
A. Aldini and H. Wiklicky (Eds.): Quantitative Aspects
of Programming Languages and Systems 2019 (QAPL’19).
EPTCS 312, 2020, pp. 43–57, doi:10.4204/EPTCS.312.4

c© Maja H. Kirkeby
This work is licensed under the
Creative Commons Attribution License.

Probabilistic Output Analyses for Deterministic Programs
–Reusing Existing Non-probabilistic Analyses

Maja Hanne Kirkeby∗

Roskilde University, Denmark

kirkebym@acm.org

We consider reusing established non-probabilistic output analyses (either forward or backwards) that
yield over-approximations of a program’s pre-image or image relation, e.g., interval analyses. We
assume a probability measure over the program input and present two techniques (one for forward and
one for backward analyses) that both derive upper and lower probability bounds for the output events.
We demonstrate the most involved technique, namely the forward technique, for two examples and
compare their results to a cutting-edge probabilistic output analysis.

1 Introduction

Output analyses infer information about program outputs either as main purpose, e.g., interval analy-
sis [3] and octagon analysis [12], or as bi-product, e.g., sign-analysis [16]. Output analyses are also used
to construct other analyses, e.g., resource analyses where resource instrumented versions of the pro-
gram are analysed using output analyses [9]. The aim of this paper is to reuse static (non-probabilistic)
output analyses to infer information about the probabilities of a program’s output when knowing the
input probabilities, i.e., providing an approach to mechanically obtain probabilistic output analyses for
deterministic programs.

Previously, probabilistic analyses have mainly focused on analysing probabilistic programs. Sankara-
narayan et al. [18] and Adje et al. [1] present analyses optimized for each their type(s) of probability
measures and both provide upper and lower probability bounds of the program output. In this paper, we
focus on a subset of probabilistic programs, namely the deterministic ones, but instead of presenting a
specified probability analysis, we present an approach to reuse analyses to create probabilistic analyses
for any type of probability measures.

More general results exist in the form of probabilistic abstract interpretation frameworks presented
by Monniaux [13] and by Cousot and Monerau [6]. Both these frameworks describe how to extend
non-probabilistic abstract interpretation analyses for deterministic programs to probabilistic analyses for
probabilistic programs; their resulting analyses provide upper probability bounds of output events (and
not lower probability bounds). Both require a manual development to handle the randomness in the pro-
grams, e.g., random number generators and the probabilistic operations. In comparison, the techniques
presented in this paper handle only deterministic programs (disallowing, e.g., random number genera-
tors) but this choice allows us to consider the existing analysis tools as black-box analyses and it does
not require any manual developments. Thus, the techniques are amenable to implementation. Further-
more, they each induce not only upper probability bounds of output events, but also lower probability
bounds. We will compare our results with those produced by Monniaux’s experimental lifting of an
interval analysis [13].

∗This work is supported by The Danish Council for Independent Research, Natural Sciences, grant no. DFF 4181-00442.

http://dx.doi.org/10.4204/EPTCS.312.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

44 Probabilistic Output Analyses

Contributions and Overview. After preliminaries (Section 2), we present two novel techniques for
inducing both upper and lower probability bounds of output events of deterministic programs: one using
backwards analyses (Section 3.1) and one using forward analyses (Section 3.2). We demonstrate the for-
ward technique, the most involved of the two, by two examples (Section 4.2); one using sign analysis in
combination with termination analysis, and one using interval analysis. When comparing the probability
bounds we produce with the ones produced by Monniaux’s experimental probabilistic analysis [13], the
presented approaches infer equally good and better upper probability bounds. Furthermore, when com-
bined with non-termination analyses, they produce novel non-trivial lower bounds, i.e., bounds greater
than 0.

2 Preliminaries

We let X ,Y,A,B,T (sometimes indexed) denote sets. A set A{ is the complement of A with respect to a
set (indicated by the context), e.g., X . We denote a countable infinite series by X1,X2, A partition
T over a set X is a set of nonempty and pairwise disjoint subsets of X such that

⋃
T = X ; when T is

a finite/countable/infinite set then T is a finite/countable/infinite partition. For two partitions T,T ′ over
X , we say that T is finer than T ′ if every element of T is a subset of an element in T ′. When T over X
consists of all singletons, i.e., T = {{x} | x ∈ X}, it is a singleton-partition; the finest partition T over X
is the singleton-partition.

A σ -algebra X is a non-empty subset of ℘(X) that is closed under countable unions and comple-
ments, i.e. if A1,A2, . . . ∈X , then

⋃
∞
n=0 An ∈X , and if A ∈X , then A{ ∈X . Note that if X is a

σ -algebra over X , then X ∈X and /0 ∈X , and, furthermore, that a σ -algebra X is closed under count-
able intersections, i.e. if A1,A2, . . . ∈X , then

⋂
∞
n=0 An ∈X . Given a collection of sets A ⊆℘(X), the

σ -algebra generated by A, written σ(A), is the intersection of all σ -algebras containing A.

A measurable space is a pair (X ,X) whereby the sample space X is a set and X ⊆℘(X) is a
σ -algebra. The elements of X are called events. A measure µ on a measurable space (X ,X) is a
function µ : X → R+ that is countably additive, i.e. for every countable set of pairwise disjoint sets
A1,A2, . . . ∈X , µ(∪∞

i=1Ai) = ∑
∞
i=1 µ(Ai), and µ(/0) = 0. Note that a measure µ : X →R+ is monotone,

i.e., A ⊆ B⇒ µ(A) ≤ µ(B), whenever A,B ∈X . A measure space (X ,X ,µ) is a measurable space
(X ,X) with a measure µ on it. Given two measure spaces (X ,X ,µX) and (Y,Y ,µY), their product
measure space is (X ×Y,σ(X ×Y),µ) where µ(A×B) = µX (A) ·µY (B) for all A ∈X and B ∈ Y .
A measure µ on a measurable space (X ,X) is discrete if its weight is on at most countably many
elements, i.e. there exists a countable set A ∈X such that µ(A) = µ(X), and continuous if the weights
of all countable sets are 0, i.e. µ(A) = 0 for all countable sets A ∈X .

A measure µ on (X ,X) is a probability measure if µ(X) = 1; in addition, µ(A) = 1− µ(A{). A
probability space (X ,X ,µ) is a measure space wherein the measure µ is a probability measure.

Let (X ,X) and (Y,Y) be measurable spaces: A function f : X → Y is measurable if pre f (B) ∈X

whenever B ∈ Y , where the pre-image function of f pre f is defined by pre f (B) , {x ∈ X | f (x) ∈
B} and the image function img f (A) , { f (x) ∈ Y | x ∈ A}. Often we denote a measurable function by
f : (X ,X)→ (Y,Y) and we refer to elements in X as input events and elements of Y as output events
A probability space (X ,X ,µ) and a measurable function f : (X ,X)→ (Y,Y), defines a probability
measure µ f , called an output probability measure, µ f (A), µ(pre f (A)) of f whenever A ∈ Y , e.g., [2].

