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In this paper we propose a stochastic broadcastπ-calculus which can be used to model server-client
based systems where synchronization is always governed by only one participant. Therefore, there is
no need to determine the joint synchronization rates. We also take immediate transitions into account
which is useful to model behaviors with no impact on the temporal properties of a system. Since
immediate transitions may introduce non-determinism, we will show how these non-determinism
can be resolved, and as result a valid CTMC will be obtained finally. Also some practical examples
are given to show the application of this calculus.

1 Introduction

Process algebras such as CCS [19], CSP [17], and ACP [2] have been successfully used to model and
analyze concurrent systems. The system behavior of these classical process algebras is usually given
by labeled transition systems(LTS) which have proved to be a convenient framework for analyzing
qualitative properties of large complex system. As these models are onlyconcerned about functional
aspects of concurrent systems, process algebras have been extended with stochastic variables in order
to model performance-oriented systems in recent years. Such examples include TIPP [11], PEPA [15],
EMPA [6], stochasticπ-calculus [20], IMC [13], StoKlaim [8], and Stochastic Ambient Calculus [21].
The semantics of these models are given by a variant of LTS,Continuous Time Markov Chain(CTMC),
which can be used to analyzequantitativeproperties directly. Each transition in a CTMC is associated
with an exponentially distributed random variable which specifies the duration of this transition. The
underlying CTMC captures the necessary information for both functional verification and performance
evaluation.

Synchronization in stochastic scenarios have been addressed in [15, 13, 1] using different techniques.
In this paper we develop a stochastic broadcastπ-calculus aiming at modeling server-client based sys-
tems which are used widely in practice. In such systems synchronization are always governed by one
participant, so there is no need to determine synchronization rates like others. In our calculus only out-
puts are associated with rates and their durations are exponentially distributed while inputs are always
passive. We all know that the nondeterministic choices among outputs can be resolved byrace condi-
tionsprobabilistically. Similarly, to resolve nondeterministic choices among inputs, we let each input be
associated with a weight as usual and the probability of an input receiving a message is determined by its
weight and the total weight of all current inputs. In addition the communication in our calculus is based
on broadcast, that is, when one component outputs a message,it will be received by all the recipients
instead of only one of them. Such scenarios can be found in practice very often. For example consid-
ering the checking out in a supermarket, the arrivals of customers can be assumed to be exponentially
distributed. When a customer comes to the counters, he/she will choose different counters according to
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the lengths of their queues, the longer the queue the less likely it will be chosen, meanwhile when the
customer is checking out, not only the counter knows it but also other departments will know and react
accordingly such as financial, purchasing and so on.

To enhance the expressiveness of our calculus we also takeimmediate actionsinto account. The
immediate actions will happen instantaneously and have been studied in [5, 11, 14]. They are useful to
describe certain management and control activities which have no impact on the temporal behavior of
a system. Since immediate action takes no time to execute, sorace condition does not apply here. In-
stead we assign each immediate action a weight to resolve nondeterministic choices between immediate
transitions which is similar as inputs. For instance activities such as ”when the buffer of a server is full,
the coming clients will be transferred to another server instantaneously” can only be modeled by using
immediate actions. In this paper we give several classical models from performance analysis which can
be modeled in a compositional way by making use of immediate transitions. Accordingly, we will call
the non-immediate transitions (resp. actions)Markovian transitions (resp. actions)in the sequel.

Usually the problem of immediate action is that the existence of an underlying CTMC can no longer
be guaranteed. In this paper, we solve this in two ways. As usual immediate transitions take no time
and should have priority over Markovian transitions, so when an immediate transition is available, it
will block the executions of Markovian transitions. We divide the whole process space into two sets:
Immediate Processes(IP) andMarkovian Processes(MP). IP only contains processes where at least one
immediate transition is available andMP contains processes where no immediate transition is available.
Since immediate transitions can exempt the execution of Markovian transitions, we can say that states in
IP can only perform immediate transitions. All states in a CTMCwill belong toMP. To calculate the
rate fromP to P′ in a CTMC, we accumulate the rates of all the possible transitions fromP to P′ where
transitions might be via states inIP. Sometimes it is possible for a process reaching a state which and
all its derivations belong toIP. In this case, no time is allowed to elapse and the process is said to be
absorbing. We use a special stateStuck to denote such situation and show how a CTMC can be obtained
even with the existence of immediate actions.

Similar with the existing calculi whose semantics are givenby LTS, we also give the LTS for our
calculus. Differently, each Markovian transition in our LTS is labeled by arate instead of an action.

