decidability issues, and the faster-than relation is proved undecidable, and the proof

can easily be extended to also show that the reactive version is undecidable. However, positive results

are also given in the form of an approximation algorithm, and a decidability result for unambiguous

processes. Baier et al. [2] define, among other relations, a simulation relation for continuous-time

Markov chains which can be interpreted as a faster-than relation, and study its logical characterisation.

However, none of these works consider compositional aspects.

For process algebras, discrete-time faster-than relations have been defined for variations of Milner’s

CCS, and shown to be precongruences with respect to parallel composition [6, 15, 18, 24]. Lüttgen and

Vogler [16] attempt to unify some of these process algebraic approaches and also consider the issue of

parallel timing anomalies. For Petri nets, Vogler [29, 28] considers a testing preorder as a faster-than

relation and shows that this is a precongruence with respect to parallel composition. Geilen et al. [7]

introduces a refinement principle for timed actor interfaces under the slogan “the earlier, the better”,

which can also be seen as an example of a faster-than relation.

Work on timing anomalies date back to at least 1969 [9], but the most influential paper in the area is

probably that of Lundqvist and Stenström [14], which shows that timing anomalies can occur in dynam-

ically scheduled processors. More recent work has focused on compositional aspects [12] and defining

timing anomalies formally, using transition systems as the formalism [4, 23].
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2 Notation and Preliminaries

In this section we fix some notation and recall concepts that are used throughout the rest of the paper.

Let N denote the natural numbers and R≥0 denote the non-negative real numbers, which we equip with

the standard Borel σ -algebra B. For any set X , D(X) denotes the set of probability measures on X , and

D≤(X) the set of subprobability measures on X . For an element x ∈ X , we will use δx to denote the Dirac

measure at x defined as δx(E) = 1 if x ∈ E and δx(E) = 0 otherwise. We fix a non-empty, countable set

L of labels or actions and equip them with the discrete σ -algebra ΣL.

For a probability measure µ ∈ D(R≥0), we denote by Fµ its cumulative distribution function (CDF)

defined as Fµ(t) = µ([0, t]), for all t ∈ R≥0. We will denote by Exp[θ ] the CDF of an exponential

distribution with rate θ > 0. The convolution of two probability measures µ ,ν ∈ D(R≥0), denoted by

µ ∗ ν , is the probability measure on R≥0 given by (µ ∗ ν)(B) =
∫ ∞
−∞ ν(B− x) µ(dx), for all B ∈ B [3].

Convolution is associative, i.e., µ ∗ (ν ∗η) = (µ ∗ν)∗η , and commutative, i.e., µ ∗ν = ν ∗µ .

3 Semi-Markov Decision Processes

In this section we recall the definition of semi-Markov decision processes.

Definition 3.1. A semi-Markov decision process (SMDP) is a tuple M = (S,s0,τ ,ρ) where

• S is a non-empty, countable set of states,

• s0 ∈ S is a distinguished start state,

• τ : S×L → D≤(S) is a transition probability function, and

• ρ : S → D(R≥0) is a residence-time probability function. N

The operational behaviour of an SMDP M = (S,s0,τ ,ρ) is as follows. Starting from s0, the process

reacts to an external input a ∈ L provided by the environment by changing its state to s′ ∈ S within time

t ∈ R≥0 with probability τ(s0,a)(s
′) ·ρ(s0)([0, t]). The process then continues with the new state s′ in

place of s0.

Notice that Markov decision processes are a special case of SMDPs where for all s ∈ S, ρ(s) = δ0

(i.e. transitions happen instantaneously), and that continuous-time Markov decision processes are also a

special case of SMDPs where, for all states s ∈ S, Fρ(s) = Exp[θs] for some rate θs ∈ R≥0.

The executions of an SMDP M = (S,s0,τ ,ρ) are infinite timed transition sequences of the form

π = (a1, t1,s1)(a2, t2,s2) · · · ∈ (L×R≥0 ×S)ω
,

representing the fact that M waited ti time units after the action ai was input and then moved to the state si.