Maja H. Kirkeby 45

3 Reusing existing analysis

A program prg may have many semantics, but in this work, we consider the semantics |prg| to be a
relation between input X and output Y , i.e., a set of input-output pairs |prg| ⊆ X×Y . For a deterministic
program, the input-output relation is functional, i.e., each input is related to at most one output. Programs
that terminate for all inputs x ∈ X define total relations, i.e., each input relates to at least one output.
Depending on the analysed language, Y could contain special elements for program results that are not
per se outputs, for instance, error or nontermination. Without loss of generality, we limit the focus of this
paper to the class of programs with total input-output relations. Thus, assuming the program semantics
to be both measurable [11, 13], i.e., |prg| : (X ,X)→ (Y,Y), and total.

Example 1. Let (X ,{ /0,X}) and (Y,℘(Y)) be measurable spaces where X = {a,b} and Y = {c,d}
and let f : X →Y be a function whereby f (a)= f (b)=c. The function f is total since it is defined
for each input, i.e., a and b, and it is measurable since the pre-images of every output event, i.e.,
A ∈ { /0,{c},{d},{c,d}}, is an input event, i.e., pre f (A) ∈ { /0,{a,b}}; pre f (/0) = pre f ({d}) = /0 and
pre f ({c}) = pre f ({c,d}) = {a,b}.

According to our aim, we assume to know the input probability measure µ : { /0,X} → [0,1]. Based
on such an input probability measure µ , we recall that the probability of an output event A∈Y is defined
as the input probability of A’s pre-image pre|prg|(A), namely, µ(pre|prg|(A)).

Example 2 (Example 1 continued). Let input and output spaces and the total measurable function f be
as in Example 1. In addition, let µ : X → [0,1] be a trivial input probability measure such that µ(/0) = 0
and µ({a,b}) = 0. The probability of the output events { /0,{c},{d},{c,d}} are µ f (/0) = µ f ({d}) = 0
and µ f ({c}) = µ f ({c,d}) = 1, e.g., µ f ({d}) = µ(pre f ({d})) = µ(/0) = 0 or µ f ({c}) = µ(pre f ({c})) =
µ({a,b}) = 1.

This paper is based on the idea of “reusing an existing analysis” and an analysis f is typically given
in some abstract domain, e.g., using abstract interpretation [3, 4], using an abstraction α from the con-
crete domain to the abstract domain. We will, in addition, assume a concretization function γ to avoid
complications of the abstract domain. For instance, a forward interval analysis is actually a function
between intervals f : I → I rather than a function between sets of reals g : ℘(R)→℘(R); however,
we assume to compose f with the concretization γ : I →℘(R) and the abstraction α : ℘(R)→ I ,
achieving the analysis, i.e., g = γ ◦ f ◦ α . The analyses may be either forward or backwards; we consider
the analyses to be given as perhaps non-measurable functions pre]|prg| : ℘(Y)→℘(X) (backwards) or

functions img]|prg| : ℘(X)→℘(Y) (forwards) that produce supersets1 of the programs pre-image pre|prg|
and image img|prg|, respectively.

3.1 Backwards analysis

In this section, we assume a pre-image over-approximating backwards analysis of the program, e.g. [5],
i.e., we assume a function pre]|prg| : ℘(Y)→℘(X) such that pre|prg|(A) ⊆ pre]|prg|(A). We want to use

pre]|prg| to provide upper and lower probability bounds for all output events. We start by defining an order
between the pre-image functions based on the relationship of their outputs.

Definition 3. Let pre,pre′ : ℘(Y)→℘(X) be functions. We say that function pre′ over-approximates
pre, i.e. pre� pre′, and that pre under-approximates pre′, if pre(A)⊆ pre′(A)

1A set A is a superset of a set B if A⊇ B.

46 Probabilistic Output Analyses

The intention is to measure the over-approximated pre-images of each output event A using the assumed
input probability measure µ : X → [0,1], i.e., requiring pre](A) ∈X . However, this is not always the
case, as shown in the following example.

Example 4 (Examples 1,2 continued). An example of a backwards analysis pre]f that over-approxi-

mates pre f could be defined so that pre]f ({d}) = {b} and pre]f ({c}) = {a,b}. Here, {b}= pre]f ({d})⊇
pre f ({d})= /0 as required, however, pre]f ({d}) is not measurable in the input space, i.e.,{b} /∈{ /0,{a,b}}.

For these cases, we define a function ↑ that further over-approximates the pre-images.

Definition 5. Let (X ,X) be a measurable space. A function ↑ : ℘(X)→X is an abstraction if A⊆ ↑A.

An abstraction ↑ : ℘(X)→X can always be defined using a mapping f : X →X , where x ∈ f (x),
i.e. ↑B ,

⋃
b∈B f (b). The composition of a pre-image over-approximation pre] and an abstraction ↑

over-approximates the pre-image and produces measurable input events.

Lemma 6. Let pre : ℘(Y)→℘(X) be a pre-image, let pre� pre], and let ↑ : ℘(X)→X be an abstrac-
tion; then, pre� ↑ ◦ pre] and ↑(pre](A)) ∈X .

We can now present the first result, namely the definition of an upper probability bound.

Theorem 7. Let f : (X ,X)→ (Y,Y) be a measurable function, let (X ,X ,µ) be an input probability
space, and let µ f : Y → [0,1] be the output probability measure. Furthermore, let pre]f : ℘(Y)→℘(X)
over-approximate pre f and let ↑ : ℘(X)→X be an abstraction. We define the upper probability bound
of µ f as µ

]
f , µ ◦↑◦pre]f . Then, µ f (A)≤ µ

]
f (A) and when pre]f and ↑ are monotonic, then µ

]
f is monotonic.

Proof. Lemma 6 yield that ↑(pre](A)) ∈X and pre f � ↑◦ pre]f . Furthermore, by the monotonicity of µ ,

we obtain that for any A ∈ Y then µ(pre f (A))≤ µ(↑ ◦ pre]f (A) and thus, µ f (A)≤ µ
]
f (A). Finally, when

↑ and pre]f are monotonic then by composition µ ◦↑◦pre]f is monotonic, i.e., µ
]
f is monotonic, since µ is

monotonic by definition.