For example, a typical transition looks likeP λ
//AP whereλ denotes that the execution time of this

transition is exponentially distributed with rateλ andAP is a distribution over pairs of action and process

(α,Q). Intuitively, if P λ
//AP, that means thatP will leave its original state with rateλ (sojourn time of

P is exponentially distributed with rateλ) and get toQ via actionα with probability p if the probability
of (α,Q) in AP is equal top. By defining an LTS in this way, the correspondent CTMC can be obtained
in a natural way. It is worth mentioning that our framework could also be used as an alternative general
way to specify the LTS as rate-base transition systems [9]. Without relying on different techniques, for
example multi relations, proved transition systems and unique rate names used in PEPA, stochasticπ-
calculus, and StoKlaim respectively, we can have a uniform way to define the underlying models for
these stochastic calculi.

The paper is organized as follows: the syntax of our calculusis presented in the next section and
in Section 3 we give the Labeled Transition System. In Section 4 we illustrate the use of immediate
transitions by giving a few examples. We show how to get the underlying CTMC even with existence of
immediate transitions in Section 5. Finally, we end by concluding and describing the future work.
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2 Syntax

Before introducing our calculus, we first give the followinggeneral definition of probability space. A
probability space is a tripletP = (Ω,F, η) whereΩ is a set,F is a collection of subsets ofΩ that includes
Ω and is closed under complement and countable union, andη : F → [0,1] is a probability distribution
function such thatη(Ω) = 1 and for any collection{Ci}i of at most countably many pairwise disjoint
elements ofF, η(∪iCi) =

∑

i η(Ci). A probability space (Ω,F, η) is discrete ifΩ is countable andF = 2Ω,
and hence abbreviated as (Ω, η). Given probability spaces{Pi = (Ωi , ηi)}i∈I and weightswi > 0 for each
i such that

∑

i∈I wi = 1, theconvex combination
∑

i∈I wiPi is defined as the probability space (Ω, η) such
thatΩ =

⋃

i∈I Ωi and for each setY⊆ Ω, η(Y) =
∑

i∈I wiηi(Y∩Ωi). Usually, we use{ρi : Pi}i∈I to denote a
probability spaceP = ({Pi}i∈I , η) such thatη({Pi}) = ρi , hereI is a countable index set.Dirac probability
space{1 : P} will be written asP directly in the sequel. If

∑

i∈I ρi ≤ 1 then we call it asub probability
space. We also useP(Pi) = ρi to denote the probability ofPi in P. The summation and parallel between
two sub probability spaces can be defined in a natural way as follows:

P1 + P2 = {ρ1+ρ2 : P | P1(P) = ρ1∧P2(P) = ρ2∧P1(Ω1)+P2(Ω2) ≤ 1},

P1 ‖ P2 = {ρ1×ρ2 : P1 ‖ P2 | P1(P1) = ρ1∧P2(P2) = ρ2}.

Note in the aboveP1(Ω1)+P2(Ω2) ≤ 1 is used to guarantee thatP1 + P2 is still a valid sub probability
space.

We presuppose a countable setC of constants and a countable setV of variables ranged over by
a,b,c. . . andx,y,z. . . respectively such thatC ∩V = ∅. n,m, l . . . ∈ C ∪V are called names. The syntax
of processes is given as follows whereλ ∈ R>0 is the exponential rate andw ∈ R>0 is the weight of the
input action. When the rate of an output is infinite, it is animmediateaction which takes no time for
it to be performed. We use∞w to denote an infinite rate with weightw. In the following λ̃ is used to
denote eitherλ or∞w andλ0 ranges over exponential rates as well as 0, that is,λ0 ∈ R≥0. It is obvious
that every output action must be prefixed by an exponential rate and every input action has a specified
weight, if the rate of an output is infinite then it will be assigned with a weight instead. We assume that
there is a countable set of constants, ranged over byA, which are used to denote processes. By giving an

equation such thatA
def
= P we say that constantA will behave asP, hereA is required to be guarded inP,

i.e. every constant appearing inP has to be prefixed byAct. We only consider closed processes here and
useP,Q· · · to range over closed processesP.

Act ::= n(x,w) | n〈m, λ̃〉

P,Q ::= 0 | Act.P | νaP | P + Q | [n=m]P,Q | P ‖ Q | A

A substitution{a/x} can be applied to a process or process distribution. When applied to a process
distribution, it means applying this substitution to each process with probability greater than 0 in it.
The set of free names and bound names inP, denoted byfn(P) andbn(P) respectively, are defined as
expected andn(P) = fn(P)∪ bn(P) denotes the set of all the names inP. Structural congruence,≡, is
the least equivalence relation and congruence closed by therules in Table 1 andα-conversion.≡ is also
extended to network distributions as usual.