We will refer to executions of an SMDP as paths. We denote by (Π(M),Σ) the measurable space of paths,

where Σ is the smallest σ -algebra generated by the cylinders of the form L1 ×R1 × S0, . . . ,Ln ×Rn × Sn

for Li ∈ 2L, Ri ∈ B, and Si ∈ 2S. Given a path π and i ∈ N, we let π|i = (a1, t1,s1) . . . (ai, ti,si) be the

prefix up to i of π . We let Π(M) denote the set of all timed action paths in M, and denote by

Πn(M) = {π|i | π ∈ Π(M)}

the set of all prefixes of length n.

In this paper we assume that external choices are resolved by means of memoryless stochastic sched-

ulers, however all the results we present still hold for schedulers that can remember actions and states.
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Definition 3.2. Given an SMDP M = (S,s0,τ ,ρ), a scheduler for M is a function σ : S → D(L) that

assigns to each state a probability distribution over action labels. N

We will use the notation τσ (s,a)(s′) as shorthand for τ(s,a)(s′) ·σ(s)(a) to denote the probability of

moving from state s to s′ under the stochastic choice of a given by σ .

Next we recall the standard construction of the measurable space of paths. A cylinder set of rank

n ≥ 1 is the set of all paths whose n-th prefix is contained in a common subset E ⊆ Πn(M), and is given

by

C(E) = {π ∈ Π(M) | π|n ∈ E}.

It will be convenient to denote rectangular cylinders of the form

C(L1 ×R1×S1 ×·· ·×Ln ×Rn×Sn),

for Li ⊆ L, Ri ⊆ R≥0, and Si ⊆ S as

C(L1 . . .Ln,R1 . . .Rn,S1 . . .Sn).

We denote by (Π(M),Σ) the measurable space of paths, where Σ is the smallest σ -algebra generated by

the measurable cylinders of the form

C(L1 . . .Ln,R1 . . .Rn,S1 . . .Sn)

for Li ∈ 2L, Ri ∈ B, Si ∈ 2S. Given an SMDP M and a scheduler σ for it, we define inductively the usual

probability on cylinders as follows.

Definition 3.3. Let M = (S,s0,τ ,ρ) be an SMDP. Given a scheduler σ for M and a state s ∈ S, Pσ
M(s)

is defined as the unique (sub)probability measure1 on (Π(M),Σ) such that for all Li ∈ 2L, Ri ∈ B, and

Si ∈ 2S with 1 ≤ i ≤ n, we have

P
σ
M(s)(C(L1,R1,S1)) = ρ(s)(R1) · ∑

a∈L1

∑
s′∈S1

τσ (s,a)(s′)

and

P
σ
M(s)(C(L1 . . .Ln,R1 . . .Rn,S1 . . .Sn))

= ρ(s)(R1) · ∑
a∈L1

∑
s′∈S1

τσ (s,a)(s′) ·Pσ
M(s′)(C(L2 . . .Ln,R2 . . .Rn,S2 . . .Sn)). N

For example, Pσ
M(s)({a}{b}, [0,x][0,y],{s′}{s′′}) is the probability of doing an a-transition from s to

s′ within x time units and then doing a b-transition from s′ to s′′ within y time units.

4 A Faster-Than Relation

Intuitively, a process U is faster than V if it is able to execute any sequence of actions a1, . . . ,an in less

time than V . Since our systems are probabilistic, we need to consider the probability of their execution

within any time bound.

Consider the two simple SMDPs U and V in Figure 2 with just a single transition label and initial

states u0 and v0, respectively. Here µ ,ν ,η are arbitrary probability measures on R≥0, representing the

1Existence and uniqueness is guaranteed by the Hahn-Kolmogorov theorem [26].
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Figure 2: If Fµ(t)≥ Fν(t) for all t, then U is faster than V in the first states, and after that their probabil-

ities are the same, so U is faster than V .

residence-time distributions at each state. An arrow with label (p,a) means that when a is chosen as

the action, then the SMDP takes the transition given by the arrow with probability p. The only finite

sequences of actions that can be executed in these SMDPs are of the form an for n > 0.

For U to be faster than V , it should be the case that for any time t and any scheduler σ for V , we

must be able to find a scheduler σ ′ for U which allows U to execute any sequence of actions within time

t with higher or equal probability than V . Hence, the type of events on which we want to focus are the

following.