Example 8 (Examples 1-4 continued). To obtain measurable input events, we create an abstraction
↑ f : ℘({a,b})→{ /0,{a,b,}} defined so that ↑ f ({a}) =↑ f ({b}) = {a,b} and ↑ f (/0) =↑ f ({a,b}) = id.
According to Theorem 7, µ

]
f = µ ◦↑ f ◦ pre]f provides upper probability bounds for the output events as

follows –their exact probabilities µ f are provided for comparison:

µ
]
f (/0) = µ(↑ f (pre]f (/0))) = µ(/0) = 0

(
≥ 0 = µ f (/0)

)
µ
]
f ({c}) = µ(↑ f (pre]f ({c}))) = µ({a,b}) = 1

(
≥ 1 = µ f ({c})

)
µ
]
f ({d}) = µ(↑ f (pre]f ({d}))) = µ({a,b}) = 1

(
≥ 0 = µ f ({d})

)
µ
]
f ({c,d}) = µ(↑ f (pre]f ({d}))) = µ({a,b}) = 1

(
≥ 1 = µ f ({c,d})

)
Based on over-approximating pre-images we also want to derive lower probability bounds; to achieve

this we will define under-approximating pre-images and we start by introducing the concept of a dual
function.

Definition 9. Let f , f̃ be functions f , f̃ : ℘(Y)→℘(X). f̃ is dual of f if f̃ (A) = f (A{)
{.

Because |prg| is total, we can use the dual of pre] to define a function pre[that under-approximates pre,
as shown by the following lemma.

Maja H. Kirkeby 47

Lemma 10. Let pre f ,pre]f : ℘(Y)→℘(X) be functions with pre f as the pre-image of a total and mea-

surable function f : X → Y and pre f �pre]f . Then, the dual pre[f , p̃re]f under-approximates pre f , i.e.,
pre[f � pre f .

Proof. Let A ∈ Y . Since f is total, pre f (A)∪ pre f (A{) = X . Thus, pre[f (A) = p̃re]f = pre]f (A{)
{
=

X\pre]f (A{) =
(
pre f (A)∪pre f (A{)

)
\pre]f (A{) = pre f (A)\pre]f (A{)⊆ pre f (A).

Lemma 11. If pre]f is monotone, then pre[f is monotone.

Proof. Assume A,B⊆ X , where A⊆ B and define C = (B\A); then, pre[f (B) = pre[f (A]C) = pre]f (A]
C) \ pre]f ((A]C){) = pre]f (A]C) \ pre]f (A{ ∩C{)) ⊇ pre]f (A]C) \ pre]f (A{) ⊇ pre]f (A) \ pre]f (A{) =

pre[f (A)

When the over-approximated pre-images of the output events are measurable in the input measure space,
their dual under-approximated pre-images are also measurable, as the following lemma states.

Lemma 12. Let f : (X ,X)→(Y,Y) be a measurable function, pre]f : ℘(X)→℘(Y) be a function where

pre f � pre]f , and pre[f be dual to pre]f . Then, for all A∈Y , pre]f (A)∈X if and only if pre f[(A)∈X

Proof. Let A ∈ Y . The following are consequences of σ -algebras being closed under complements, of
the duality of pre[f and pre], and of the assumed measurability of A.

“⇒”: A ∈ Y ⇒ A{ ∈ Y ⇒ pre]f (A{) ∈X ⇒ pre]f (A{)
{ ∈X ⇒ pre[f (A) ∈X

“⇐”: A ∈ Y ⇒ A{ ∈ Y ⇒ pre[f (A{) ∈X ⇒ pre]f (A{{)
{
∈X ⇒ pre]f (A)

{ ∈X ⇒ pre]f (A) ∈X

We can now define a lower probability bound which is directly related to the upper probability bound.

Theorem 13. Let f : (X ,X)→ (Y,Y) be a measurable function, let (X ,X ,µ) be an input probability
space, and let µ f : Y → [0,1] be the output probability measure. Furthermore, let pre]f : ℘(Y)→℘(X)

over-approximate pre f and let ↑ : ℘(X)→ X be an abstraction. We let pre′[f (A) ,
(
↑◦pre]f (A{)

){
and define the lower probability bound of µ f as µ[, µ ◦ pre′[f . Then, µ[

f (A) ≤ µ f (A) and µ[
f (A) =

1−µ
]
f (A{). Furthermore, if pre]f and ↑ are monotonic, then µ[

f is monotonic.

Proof. By Lemmas 6 and 10, pre′[f � pre f , and by 6 and 12, pre′[f (A) ∈X . Furthermore, by the mono-

tonicity of µ , we obtain µ(pre′[f (A)) ≤ µ(pre f (A)) and, thus, µ[
f (A) ≤ µ f (A) ≤ µ

]
f (A). We obtain the

second part by µ(A) = 1− µ(A{) and the definitions of µ[
f and µ

]
f , that is, µ[

f (A) = µ(pre′[f (A)) =

1− µ(pre′[f (A)
{
) = 1− µ(

(
↑◦pre]f (A{)

){{
) = 1− µ(↑◦pre]f (A{)) = 1− µ

]
f (A{) Finally, since µ , pre]f

and ↑ are monotonic, then by composition and Lemma 11, µ ◦ pre′]f and µ ◦ pre′[f are monotonic.

48 Probabilistic Output Analyses

Example 14 (Examples 1-8 continued). Folowing Theorem 13, we define pre′[f (A) ,
(
↑◦pre]f (A{)

){
such that µ[, µ ◦ pre′[f provides the following lower probability bounds for the output events:

µ[
f (/0) = µ(↑ f (pre]f (/0{))

{
) = µ({a,b}{) = 0

(
≤ 0 = µ f (/0)

)
µ[

f ({c}) = µ(↑ f (pre]f ({c}{))
{
) = µ({a,b}{) = 0

(
≤ 1 = µ f ({c})

)
µ[

f ({d}) = µ(↑ f (pre]f ({d}{))
{
) = µ({a,b}{) = 0

(
≤ 0 = µ f ({d})

)
µ[

f ({c,d}) = µ(↑ f (pre]f ({c,d}{))
{
) = µ(/0{) = 1

(
≤ 1 = µ f ({c,d})

)
To achieve the tightest probability bounds, the abstraction should return the least increased element

in the σ -algebra. However, in general, such a least element does not exist.

Lemma 15. Let (X ,X) be a measurable space, and let A ∈℘(X); there does not always exist a least
B ∈X such that A⊆ B.

Proof. Proof by counterexample. A set A⊆ X is co-countable if A{ is countable. We define a σ -algebra
X to be that generated by the collection of all countable and co-countable subsets of X . Note that
since each singleton set is countable, they all exist in X . Now, let A ∈℘(X) be uncountable with
an uncountable complement A{. We will show (by contradiction) that there is no least B ∈X such that
A⊆B. Assume that there is a least set B∈X that contains A. Then, B would need to be uncountable, and
according to the definition of X , B{ would be countable. Since B{ is countable and A{ is uncountable,
B{ ⊂ A{. This is equivalent to A⊂ B, which causes B\A to contain at least one element; let that element
be x. Because {x} is a singleton set, {x} ∈X , and because X is closed under countable intersection,
B\{x} ∈X . This implies that there is another set, namely, B\{x}, such that A⊆ B\{x} ⊂ B, and thus
B is not the least set in X that contains A - this contradicts our assumption.