3 Semantics

The actions of processesA, ranged byα,β · · · , are defined by

α ::= a(x) | νb̃a〈b〉 | τ
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Table 1: Structural Congruence

νaνbP≡ νbνaP P+ Q≡ Q+ P P‖ Q≡ Q ‖ P [a= a]P,Q≡ P

[a= b]P,Q≡ Q a, b (νaP) ‖ Q≡ νa(P ‖ Q) a < fn(Q)

Table 2: Functionγ evaluating weight of input on a given channel

γ(a,0) = 0

γ(a,Act.P) =















w Act= a(x,w) for somex

0 otherwise

γ(a, νbP) =















0 a= b

γ(a,P) otherwise
γ(a,P + Q) = γ(a,P)+γ(a,Q)

γ(a, [b= c]P,Q) =















γ(a,P) b= c

γ(a,Q) b, c
γ(a,P ‖ Q) = γ(a,P)+γ(a,Q)

γ(a,A) = γ(a,P) A
def
= P

Hereb̃ is a set of constants, whenb∈ b̃, b is bounded, otherwise it is free. The functionsfn,bn, andn can
be lifted from processes to actions as usual.

To evaluate the total weight of inputs on a given channel in a process, we define functionγ : C ×P→

R>0 as Table 2.

Similarly, we also give the functionµ : C ×P → R>0 to evaluate the total rate of outputs on a given
channel in a process which is defined in the Table 3. To evaluate the weight of outputs with infinity rates,
we define functionµ∞ : C ×P → R>0 which is the same asµ except that:

µ∞(a,b〈m, λ̃〉.P) =















w λ̃ =∞w∧a= b

0 otherwise

In addition,µ(P) =
∑

a∈C µ(a,P) andµ∞(P) =
∑

a∈C µ∞(a,P) are used to evaluate the total rate and
total weight associated with infinite rates of outputs in a process.

We defineprocess distribution, ranged over byP,Q . . ., as a probability space whereΩ =P. Sim-
ilarly, process action distributioncan be defined as a probability space whereΩ = A×P. We use
AP,AQ . . . to range over process action distributions. The set of all the actions inAP is defined by
A(AP) = {α | ∃P.AP(α,P) > 0} while the corresponding sub process distribution ofα in AP is denoted
by AP(α) = {ρ : P | AP(α,P) = ρ > 0}. We will write AP as (α,P) if A(AP) = {α} whereP = AP(α). In
addition, we useAP(P) =

∑

α∈A

AP(α,P) to denote the total probability ofP in AP.

We lift new operator to process action distributions in (1).If the channel is restricted, then the
broadcast action will change toτ; if the message is restricted, then the broadcast action will be updated
accordingly; otherwise the broadcast will stay unchanged while the new operator will be put on the result
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Table 3: Functionµ evaluating rate on a channel of a process

µ(a,0) = 0

µ(a,b〈m, λ̃〉.P) =















λ λ̃ = λ∧a= b

0 otherwise
µ(a,n(x,w).P) = 0

µ(a, νbP) =















0 a= b

µ(a,P) otherwise
µ(a,P + Q) = µ(a,P)+µ(a,Q)

µ(a, [b= c]P,Q) =















µ(a,P) b= c

µ(a,Q) b, c
µ(a,P ‖ Q) = µ(a,P)+µ(a,Q)

µ(a,A) = µ(a,P) A
def
= P

process.
νaAP ={ρ : (τ,νaP) | AP(νb̃a〈b〉,P) = ρ}

∪ {ρ : (νab〈a〉,P) | AP(b〈a〉,P) = ρ∧a, b}

∪ {ρ : (α,νaP) | AP(α,P) = ρ∧a < fn(α)}

(1)

The semantics of our calculus is shown in Table 4 whereI and J are finite index sets. We use
///o/o/o to denote // or //___ , where λ