Definition 4.1. For any finite sequence of actions a1, . . . ,an, and t ∈ R≥0, we say that

C(a1 . . .an, t) = {(b1, t1,s1)(b2, t2,s2) · · · ∈ Π(M) | ∀1 ≤ i ≤ n, bi = ai and ∑n
j=1 ti ≤ t}

is a time-bounded cylinder. The length of a time-bounded cylinder is the length of the sequence of actions

in the cylinder. N

Note that C(a1 . . .an, t) is measurable in (Π(M),Σ), since

f : Πn(M)→ Ln ×R
n
≥0×Sn

given by

f ((o1, t1,s1), . . . ,(on, tn,sn)) = ((o1, . . . ,on),(t1, . . . , tn),(s1, . . . ,sn))

and

resn : Π(M)→ Πn(M)

given by

resn(π) = π|n

are both measurable, and hence

( f ◦resn)
−1(Sn ×{(a1, . . . ,an)}×Bn

t ) = C(a1 . . .an, t)

is measurable, where Bn
t = {(r1, . . . ,rn) ∈ R

n
≥0 | ∑n

i=1 ri ≤ t}.

Example 4.2. The time-bounded cylinder C(aa,2) denotes the set of all paths where the first two output

labels are both a’s, and the first two steps of the path are completed within 2 time units. �

For the rest of the paper, we fix three SMDPs M = (S,s0,τ ,ρ), U = (SU ,u0,τU ,ρU), and V =
(SV ,v0,τV ,ρV ). Now we are ready to define what it means for an SMDP to be “faster than” another

one.

Definition 4.3 (Faster-than). We say that U is faster than V , written U �V , if for all schedulers σ for V ,

time bounds t, and sequences of actions a1 . . .an, there exists a scheduler σ ′ for U and time bound t ′ ≤ t,

such that Pσ ′
(u0)(C(a1 . . .an, t

′))≥ P
σ (v0)(C(a1 . . .an, t)). N
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Clearly, the faster-than relation � is a preorder. The following proposition gives a characterisation

of the faster-than relation that is often easier to work with.

Proposition 4.4. U �V if and only if for all schedulers σ for V there exists a scheduler σ ′ for U such

that Pσ ′
(u0)(C)≥ P

σ (v0)(C), for all time-bounded cylinders C.

Before showing an example of an SMDP being faster than another one, we provide an analytic solu-

tion for computing the probability over time-bounded cylinders in terms of convolutions of the residence

time distributions.

Proposition 4.5. For any scheduler σ for M, and s ∈ S we have

P
σ (s)(C(a1 . . .an, t)) = ∑

s1,...,sn∈S

τσ (s,a1)(s1) · · ·τ
σ (sn−1,an)(sn) · (ρ(s)∗ρ(s1)∗ · · · ∗ρ(sn−1))([0, t]).

Proposition 4.5 intuitively says that the absorption-time of any path of length n through the SMDP

is distributed as the n-fold convolution of its residence-time probabilities. Therefore, the probability of

doing transitions with labels a1, . . . ,an within time t is the sum of the probabilities of taking a path of

length n with labels a1, . . . ,an through the SMDP, weighted by the probability of reaching the end of

each of these paths within time t. This is similar in spirit to a result on phase-type distributions, see e.g.

[22, Proposition 2.11].

From Proposition 4.5 we can also derive the following which gives a more direct inductive definition

of the probability on time-bounded cylinders. If we fix a1 . . .an and let t vary, we get a CDF

P
σ (s)(a1 . . .an)([0, t]) = P

σ (s)(C(a1 . . .an, t)).

Proposition 4.6. The CDF P
σ (s)(a1 . . .an) can be characterised inductively by

P
σ (s)(a1)([0, t]) = ∑

s′∈S

τσ (s,a1)(s
′) ·ρ(s)([0, t]),

P
σ (s)(a1 . . .an)([0, t]) = ∑

s′∈S

τσ(s,a1)(s
′) · (ρ(s)∗Pσ (s′)(a2 . . .an))([0, t]).

Proposition 4.6 also shows that our definition of faster-than coincides with the one from [21], except

ours is reactive rather than generative.

Example 4.7. Consider the SMDPs U and V that are depicted in Figure 2. Assuming that Fµ(t)≥ Fν(t)
for all t, we now show that U � V . To compare U and V , first notice that we only need to consider

time-bounded cylinders of the form C(an, t), for n ≥ 1. Since the set of actions is L = {a}, the only

possible valid scheduler σ for both U and V is the one assigning the Dirac measure δa to all states. We

consider two cases.