When the σ -algebra is a complete lattice, such a least element does exist. For instance, a power set is
both a complete lattice, e.g., [15, p.394], and a σ -algebra [2, p.65]. If the σ -algebra is a complete lattice,
then the abstraction is the identity function, i.e. ↑= id.

Combining analyses Two black-box analyses may be combined into a tighter analyses.

Lemma 16. Let pre f ,pre]f ,pre′]f : ℘(Y)→℘(X) be three functions such that pre f � pre]f and pre f �
pre′]f . Then pre f (A)⊆ pre]f (A)∩pre′]f (A).

3.2 Forward analysis

Again, let |prg| : X → Y be a function, and recall that img|prg|(A) , {|prg|(x) | x ∈ A}. In this section,
we present a method for computing upper and lower probability bounds for output events provided
a probability measure µ : X → [0,1] over the input X and a forward analysis, that is, a computable
over-approximation img]|prg| : ℘(X)→℘(Y) of the image-function img|prg| : ℘(X)→℘(Y), i.e., img|prg| �

img]|prg|. To compute the probability of the events, we only need to define a computable pre-image over-

approximating function pre]|prg|, and then, we can apply Theorems 7 and 13 and obtain Theorem 22.
We may define the pre-image function based on the image function since the image function on the

singletons defines the program semantics.

Lemma 17. For a function f with img f :℘(X)→℘(Y) then pref (A)={x∈X | img f ({x})∩A 6= /0}.

Maja H. Kirkeby 49

Proof. When f is a function, img f ({x}) = { f (x)}. Thus, the above is a direct consequence of the
definition of pre f , i.e. pre f (A), {x ∈ X | f (x) ∈ A}.

In our case, we do not have an image function; rather, we have an image over-approximating function
img]f , i.e., img f � img]f ; we may instead use that to define a pre-image over-approximation function pre]f .

Lemma 18. Let f be a function with image function img f and pre-image function pre f , and let img]f be a

function whereby img f � img]f . If we let pre]f (A), {x∈ X | img]f ({x})∩A 6= /0}, then pre]f (A)⊇ pre f (A).

Proof. pre f(A)={x∈X | img f ({x})∩A 6= /0}⊆{x∈X | img]f ({x})∩A 6= /0}=pre]f(A).

For programs whereby X is finite, any output event is computable, but when X is infinite, they are not.
Instead, we propose a computable pre]f based on img]f and a finite partition of input X .

Lemma 19. Let f : (X ,X)→ (Y,Y) be a measurable function, let the function img]f : ℘(X)→℘(Y)

over-approximate img f , and let T denote the set of all partitions over X. We define a function pre]f : T→
(℘(Y)→℘(X)) as pre]f [T](B),

⋃
{t ∈ T | img]f (t)∩B 6= /0} Then, pre f � pre]f [T].

Proof. pre f (B) = {x ∈ X | img f ({x}) ∩ B 6= /0} ⊆ {x ∈ X | t ∈ T ∧ x ∈ t ∧ img f ({t}) ∩ B 6= /0} ⊆
{x ∈ X | t ∈ T ∧ x ∈ t ∧ img]f ({t})∩B 6= /0} ⊆

⋃
{t ∈ T | img]f ({t})∩B 6= /0}= pre]f [T](B)

Proposition 20. pre]f [T](
⋃

A∈A A) =
⋃

A∈A pre]f [T](A).

Proof. a ∈ pre]f [T](A∪B) ⇔ ∃t ∈ T : a ∈ t ∧ img]f (t)∩ (A∪B) 6= /0 ⇔ ∃t ∈ T : a ∈ t ∧ (img]f (t)∩A 6=
/0) ∨ (img]f (t)∩B 6= /0) ⇔ ∃t ∈ T : (a ∈ t ∧ img]f (t)∩A 6= /0) ∨ (a ∈ t ∧ img]f (t)∩B 6= /0) ⇔ a ∈
pre]f [T](A)∪ pre]f [T](B)

Corollary 21. For any partition T over X, pre]f [T] is monotone.

Applying Theorems 7 and 13 to the computable pre][T], we obtain computable upper/lower probabilities.

Theorem 22. Let (X ,X ,µ) be a probability space, and let f : (X ,X) → (Y,Y) be a measurable
function that induces the output probability measure µ f : Y → [0,1], i.e. µ f = µ ◦ pre f . Given a function
img]f : ℘(X)→℘(Y) such that img f � img]f , a finite partition T over X, and a monotone abstraction

↑ : ℘(X)→X , we let pre′]f [T](A),↑
⋃
{t | ∃t ∈ T : img]f (t)∩A 6= /0} and pre′[f [T](A), pre′]f [T](A{)

{
,

and we define µ
]
f , µ ◦ pre′]f [T] and µ[

f , µ ◦ pre′[f [T]. Then, (i) µ[
f (A) ≤ µ f (A) ≤ µ

]
f (A) (ii) µ[

f (A) =

1−µ
]
f (A{), and (iii) µ[

f and µ
]
f are monotone.

Proof. The function pre]f [T] over-approximates pre f (by Lemma 19), and it is monotone (by Corol-
lary 21). Thus, the above is a direct consequence of Theorems 7 and 13.

When choosing the partition T with elements measurable in X , then pre]f [T](A) ∈X for every

output event A. In this case we may use identity as abstraction and can unfold the µ
]
f and µ[

f into a
simpler form.

50 Probabilistic Output Analyses

Theorem 23. Let f : (X ,X)→ (Y,Y) be a measurable function with the image function img f and the
pre-image function pre f , let (X ,X ,µ) be a probability space, let img]f : ℘(X)→ Y be a function that
over-approximates img f , and let T be a finite partition over X such that T ⊆X . Then,

µ
]
f (A) = ∑t∈T,img](t)∩A 6= /0 µ(t) and µ[

f (A) = ∑t∈T,img](t)⊆A µ(t).

Proof. Both proof parts rely on Thm. 22 where ↑ is the identity function, and T ’s elements are non-
overlapping and mesaurable and µ is additive; furthermore, the proof of µ[

f relies on the unfolding

pre′[f [T](A) = pre′]f [T](A)\pre′]f [T](A{) =
⋃
{t ∈ T | img]f (t)∩A 6= /0∧¬(img]f (t)∩A{ 6= /0)} =

⋃
{t ∈

T | img]f (t)∩A 6= /0∧ img](t)⊆ A}=
⋃
{t ∈ T | img](t)⊆ A}.

For readers familiar with Dempster-Shafer theory, the partition is a set of focal elements and Theorem 22
generalizes to any set of (overlapping) focal elements; Theorem 23 resembles the belief and plausibility
functions defined based on focal elements [10]. Furthermore, the lower probability bounds defines a
belief function, which have been related to inner measures [17, 8, 19].