// is the Markovian Transitionwith rateλ, and w
//___ is

the Immediate Transitionwith rate infinity and weightw. A transition with rate 0 0
// is called a

passive transition[15]. All the transitions have the formP
λ0

///o/o/o AP which means thatP will evolve
into processQ by performing actionα with probability ρ if AP(α,Q) = ρ. In addition, when it is a
Markovian transition with rateλ, it means thatP will leave to other states with rateλ or the duration
of the transition is exponentially distributed with rateλ. It is not hard to see from the semantics that
for a Markovian transition, all the actions in the resultingdistributionA(AP) are either outputs orτ
actions, while for the passive transitions,A(AP) only contains an input action, therefore can be written
as (a(x),P) whereP = AP(a(x)). Rule (REC) means that processa(x,w).P can receive a message on
channela and then evolve intoP with probability 1. Similarly, in rule (mBRD)a〈b,λ〉.P will leave to
other states with rateλ and evolve intoP by broadcasting the messageb on channela with probability
1, this is a Markovian transition. If the rate of output is infinite, it should be performed instantly. This
is called immediate transition which is shown by (iBRD). Theweight associated with the infinite rate is
used to resolve nondeterministic choices as in input actions. Rule (RES) only applies to Markovian and
immediate transitions, sinceλ > 0 can guarantee that the transition is not passive. The new operator on
process action distribution is defined by (1). By definition of γ in Table 2, ifγ(a,P) = 0 which means
P is not ready to receive messages on channela, in this caseP will ignore all the messages broadcasted
on channela. This results in rule (LOS). Every input action is associated with a weight which can be
used to resolve nondeterministic choices among different input actions probabilistically. For example
after receiving a messageb on channela, a(x,2).P1 + a(x,1).P2 will evolve intoP1{b/x} with probability

2
2+1 andP2{b/x} with probability 1

2+1. This is shown in (SUM1). (PAR1) is straightforward since our
calculus is based on broadcast. Two parallelized processeswill evolve together after receiving a message
on a certain channel. Intuitively, when we put processesP1 andP2 together, the compositional process
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P will leave to other states with rateλ1+ λ2 if the rates ofP1 and P2 for leaving their original states
areλ1 andλ2 respectively. WhetherP1 or P2 will be executed first depends on the race condition, that
is, P1 will be executed beforeP2 with probability λ1

λ1+λ2
and the probability for the other case isλ2

λ1+λ2
.

This is captured by rules (SUM2) and (PAR2) when ///o/o/o = // . In (PAR2) when ///o/o/o = // we
also need to consider all the possible synchronization betweenP andQ. For example, ifP can evolve
into a sub process distributionAP(νb̃iai〈bi〉) after actionνb̃iai〈bi〉 andQ will evolve intoQi{bi/x} after
receivingbi on channelai , thenP ‖ Q will evolve into sub process distributionAP(νb̃iai〈bi〉) ‖ Qi{bi/x}
by performing actionνb̃iai〈bi〉 after leaving from the original state (νb̃i ∩ fn(Q) = ∅). SinceP andQ may
have several outputs available at the same time, we need to list all the possible synchronization and then
add all the resulting sub process action distributions to form the final result. The following example is to
show how (PAR2) works.

Example 1 Suppose we have two processes: P= n〈y,3〉 ‖ (m(x,2).P1 +m(x,4).P2) and

Q = m〈z,2〉 ‖ n(x,1).Q1. By the semantics, P3
// {1 : (n〈y〉,m(x,2).P1 + m(x,4).P2)} ≡ (n〈y〉,P) and

Q 2
// {1 : (m〈z〉,m(x,1).Q1)} ≡ (m〈z〉,Q). When we put the two processes in parallel, we have to con-

sider all possible synchronization between them. P can broadcast y on channel n and Q can broadcast z
on channel m, in the meanwhile P can receive a message on channel m and Q can receive a message on
channel n, formally,

P 0
//















1
3 : (m(x),n〈y,3〉 ‖ P1)
2
3 : (m(x),n〈y,3〉 ‖ P2)















≡ (m(x),P′),

Q 0
// {1 : (n(x),m〈z,2〉 ‖ Q1)} ≡ (n(x),Q′).

In P ‖ Q, either P or Q will broadcast a message first, and the non-determinism is resolved probabilis-
tically by race condition, i.e. P‖ Q will perform n〈y〉 first with probability 3

5 and the probability of m〈z〉
being executed first is25. When n〈y〉 is performed, Q will receive it and evolve intoQ′{y/x}. Similarly,
when m〈z〉 is executed, P will evolve intoP′{z/x} accordingly. So

P ‖ Q 5
//

3
5
× (n〈y〉,P ‖ Q′{y/x})+

2
5
× (m〈z〉,Q ‖ P′{z/x}).