(Case n = 1) In this case we get

P
σ(u0)(C(a, t)) = Fµ(t) and P

σ (v0)(C(a, t)) = Fν(t).

Since we assumed Fµ(t)≥ Fν(t) for all t, this implies

P
σ (u0)(C(a, t)) ≥ P

σ (v0)(C(a, t)).

(Case n > 1) By Proposition 4.5 we have both

P
σ (u0)(C(a

n
, t)) = (µ ∗ν ∗η∗(n−2))([0, t]) and P

σ(v0)(C(a
n
, t)) = (ν ∗µ ∗η∗(n−2))([0, t]),

where η∗n is the n-fold convolution of η , defined inductively by η∗0 = δ0 and η∗(n+1) = η ∗η∗n. Since

convolution is commutative and associative, and δ0 is the identity for convolution, we obtain

P
σ (u0)(C(a

n
, t)) = P

σ (v0)(C(a
n
, t)).

We therefore conclude that U �V . �
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Figure 3: Example showing that the faster-than relation and the simulation relation are incomparable.

4.1 Comparison with Simulation and Bisimulation

The standard notions used to compare processes are bisimulation [19] and simulation [2]. Next we recall

their definitions, naturally extended to our setting of SMDPs.

Definition 4.8. For an SMDP M, a relation R⊆ S×S is a bisimulation relation (resp. simulation relation)

on M if for all (s1,s2) ∈ R we have

• Fρ(s1)(t) = Fρ(s2)(t) (resp. Fρ(s1)(t)≤ Fρ(s2)(t)) for all t ∈R≥0 and

• for all a ∈ L there exists a weight function ∆a : S×S → [0,1] such that

– ∆a(s,s
′)> 0 implies (s,s′) ∈ R,

– τ(s1,a)(s) = ∑s′∈S ∆a(s,s
′) for all s ∈ S, and

– τ(s2,a)(s
′) = ∑s∈S ∆a(s,s

′) for all s′ ∈ S.

If there is a bisimulation relation (resp. simulation relation) R such that (s1,s2) ∈ R, then we say that

s1 and s2 are bisimilar (resp. s2 simulates s1) and write s1 ∼ s2 (resp. s1 - s2). N

We lift bisimulation and simulation relations to two different SMDPs by considering the disjoint

union of the two and comparing their initial states. We denote by ∼ the largest bisimulation relation and

by - the largest simulation relation. Furthermore, we say that U and V are equally fast and write U ≡V

if U �V and V �U .

Example 4.9. Consider the two SMDPs U and V in Figure 3 with the same probability measure µ in all

states. It is easy to see that U is bisimilar to V , and hence V also simulates U . However, we show that

U 6�V in the following way. Construct the scheduler σ for V by letting

σ(v0)(a) = 0.5, σ(v0)(b) = 0.5, σ(v1)(a) = 1, and σ(v2)(b) = 1.

Now, for any scheduler σ ′ for U , we must have either σ ′(u0)(a)< 1 or σ ′(u0)(b)< 1. If σ ′(u0)(a)< 1,

then

σ ′(u0)(a)> (σ ′(u0)(a))
2
> · · ·> (σ ′(u0)(a))

n
.

Furthermore, we see that

P
σ (v0)(C(a

n
, t)) = 0.5 ·µ∗n(t) and P

σ ′
(u0)(C(a

n
, t)) = (σ ′(u0)(a))

n ·µ∗n(t)

for n > 1. Take some n such that (σ ′(u0)(a))
n < 0.5 to obtain P

σ ′
(u0)(C(a

n, t))< P
σ(v0)(C(a

n, t)). The

same procedure can be used in case σ ′(u0)(b) < 1. Hence we conclude that U 6�V , and therefore also

that U 6≡V . �
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Example 4.9 also works for schedulers with memory, although the argument has to be modified a bit.

In that case, in each step either the probability of a trace consisting only of a’s or the probability of a

trace consisting only of b’s must decrease in U , so after some number of steps, the probability of one of

these two must decrease below 0.5, and then the rest of the argument is the same.

Example 4.10. Consider the SMDPs U and V in Figure 2 and let Fµ = Exp[θ1] and Fν = Exp[θ2] be

exponential distributions with rates θ1 > θ2 > 0. Then, as shown in Example 4.7, it holds that U � V .