When img] is monotone, a finer partition yields tighter probability bounds; however, for a countable
infinite X , there is no finest finite partition.

Combining analyses When one or more analyses are forward analyses we can apply the above meth-
ods and combine the resulting pre-images using Lemma 16; when both are forward analyses they can be
combined directly.
Lemma 24. Let img f , img]f , img′]f : ℘(X)→℘(Y) be three functions such that img f � img]f and img f �
img′]f . Then, img f (A)⊆ img]f (A)∩ img′]f (A).

4 Examples

In the following we apply the above presented forward approach to two output analysis, namely a sign
analysis and an interval analysis and compose them with termination analysis. We study three simple
programs; for two of them we provide step-by-step example calculations. For the third program, we first
provide the results showing an improvement compared to the essential and still cutting-edge results by
Monniaux [14] and, afterwards, we provide a simple example demonstrating what causes the difference
in the results.

4.1 Sign and Termination analyses

The program sum (Figure 1a) calculates ∑
x
i=1 i for an input x. We analyse the output properties ℘(S),

S= {Z−,{0},Z+,⊥}where⊥ represents non-terminating computations. We will derive upper and lower
probability bounds for the program’s output events

1. reusing a standard sign analysis, e.g., [16], i.e., a forward analysis img],

2. reusing the online termination analysis AProVE [7], i.e., a forward analysis img′], and

3. by combining the image-over-approximating functions using Lemma 24 constructing a new img′′]

that provides results that are stronger than we could from the probability bounds.
Since they are both forward analysis and the inputs are integers, we use the formulas provided in

Theorem 23. We will analyse the program with respect to input partition T = {Z−,{0},Z+} with input
event probabilities as follows: µ(Z−) = 1/3, µ({0}) = 1/4, and µ(Z+) = 5/12.

Maja H. Kirkeby 51

Sign analysis The sign analysis yields partial correctness if the program terminates, the analysis’ result
contains the concrete program result [16]. Such analyses do (obviously) not conclude anything about
termination/non-termination, and we safely assume that the output of the program is that of the analysis
or ⊥, see column img] in Figure 1b. Using the formulas from Theorem 23 we calculate the inferred
upper and lower probabilistic bounds for each of the output properties, e.g., see the following example.
Example 25. To calculate the upper and lower probability of the output event {0} the formulas from
Theorem 23 require that we sum the probabilities of the input events in T whose image overlaps with {0}
and we sum the probabilities of the input events in T whose image is a subset of {0}, respectively.

µ
]
f ({0}) = ∑t∈T,img](t)∩{0}6= /0 µ(t) = ∑t∈{{0},Z+} µ(t) = µ({0})+µ(Z+) = 1/4+5/12 = 2/3

µ[
f ({0}) = ∑t∈T,img](t)⊆{0} µ(t) = ∑t∈ /0 µ(t) = 0

The lower probability bound of the output event {0} is 0 and its upper probability bound is 2/3; in
comparison the correct probability of {0} is 1/4.
The inferred upper and lower probabilistic bounds are shown by blue dashed lines in Figure 1c; the
correct probabilities are given by orange ‘×’.

int (sum)(int x)
{ int y = 0;

while (x!= 0){
y = y + x;
x = x - 1;}

return y; }

(a)

t ∈ T µ(t) img]

Z− 1/3 {⊥}∪Z−
{0} 1/4 {⊥,0}
Z+ 5/12 {⊥,0}∪Z+

(b)

/0 ⊥ Z − {0} Z + {⊥}∪Z −
{⊥,0}

{⊥}∪Z +

Z −
∪{0}

Z −
∪Z +

{0}∪Z +

S\Z +
S\{0}

S\Z − S\{⊥}
S

0
1/3
2/3

1
Probabilities and inferred probability bounds using a sign analysis

(c)
Figure 1: The upper and lower probabilistic bounds inferred using the sign-analysis are shown by blue dashed lines

and the correct probabilities are shown by the orange ‘×’.

Termination analysis We applied the termination analyser AProVE [7] on altered versions of the
program2 for each partition element t to determine whether {⊥} is not in t’s image, i.e., img′](t) = {Z}
or may be a part of t’s image, i.e., img′](t) = {⊥,Z}. The obtained results are displayed in column img′]

in Figure 2a. Again, we use the formulas from Theorem 23 to obtain upper and lower bounds, e.g., see
following example.
Example 26. To calculate the upper and lower probability of the output event {0} the formulas from
Theorem 23 require that we sum the probabilities of the input events in T whose image overlaps with {0}
and we sum the probabilities of the input events in T whose image is a subset of {0}, respectively. Again,
we use the formulas from Theorem 23 to derive upper and lower probability bounds.

µ
]
f ({0}) = ∑t∈T,img′](t)∩{0}6= /0 µ(t) = ∑t∈{Z−,{0},Z+} µ(t) = µ(Z−)+µ({0})+µ(Z+) = 1

µ[
f ({0}) = ∑t∈T,img′](t)⊆{0} µ(t) = ∑t∈ /0 µ(t) = 0

2For each partition element, we made sure that the alternative inputs caused the program to stop and return an integer.

52 Probabilistic Output Analyses

The lower probability bound of the output event {0} is 0 and its upper probability bound is 1; in com-
parison the correct probability of {0} is 1/4.

The inferred probabilistic bounds are shown in Figure 2b (green dotted) and are typically worse than
those obtained by the sign-analysis.

t ∈ T µ(t) img
′
]

Z− 1/3 {⊥}∪Z
{0} 1/4 Z
Z+ 5/12 Z

(a)
/0 ⊥ Z − {0} Z + {⊥}∪Z −

{⊥,0}
{⊥}∪Z +

Z −
∪{0}
Z −
∪Z +

{0}∪Z +

S\Z +
S\{0}

S\Z −S\{⊥}
S

0
1/3
2/3

1
Probabilities and inferred probability bounds using a termination analysis

(b)

Figure 2: The upper and lower probabilistic bounds inferred using the termination-analysis are shown by green
dotted lines and the correct probabilities are shown by the orange ‘×’.

Combined analyses. Instead of combining the resulting probabilistic bounds from the two analyses,
we have proposed to combine the analyses image-overapproximating functions using Lemma 24 and
afterwards infer the probability bounds based on this combined result using, e.g., the formulas of Theo-
rem 23. Given two image-over-approximating functions img] (see Table 1b) and img′] (see Table 2a), we
use the formula of Lemma 24 to define img′′] over the partition elements as follows.

img′′](Z−) = img](Z−)∩ img′](Z−) = ({⊥}∪Z−) ∩ ({⊥}∪Z) = {⊥}∪Z−
img′′]({0}) = img]({0})∩ img′]({0}) = {⊥,0} ∩ Z = {0}
img′′](Z+) = img](Z+)∩ img′](Z+) = ({⊥,0}∪Z+) ∩ Z = {0}∪Z+

Again, we infer probability bounds based on the formulas of Theorem 23 using the new image-over-
approximating function img′′], e.g., see the following example.

Example 27. The procedure is similar to those in Examples 25 and 26; here, we use the function img′′]

to derive upper and lower probability bounds of the output event {0}.

µ
]
|sum|({0}) = ∑t∈T,img′′](t)∩{0}6= /0 µ(t) = ∑t∈{{0},Z+} µ(t) = µ({0})+µ(Z+) = 1/4+5/12 = 2/3

µ[
|sum|({0}) = ∑t∈T,img′′](t)⊆{0} µ(t) = ∑t∈{{0}} µ(t) = µ({0}) = 1/4

The lower probability bound of the output event {0} is 1/4 and its upper probability bound is 2/3; in
comparison the correct probability of {0} is 1/4. Note that both the previous probabilistic analyses
produced 0 as the lower probability bound.

The improved probability bounds are displayed in Figure 3 (solid black) together with the previous
results. These combined results are more precise than if we had simply used the minimum and maximum
of the bounds of the individual analyses; for instance the upper and lower probability bounds of {0}
would have been 2/3 and 0 and with the suggested method the lower bound is improved to 1/3. As
expected from part ii of Theorem 22, i.e., µ[

f (A) = 1−µ
]
f (A{), the improvement of the lower probability

bound of {0} influences the upper probability bound of its complement set, i.e., S \{0}, i.e., µ|sum|(S \
{0}) is reduced from 1 to 2/3.

Maja H. Kirkeby 53

/0 ⊥ Z − {0} Z + {⊥}∪Z −
{⊥,0}

{⊥}∪Z +

Z −
∪{0}

Z −
∪Z +

{0}∪Z +

S\Z +
S\{0}

S\Z − S\{⊥}
S

0

1/3

2/3

1
Probabilities and inferred probability bounds

Figure 3

Figure 4: Probability bounds inferred by img] (using the sign-analysis) are shown as blue dashed lines, those
inferred by img′] (using the termination-analysis) are shown as green dotted lines, and those inferred by
their combined image-overapproximating function img′′] are shown as solid black lines. For comparison,
the correct probability distribution is indicated by orange ‘×’.

4.2 Interval analyses

We study the following simple programs f and g and compare our results with those by Monniaux; the
first program f has no branching points, but the second program g do.
double f(double x1, x2, x3, x4){

double x; x = 0.0;
x = x+ x1*2.0-1.0;
x = x+ x2*2.0-1.0;
x = x+ x3*2.0-1.0;
x = x+ x4*2.0-1.0;
return x; }

double g(double x1, x2, x3, x4, x5){
double x; x = 0.0; (*)
if (x5 >= 0.5) x = x+ x1*2.0-1.0; (**)
x = x+ x2*2.0-1.0;
x = x+ x3*2.0-1.0;
x = x+ x4*2.0-1.0; (***)
return x;}

These programs are deterministic versions of two programs similar to those analysed by Monniaux’s
experimental analysis3 [13]; however, instead of having random generators in the program, here, the
random generated inputs are given as program input. We analyse the programs using a black-box interval
analysis corresponding to that lifted by Monniaux [13] to handle probabilistic programs; furthermore, to
ensure a fair comparison we use an input-partition that corresponds to the abstraction used by Monniaux.

For both programs we infer probability bounds for the output events {[-4,-3], [-3,-2], . . . , [3,4]},
given an input probability measure where the input arguments are independent and each is uniformly
distributed between 0 and 1. Since the interval analysis yields partially correct results, stating nothing
about non-termination, we safely assume to include non-termination as part of its output.

Program f. The program f return the sum four input variables. Because the interval analysis img]|f|
is a forward analysis, we use the formulas of Theorem 23 and let the input partition T be the cartesian
product T = I1/10× I1/10× I1/10× I1/10 where I1/10 = {[0, 1

10], . . . , [
9

10 ,1]}, e.g., see following example.

Example 28. The interval analysis provides an image-overapproximating function img]|f| where the

3Personal communication with D. Monniaux.

54 Probabilistic Output Analyses

following are three examples.

img]|f|([0,
1
10],[0,

1
10],[0,

1
10], [0,

1
10]) = {[−4,−32

10],⊥}
img]|f|([0,

1
10],[0,

1
10],[0,

1
10],[

1
10 ,

2
10]) = {[−38

10 ,−
30
10],⊥}

img]|f|([0,
1
10],[0,

1
10],[0,

1
10],[

2
10 ,

3
10]) = {[−36

10 ,−
28
10],⊥}

There are 10′000 partition elements, and due to the uniform probability measure each of the partition
elements has probability 1/10′000. We use the formulas from Theorem 23 to derive upper and lower
probability bounds of the output events, e.g., see following example. The inferred probability bounds are
shown as black solid lines in Figure 5a and the similar results obtained using Monniaux’s experimental
analysis [13] are depicted by the blue dotted lines.

Example 29. We use the formulas from Theorem 23 to calculate the upper and lower probability bounds
of the output event [−4,−3]. There are 70 input partition elements whose over-approximated images,
i.e., img]|f|, overlap with the output event [−4,−3]; we will refrain from specifying them. Since all the
over-approximated images contain the element ⊥ then there are 0 input partition elements whose over-
approximated images are subsets of [−4,−3]. The input probability of each element is 1/10′000 which
simplifies the calculations.

µ
]
|f|([−4,−3]) = ∑t∈T,img]|f|(t)∩[−4,−3]6= /0 µ(t) = 70 · 1

10000 = 7
1000 ≈ 0.007

µ[
|f|([−4,−3]) = ∑t∈T,img′′](t)⊆[−4,−3] µ(t) = ∑t∈ /0 µ(t) = 0

In comparison the correct probability of the output event [−4,−3] is 1/384 ≈ 0.00260417 (verified in
Mathematica).

[−4,−3]
[−3,−2]
[−2,−1]
[−1,0]
[0,1]

[1,2]

[2,3]

[3,4]

0

1/4

1/2

Probabilities and inferred probability bounds
(program f)

(a)

[−4,−3]
[−3,−2]
[−2,−1]
[−1,0]
[0,1]
[1,2]
[2,3]
[3,4]

0

1/3

2/3

1

Probabilities and inferred probability bounds
(program g)

(b)
Figure 5: The black solid lines are the inferred probability bounds obtained using an interval analysis. In (a),

the dashed black lines show the improved inferred probability bounds based on combining the interval-
analysis results with termination-analysis results. The blue dotted lines indicates the upper probability
bounds for the output events derived using Monniaux’s example analysis [13].

Combined analyses. As we saw in the sign-analysis example (Section 4.1), combining the analysis with
the results of a termination analysis may improve the results. This is also the case in this example as
shown by the black dotted lines in Figure 5a, e.g., see following example.

Example 30. As for img]|f| the same 70 partition elements overlaps with the output event [−4,−3].