However, we have both U 6-V and U 6∼V . �

From Examples 4.9 and 4.10, we get the following theorem.

Theorem 4.11. - and � are incomparable, ∼ and � are incomparable, and we have ∼ 6⊆ ≡.

Note that Theorem 4.11 holds both for memoryless and for memoryful schedulers that can remember

actions and states, but it is still unclear what happens if schedulers are allowed to remember time.

5 Compositionality

Next we introduce the notion of composition of SMDPs. As argued in [25], the style of synchronous

CSP composition is the most natural one to consider for reactive probabilistic systems, so this is the one

we will adopt. However, we leave the composition of the residence-times as a parameter, so that we can

compare different kinds of composition.

Definition 5.1. A function ⋆ : D(R≥0)×D(R≥0) → D(R≥0) is called a residence-time composition

function if it is commutative, i.e. ⋆(µ ,ν) = ⋆(ν ,µ) for all µ ,ν ∈ D(R≥0). N

One example of such a composition function is when ⋆ is a coupling, which is a joint probability

measure such that its marginals are µ and ν . A simple special case of this is the product measure

⋆(µ ,ν) = µ ×ν , which is defined by (µ ×ν)(B1 ×B2) = µ(B1) ·ν(B2) for all Borel B1 and B2.

In order to model the situation in which we want the composite system only to take a transition when

both components can take a transition, it is natural to take the minimum of the two probabilities, which

corresponds to waiting for the slowest of the two. In that case, we let F⋆(µ ,ν)(t) = min{Fµ(t),Fν(t)},

and we call this minimum composition. Likewise, if we only require one of the components to be able

to take a transition, then it is natural to take the maximum of the two probabilities by letting F⋆(µ ,ν)(t) =
max{Fµ(t),Fν(t)}, which we call maximum composition. A special case of minimum composition is the

composition on rates used in PEPA [11], and a special case of maximum composition is the composition

on rates used in TIPP [8].

Further knowledge about the processes that are being composed lets one define more specific com-

position functions. As an example, if we know that the components only have exponential distribu-

tions, then we can define composition functions that work directly on the rates of the distributions. If

Fµ = Exp[θ ] and Fν = Exp[θ ′], then one could for example let ⋆(µ ,ν) be such that F⋆(µ ,ν) = Exp[θ ·θ ′].
This corresponds to the composition on rates that is used in SPA [10], and we will call it product com-

position. Note that product composition is not given by the product measure.

Definition 5.2. Let ⋆ be a residence-time composition function. Then the ⋆-composition of U and V ,

denoted by U ‖⋆V = (S,s0,τ ,ρ), is given by

• S =U ×V ,

• s0 = (u0,v0),

• τ((u,v),a)((u′,v′)) = τU(u,a)(u
′) · τV (v,a)(v

′) for all a ∈ L and (u′,v′) ∈ S, and

• ρ((u,v)) = ⋆(ρU (u),ρV (v)). N

We write u‖⋆ v to denote the composite state (u,v) of U ‖⋆V where u ∈ SU and v ∈ SV .



M.R. Pedersen, G. Bacci, & K.G. Larsen 37

µ ′

w0

ν ′

w1

η ′

w2
W

(1,a) (1,a)
(1,a)

Figure 4: For different instantiations of µ ′, ν ′, and η ′, the context W leads to parallel timing anomalies

for product, minimum, and maximum rate composition, respectively.

5.1 Parallel Timing Anomalies

If we have two components U and V , and we know that U is faster than V , then if V is in parallel with

some context W , we would expect this composition to become faster when we replace the component V

with the component U . However, sometimes this fails to happen, and we will call such an occurrence a

parallel timing anomaly.

In this section we show that parallel timing anomalies can occur for some of the kinds of composition

discussed in Section 5. We do this by giving different contexts W for the SMDPs U and V from Figure

2, for which it was shown in Example 4.7 that U �V . Our examples of parallel timing anomalies make

no use of non-determinism or probabilistic branching, thus showing that the parallel timing anomalies

are caused inherently by the timing behaviour of the SMDPs. For ease of presentation, we let the set of

labels L consist only of the label a in this section.

Consider the two SMDPs U and V depicted in Figure 2 and let the context W be given by Figure

4. For the examples in this section, let Fµ = Exp[2], Fν = Exp[0.5], and let η = η ′ be arbitrary. From

Example 4.7 we know that U �V .