However, there are 5 input partition elements for which img′]|f| are subsets of [−4,−3], namely T ′ =

Maja H. Kirkeby 55

{(i, i, i, i),(j, i, i, i),(i, j, i, i),(i, i, j, i),(i, i, i, j)} where i = [0, 1
10] and j = [1

10 ,
2

10]}, as the first two calcu-
lations in Example 28 indicate. The input probability of each element is 1/10′000 which simplifies the
calculations.

µ
]
|f|([−4,−3]) = ∑t∈T,img]|f|(t)∩[−4,−3]6= /0 µ(t) = 70 · 1

10000 = 7
1000 ≈ 0.007

µ[
|f|([−4,−3]) = ∑t∈T,img′′](t)⊆[−4,−3] µ(t) = ∑t∈T ′

1
10000 = 5 · 1

10000 = 5
10000 ≈ 0.0005

In comparison the correct probability of the output event [−4,−3] is 1/384 ≈ 0.00260417 (verified in
Mathematica).

The non-trivial lower probability bounds is a novel development, and Monniaux’s lifting framework
is created with the purpose of deriving only upper probability bounds.

Program g. The program g (53) returns the sum three or four input variables, depending on the value
of the fifth input variable. Due to the branching point in g, i.e., the if-expression, we see a difference in
the upper probability bounds derived using the presented approach and using Monniaux’s experimental
analysis.

Again, the interval analysis img]|g| is a forward analysis and we have used the formulas of Theo-
rem 23. The difference in the bounds stems from undecidability occurring in the branching point and to
expose this difference we have chosen a partition causing such undecidability. The input partition is the
cartesian product I1/3× I1/3× I1/3× I1/3× I1/3 where I1/3 = {[0, 1

3], [
1
3 ,

2
3], [

2
3 ,1]}. There are 243 parti-

tion elements, and due to the uniform probability measure each of the partition elements has probability
1/243. When comparing the results of the methods presented in this paper, shown by the solid black
lines in Figure 5b, and the results obtained using Monniaux’s experimental analysis [13], shown by the
blue dotted lines in Figure 5b, the methods presented here produce better results.

The difference. In the following we demonstrate via an example what causes the difference between
our results and those derived using Monniaux’s experimental analysis [13]. Instead of studying the
above partition with 243 elements, we study a smaller input partition with 6 elements, namely T =
{[0,1]}×{[0,1]}×{[0,1]}×{[0, 1

2], [
1
2 ,1]}×{[0,

1
3], [

1
3 ,

2
3], [

2
3 ,1]}where each partition element has input

probability 1/6 and we will derive the upper probability bound for the output event [2 1
2 ,3

1
2].

Example 31. The interval analysis provides an image-overapproximating function img]|g| over partition
T :

img]|g|([0,1],[0,1],[0,1],[0,
1
2],[0,

1
3]) = {[−3,2],⊥}

img]|g|([0,1],[0,1],[0,1],[0,
1
2],[

1
3 ,

2
3]) = {[−4,3],⊥}

img]|g|([0,1],[0,1],[0,1],[0,
1
2],[

2
3 ,1]) = {[−4,3],⊥}

img]|g|([0,1],[0,1],[0,1],[
1
2 ,1],[0,

1
3]) = {[−2,3],⊥}

img]|g|([0,1],[0,1],[0,1],[
1
2 ,1],[

1
3 ,

2
3]) = {[−3,4],⊥}

img]|g|([0,1],[0,1],[0,1],[
1
2 ,1],[

1
2 ,1]) = {[−3,4],⊥}

Similar to the previous examples, we use Theorem 23 to infer an upper probability bound for output event
[2 1

2 ,3
1
2].

µ
]
|f|([2

1
2
,3

1
2
]) = ∑

t∈T,img]|g|(t)∩[2
1
2 ,3

1
2]6= /0

µ(t) = ∑
t∈T ′

µ(t) = 5/6.

where T ′ = T \{([0,1], [0,1], [0,1], [0, 1
2], [0,

1
3])}.

56 Probabilistic Output Analyses

Monniaux’s experimental abstracts the input measure to a set containing pairs of interval environ-
ments (similar to the interval analysis) and a weight, i.e., the input probability of that interval environ-
ment, e.g., 〈E,w〉,. Afterwards, it propagates the pairs through the program according to the specifica-
tions of the interval analysis; at the branching points the lifted interval analysis duplicates the pair, e.g.,
〈E,w〉 and 〈E,w〉, and adjust the environments according to the condition and its negation to avoid in-
feasible environments, e.g., 〈E1,w〉 and 〈E2,w〉, e.g., see following example. When the set is propagated
all the way through the program, the probability of an output event is the sum of the weights of those
environments yielding output which overlaps with the output event.

In the following we propagate the pairs through the program and calculates the upper probability
bound; we provide the set of pairs at the program points at *, **, and ***.
Example 32. At program point * in g (p. 53) the environments are still recognizable from the input
partition elements with the addition of variable x. The interval of x5 in the second and fifth pair may
lead to the condition being true or false (undecidable); this causes a split of each the those pairs into two
whose x5 intervals are updated according to the branch condition. Afterwards, x is updated as expected;
according to the branch (or skip) before reaching program point **), and again upon reaching program
point ***. In the following, we have only included the essential parts of the environments essential, e.g.,
at every program point we have left out x1 7→ [0,1],x2 7→ [0,1],x3 7→ [0,1].

Program point *: Programpoint**: Program point ***:
{〈...,x4 7→[0, 1

2],x5 7→[0, 1
3],x 7→[0,0]; 1

6〉,
〈...,x4 7→[0, 1

2],x5 7→[1
3 ,

2
3],x7→[0,0]; 1

6〉,

〈...,x4 7→[0, 1
2],x5 7→[2

3 ,1],x 7→[0,0]; 1
6〉,

〈...,x4 7→[1
2 ,1],x5 7→[0, 1

3],x 7→[0,0]; 1
6〉,

〈...,x4 7→[1
2 ,1],x5 7→[1

3 ,
2
3],x7→[0,0]; 1

6〉,

〈...,x4 7→[1
2 ,1],x5 7→[2

3 ,1],x 7→[0,0]; 1
6〉}

{〈...,x57→[0, 1
3],x 7→[0,0]; 1

6〉,
〈...,x57→[1

3 ,
1
2],x 7→[0,0]; 1

6〉,
〈...,x57→[1

2 ,
2
3],x 7→[−1,1]; 1

6〉,
〈...,x57→[2

3 ,1],x 7→[−1,1]; 1
6〉,

〈...,x57→[0, 1
3],x 7→[0,0]; 1

6〉,
〈...,x57→[1

3 ,
1
2],x 7→[0,0]; 1

6〉,
〈...,x57→[1

2 ,
2
3],x 7→[−1,1]; 1

6〉,
〈...,x57→[2

3 ,1],x 7→[−1,1]; 1
6〉}

{〈...,x 7→[−3,2]; 1
6〉,

〈...,x 7→[−3,2]; 1
6〉,

〈...,x 7→[−4,3]; 1
6〉,

〈...,x 7→[−4,3]; 1
6〉,

〈...,x 7→[−2,3]; 1
6〉,

〈...,x 7→[−2,3]; 1
6〉,

〈...,x 7→[−3,4]; 1
6〉,

〈...,x 7→[−3,4]; 1
6〉}

The upper probability bound of output event [2 1
2 ,3

1
2] is the sum of the weights of the pairs for which

the x’s value overlaps with [2 1
2 ,3

1
2] at program point ***. The last six pairs are the only ones where x

interval overlap with [2 1
2 ,3

1
2], thus, Monniaux’s experimental analysis [13] derives 6 · 1

6 = 1 as the upper
probability bound for [2 1

2 ,3
1
2]. Thus, the bound (5/6) derived by the presented technique is tighter.