Example 5.3 (Product composition). Let ⋆ be product composition and let Fµ ′ = Exp[10] and Fν ′ =
Exp[0.1]. In U ‖⋆W , the rates in the first two states will then be 20 and 0.05, and in V ‖⋆W they will be

5 and 0.2. Consider the time-bounded cylinder C(aa,2). Then we see that

P(u0 ‖⋆ w0)(C(aa,2)) ≈ 0.09 and P(v0 ‖⋆ w0)(C(aa,2)) ≈ 0.30,

showing that U ‖⋆W 6� V ‖⋆W . Hence we have a parallel timing anomaly. What happens is that in the

process V ‖⋆W the probability of taking a transition before time 2 with rate 5 is already very close to 1,

so the process U ‖⋆W does not gain much by having a rate of 20, whereas in the next step, V ‖⋆W gains

a lot of probability by having a rate of 0.5 compared to the rate 0.05 of U ‖⋆W . �

Example 5.4 (Minimum composition). Let ⋆ be minimum composition and let Fµ ′ = Exp[1] and Fν ′ =
Exp[2]. The rates of U ‖⋆W are then 1 and 0.5, whereas they are 0.5 and 2 in V ‖⋆W . Then we get

P(u0 ‖⋆ w0)(C(aa,2)) ≈ 0.40 and P(v0 ‖⋆ w0)(C(aa,2)) ≈ 0.51,

so U ‖⋆W 6�V ‖⋆W . What happens in this example is that in the second step, U ‖⋆W has the same rate

as V ‖⋆W had in the first step. This means that U ‖⋆W must be proportionally faster in the second step.

However, V ‖⋆W has a rate of 2 in the second step, but U ‖⋆W only had a rate of 1 in the first step. �

Example 5.5 (Maximum composition). Let ⋆ be maximum composition and let Fµ ′ = Exp[2] and Fν ′ =
Exp[1]. U ‖⋆W then has rates 2 and 1, and V ‖⋆W has rates 2 and 2. Then

P(u0 ‖⋆ w0)(C(aa,2)) ≈ 0.75 and P(v0 ‖⋆ w0)(C(aa,2)) ≈ 0.91,

so U ‖⋆W3 6�V ‖⋆W3. The reason for the timing anomaly in this case is clear: V ‖⋆W simply has a higher

rate in each step than U ‖⋆W does. �
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5.2 Avoiding Parallel Timing Anomalies

We have seen in the previous section that parallel timing anomalies can occur. We now wish to understand

what kind of contexts do not lead to timing anomalies. In this section we assume that the set L of

transition labels is a finite set. Also, we fix a residence-time composition function ⋆ and two additional

SMDPs W = (SW ,w0,τW ,ρW ) and W ′ = (SW ′ ,w′
0,τW ′ ,ρW ′) which should be thought of as contexts. Next

we identify conditions on (W,w0) such that U �V will imply U ‖⋆W �V ‖⋆W .

We first give conditions that over-approximate the faster-than relation between the composite systems

by requiring that when U and W are put in parallel, then the composite system is point-wise faster than

U along all paths. Likewise, we require that when V and W are put in parallel, the composite system

is point-wise slower than V along all paths. If we already know that U is faster than V , this will imply

by transitivity that U ‖⋆ W is faster than V ‖⋆ W . We have already seen in Example 4.7 that a process

U need not be point-wise faster than V along all paths in order for U to be faster than V . However, by

imposing this condition, we do not need to compare convolutions of distributions, but can compare the

distributions directly.

We will say that an SMDP M has a deterministic Markov kernel if for all states s and labels a, there

is at most one state s′ such that τ(s,a)(s′)> 0. A state path of length n in M is a sequence s1 . . . sn such

that s1 is the initial state and for all i there exists a ∈ L such that τ(si,a)(si+1)> 0.