5 Conclusion

We have presented two simple techniques for reusing existing (non-probabilistic) analyses to derive
upper and lower probability bounds of output events; introducing abstraction when the pre-image is non-
measurable. We demonstrated forward technique and the initial results are powerful compared to more
complex analyses.

References
[1] Assale Adje, Olivier Bouissou, Jean Goubault-Larrecq, Eric Goubault & Sylvie Putot (2014): Static Analysis

of Programs with Imprecise Probabilistic Inputs, pp. 22–47. Springer Berlin Heidelberg, Berlin, Heidelberg,
doi:10.1007/978-3-642-54108-7 2.

http://dx.doi.org/10.1007/978-3-642-54108-7_2

Maja H. Kirkeby 57

[2] Troy Butler, Don Estep & Nishant Panda (2018): A Ramble Through the Foundations of Probability [unpub-
lished].

[3] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints, doi:10.1145/512950.512973.

[4] Patrick Cousot & Radhia Cousot (1979): Systematic design of program analysis frameworks,
doi:10.1145/567752.567778.

[5] Patrick Cousot, Radhia Cousot, Manuel Fähndrich & Francesco Logozzo (2013): Automatic inference of
necessary preconditions. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 7737 LNCS, pp. 128–148, doi:10.1007/978-3-642-35873-
9 10.

[6] Patrick Cousot & Michael Monerau (2012): Probabilistic Abstract Interpretation, pp. 169–193. Springer
Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-28869-2 9.

[7] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten Fuhs, Jera
Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski & René
Thiemann (2017): Analyzing Program Termination and Complexity Automatically with AProVE. Journal of
Automated Reasoning 58(1), pp. 3–31, doi:10.1007/s10817-016-9388-y.

[8] Joseph Y. Halpern & Ronald Fagin (1989): Modelling knowledge and action in distributed systems. Dis-
tributed Computing 3(4), pp. 159–177, doi:10.1007/BF01784885.

[9] Maja H. Kirkeby & Mads Rosendahl (2016): Probabilistic Resource Analysis by Program Transformation.
In Marko van Eekelen & Ugo Dal Lago, editors: Foundational and Practical Aspects of Resource Analysis:
4th International Workshop, FOPARA 2015, London, UK, April 11, 2015. Revised Selected Papers, Springer
International Publishing, Cham, pp. 60–80, doi:10.1007/978-3-319-46559-3 4.

[10] George J Klir (2007): Uncertainty and Information: Foundations of Generalized Information Theory (Klir,
G.J.; 2006). 18, doi:10.1109/TNN.2007.906888.

[11] Dexter Kozen (1985): A probabilistic PDL. Journal of Computer and System Sciences 30(2), pp. 162–178,
doi:10.1016/0022-0000(85)90012-1.

[12] Antoine Miné (2006): The octagon abstract domain. Higher-Order and Symbolic Computation 19(1), pp.
31–100, doi:10.1007/s10990-006-8609-1.

[13] David Monniaux (2000): Abstract Interpretation of Probabilistic Semantics. In Jens Palsberg, editor: Static
Analysis, 7th International Symposium, SAS 2000, Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceed-
ings, Lecture Notes in Computer Science 1824, Springer, pp. 322–339, doi:10.1007/978-3-540-45099-3 17.

[14] David Monniaux (2001): Backwards Abstract Interpretation of Probabilistic Programs. In David Sands,
editor: Programming Languages and Systems, 10th European Symposium on Programming, ESOP 2001
Genova, Italy, April 2-6, 2001, Proceedings, Lecture Notes in Computer Science 2028, Springer, pp. 367–
382, doi:10.1007/3-540-45309-1 24.

[15] Flemming Nielson, Hanne Riis Nielson & Chris Hankin (1999): Principles of Program Analysis. Springer
Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-662-03811-6.

[16] Hanne Riis Nielson & Flemming Nielson (2007): Semantics with Applications: an Appetizer.
doi:10.1159/000321363.

[17] Enrique H. Ruspini: Epistemic Logics, Probability, and the Calculus of Evidence. In: Classic Works of the
Dempster-Shafer Theory of Belief Functions, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 435–448,
doi:10.1007/978-3-540-44792-4 17.

[18] Sriram Sankaranarayanan, Aleksandar Chakarov & Sumit Gulwani (2013): Static analysis for probabilistic
programs. ACM SIGPLAN Notices 48(6), p. 447, doi:10.1145/2499370.2462179.

[19] Glenn Shafer (1990): Perspectives on the theory and practice of belief functions. International Journal of
Approximate Reasoning 4(5-6), pp. 323–362, doi:10.1016/0888-613X(90)90012-Q.

https://www.stat.colostate.edu/~estep/assets/notes_part1.pdf
https://www.stat.colostate.edu/~estep/assets/notes_part1.pdf
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-28869-2_9
http://dx.doi.org/10.1007/s10817-016-9388-y
http://dx.doi.org/10.1007/BF01784885
http://dx.doi.org/10.1007/978-3-319-46559-3_4
http://dx.doi.org/10.1109/TNN.2007.906888
http://dx.doi.org/10.1016/0022-0000(85)90012-1
http://dx.doi.org/10.1007/s10990-006-8609-1
http://dx.doi.org/10.1007/978-3-540-45099-3_17
http://dx.doi.org/10.1007/3-540-45309-1_24
http://dx.doi.org/10.1007/978-3-662-03811-6
http://dx.doi.org/10.1159/000321363
http://dx.doi.org/10.1007/978-3-540-44792-4_17
http://dx.doi.org/10.1145/2499370.2462179
http://dx.doi.org/10.1016/0888-613X(90)90012-Q

	1 Introduction
	2 Preliminaries
	3 Reusing existing analysis
	3.1 Backwards analysis
	3.2 Forward analysis

	4 Examples
	4.1 Sign and Termination analyses
	4.2 Interval analyses

	5 Conclusion