Definition 5.6. Let n ∈ N. We say that ⋆ is n-monotonic in U, V , W, and W ′, written (U,W )/n
⋆ (V,W

′),
if W ′ has a deterministic Markov kernel and for all state paths u1 . . .un, v1 . . .vn, w1 . . .wn, and w′

1 . . .w
′
n

we have

• Fρ(ui‖⋆wi)(t)≥ FρU (ui)(t) and FρV (vi)(t)≥ Fρ(vi‖⋆w′
i)
(t) for all t ∈ R≥0 and 1 ≤ i ≤ n,

• for all schedulers σU for U there exists a scheduler σU,W for U ‖⋆W such that we have

τσU,W (ui ‖⋆ wi,a)(ui+1 ‖⋆ wi+1)≥ τσU

U (ui,a)(ui+1), and

• for all schedulers σV,W ′ for V ‖⋆W ′ there exists a scheduler σV for V such that we have

τσV

V (vi,a)(vi+1)≥ τσV,W ′ (vi ‖⋆ w′
i,a)(vi+1 ‖⋆ w′

i+1)

and for all a ∈ L and 1 ≤ i < n. Furthermore, we will say that ⋆ is monotonic in U, V , W , and W ′ and

write (U,W )/⋆ (V,W
′), if it is n-monotonic in U , V , W , and W ′ for all n ∈ N. N

Clearly, if (U,W )/n
⋆ (V,W

′), then (U,W )/m
⋆ (V,W ′) for all m ≤ n. The next result shows that if

(U,W )/⋆ (V,W
′), then we are guaranteed to avoid parallel timing anomalies.

Theorem 5.7. If (U,W )/⋆ (V,W
′) as well as U �V and W �W ′, then we have U ‖⋆W �V ‖⋆W ′.

The special case where W =W ′ shows that this condition is sufficient to avoid parallel timing anoma-

lies. We do not know if it is decidable whether (U,W )/⋆ (V,W
′). However, there is a stronger condition

which is decidable in the case of finite SMDPs. We present it in the next definition.

Definition 5.8. We say that ⋆ is strongly n-monotonic in U , V , W , and W ′ and write (U,W )≦n
⋆ (V,W

′) if

W ′ has a deterministic Markov kernel and for all state paths u1 . . .un, v1 . . .vn, w1 . . .wn, and w′
1 . . .w

′
n,

• Fρ(ui‖⋆wi)(t)≥ FρU (ui)(t) and FρV (vi)(t)≥ Fρ(vi‖⋆w′
i)
(t) for all t ∈ R≥0 and 1 ≤ i ≤ n

• for all schedulers σU for U and all schedulers σU,W for U ‖⋆W we have

τσU,W (ui ‖⋆ wi,a)(ui+1 ‖⋆ wi+1)≥ τσU

U (ui,a)(ui+1), and



M.R. Pedersen, G. Bacci, & K.G. Larsen 39

• for all schedulers σV,W ′ for V ‖⋆W ′ and all schedulers σV for V we have

τσV

V (vi,a)(vi+1)≥ τσV,W ′ (vi ‖⋆ w′
i,a)(vi+1 ‖⋆ w′

i+1)

for all a ∈ L and 1 ≤ i < n. If (U,W )≦n
⋆ (V,W

′) for all n ∈ N, we say that ⋆ is strongly monotonic in U ,

V , W , and W ′ and write (U,W )≦⋆ (V,W
′). N

The conditions of Definition 5.8 are similar to the conditions from Definition 5.6, but the existential

quantifier is strengthened to a universal quantifier. It is obvious that (U,W )≦⋆ (V,W
′) implies (U,W )/⋆

(V,W ′), and hence we get the following corollary.

Corollary 5.9. If (U,W )≦⋆ (V,W
′) as well as U �V and W �W ′, then U ‖⋆W �V ‖⋆W ′.

Example 5.10. Let U and V be given by Figure 2 with Fµ ≥ Fν as in Example 4.7. Let ⋆ be minimum

rate composition and consider the context W from Figure 4, where µ ′ = µ , ν ′ = ν , and η ′ = η . There is

only one possible scheduler σ , which is the Dirac measure at a, and hence it is clear that the second and

third conditions are satisfied. We also find that

Fρ(u0‖⋆w0)(t) = FρU (u0)(t) FρV (v0)(t) = Fρ(v0‖⋆w0)(t)

Fρ(u1‖⋆w1)(t) = FρU (u1)(t) FρV (v1)(t) = Fρ(v1‖⋆w1)(t)

Fρ(u2‖⋆w2)(t) = FρU (u2)(t) FρV (v2)(t) = Fρ(v2‖⋆w2)(t)

and hence the first condition is also satisfied, so (U,W )≦⋆ (V,W ). �

Example 5.11. All the examples we gave in Section 5.1 fail to be monotonic, and hence also fail to be

strongly monotonic, since they all violate the first condition of monotonicity.

In Example 5.3, this is because

Fρ(v0)(t) = Exp[0.5] (t)< Exp[5] (t) = Fρ(v0‖⋆w0)(t) for any t > 0.

Likewise, in Example 5.4 we have

Fρ(u0‖⋆w0)(t) = Exp[1] (t)< Exp[2] (t) = Fρ(u0)(t) for any t > 0.

Finally, in Example 5.5 we have

Fρ(v0)(t) = Exp[0.5] (t)< Exp[2] (t) = Fρ(v0‖⋆w0)(t) for any t > 0. �

The following is the main theorem of our paper, showing that strong monotonicity implies the ab-

sence of parallel timing anomalies.

Theorem 5.12. If (U,W )≦⋆ (V,W
′) as well as U �V and W �W ′, then U ‖⋆W �V ‖⋆W ′.

We now wish to show that it is decidable whether (U,W )≦⋆ (V,W
′) for finite SMDPs, thereby giving

a decidable condition for avoiding timing anomalies. To do this, we first show that in order to establish

strong monotonicity, it is enough to consider paths up to length

m = max{|SU | · |SW |, |SV | · |SW ′ |}+max{|SU |, |SV |, |SW |, |SW ′ |}+1,

due to the fact that they start repeating, as can be shown by a simple pigeonhole argument.

Lemma 5.13. Let U, V , W, and W ′ be finite. If (U,W )≦m
⋆ (V,W

′), then (U,W )≦⋆ (V,W
′).
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We can now use the first-order theory of the reals to show that strong monotonicity is a decidable

property. In order for this to work, we must be able to check the first condition of strong monotonicity

in the first-order theory of the reals. We therefore need the sets of t ∈ R≥0 in that condition to be

expressible in the first-order theory of reals, which can be accomplished by assuming that these sets are

semialgebraic.

Theorem 5.14. Let U, V , W , and W ′ be finite. If for all state paths u1 . . .un, v1 . . .vn, w1 . . .wn, and

w′
1 . . .w

′
n we have that {t ∈ R≥0 | Fρ(ui‖⋆wi)(t) ≥ FρU (ui)(t)} and {t ∈ R≥0 | FρV (vi)(t) ≥ Fρ(vi‖⋆w′

i)
(t)} are

semialgebraic sets for all 1 ≤ i ≤ m, then it is decidable whether (U,W )≦⋆ (V,W
′).

For uniform and exponential distributions with minimum or maximum composition, the correspond-

ing sets are all semialgebraic, and the same is true for exponential distributions with product composition.

Theorem 5.14 can therefore be used for these types of composition.

It turns out that strong monotonicity implies the absence of non-determinism.

Proposition 5.15. If (U,W )≦⋆ (V,W
′), then L is a singleton set or u0 is a deadlock state, i.e. the

transition probability is zero from u0 to any other state.

However, strong monotonicity still makes sense as a condition, since all our examples of timing

anomalies in Section 5.1 have no non-determinism.

6 Conclusion

In this paper, we have investigated the notion of a process being faster than another process in the context

of semi-Markov decision processes. We have given a trace-based definition of a faster-than relation, and

shown how this notion relates to the usual notions of simulation and bisimulation and to convolutions

of distributions. By considering composition as being parametric in how the residence times of states

are combined, we have given examples showing that our faster-than relation gives rise to parallel timing

anomalies for many of the popular ways of composing rates. We have therefore given sufficient condi-

tions for how such parallel timing anomalies can be avoided, and we have shown that these conditions

are decidable.

While the conditions for strong monotonicity are so strict that they rule out non-determinism, it

seems difficult to obtain better results that are still decidable. This is because the faster-than relation

itself is undecidable whenever non-determinism is introduced, and even without non-determinism, it has

close connections to an important problem in number theory [21] whose decidability status is a long-

standing open problem. Because of this, an interesting future work direction is to explore the boundaries

of decidability for conditions to avoid timing anomalies.

Furthermore, the conditions we have given for avoiding timing anomalies do not look at the context

in isolation, but depend also on the processes that are being swapped. It would be preferable to have

conditions on a context that would guarantee the absence of parallel timing anomalies no matter what

processes are being swapped.
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