Rules (SUM3) and (PAR3) are similar with rules (SUM2) and (PAR2), but they only apply to pro-
cesses whereQ can only have a passive transition (with label 0), this is guaranteed byµ(Q) = 0. (SUM3)
and (PAR3) cannot be omitted since in (SUM2) and (PAR2) bothP and Q are required to have non-
passive transition, while in (SUM3) and (PAR3) only one of them has non-passive transition. The argu-
ments for these rules when ///o/o/o = //___ are similar. Rules (CON) and (STR) are standard and need no
more comments.

From the syntax and semantics we know that the nondeterministic choices among Markovian tran-
sitions can be resolved by a race condition while both the nondeterministic choices among immediate
outputs and inputs can be resolved based on their weights. But still there might be nondeterminis-
tic choices during the evolution of a process, such as nondeterminism between passive transitions and
Markovian transitions and nondeterminism between immediate transitions and Markovian transitions.
These nondeterminism can be resolved easily since we assumethat immediate transitions can preempt
other transitions while passive transitions should not be considered when talking about the underlying
CTMC of a process. We will talk about this in details in Section 5.

In this section we will not discuss immediate transitions, we leave it to the next section. The following
simple example is to show how to get aCTMC from a process without immediate actions and we often
omit the tail process 0.
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Table 4: Inference Rules( denotes either→ ord)

a(x,w).P
0

// {1 : (a(x),P)}
(REC)

a〈b,λ〉.P
λ

// {1 : (a〈b〉,P)}
(mBRD)

a〈b,∞w〉.P
w

//___ {1 : (a〈b〉,P)}
(iBRD)

P
λ

///o/o/o AP

νaP
λ

///o/o/o νaAP
(RES)

P
0

// {1 : (a(x),P)}
, x < fn(P) andγ(a,P) = 0 (LOS)

P
0

// (a(x),P) Q
0

// (a(x),Q)

P + Q
0

// (a(x), γ(a,P)
γ(a,P+Q)P +

γ(a,Q)
γ(a,P+Q)Q)

,γ(a,P+ Q) , 0 (SUM1)

P
λ1

///o/o/o AP Q
λ2

///o/o/o AQ

P + Q
λ1+λ2

///o/o/o
λ1
λ1+λ2

AP+ λ2
λ1+λ2

AQ

(SUM2)

P
λ

///o/o/o AP ( ///o/o/o = // ∧µ(Q) = 0)∨ ( ///o/o/o = //___ ∧µ∞(Q) = 0)

P + Q
λ

///o/o/o AP

(SUM3)

P
0

// (a(x),P) Q
0

// (a(x),Q)

P ‖ Q
0

// (a(x),P ‖ Q)
(PAR1)

































P
λ1

///o/o/o AP ∪
j∈J

b̃ j ∩ fn(P) = ∅ ∀
j∈J
νb̃ ja j〈b j〉 ∈ A(AQ).P

0
// (a j(x),P j)

Q
λ2

///o/o/o AQ ∪
i∈I

b̃i ∩ fn(Q) = ∅ ∀
i∈I
νb̃iai〈bi〉 ∈ A(AP).Q

0
// (ai(x),Qi)

































P ‖ Q
λ1+λ2

///o/o/o





























λ1

λ1+λ2
(+
i∈I

(νb̃iai〈bi〉,AP(νb̃iai〈bi〉) ‖ Qi{bi/x})+ (τ,AP(τ) ‖ Q))

+
λ2

λ1+λ2
( +

j∈J
(νb̃ ja j〈b j〉,P j {b j/x} ‖AQ(νb̃ ja j〈b j〉))+ (τ,P ‖ AQ(τ)))





























(PAR2)





















P
λ

///o/o/o AP ∀
i∈I
νb̃iai〈bi〉 ∈ A(AP).Q

0
// (ai(x),Qi) ∪

i∈I
b̃i ∩ fn(Q) = ∅

( ///o/o/o = // ∧µ(Q) = 0)∨ ( ///o/o/o = //___ ∧µ∞(Q) = 0)





















P ‖ Q
λ

///o/o/o +
i∈I

(νb̃iai〈bi〉,AP(νb̃iai〈bi〉) ‖Qi {bi/x})+ (τ,AP(τ) ‖ Q)
(PAR3)

P
λ0

///o/o/o AP

A
λ0

///o/o/o AP
,A

def
= P (CON)

P≡ Q
λ0

///o/o/o AQ ≡ AP

P
λ0

///o/o/o AP

(STR)
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P

P11 P12 P21 P22 P11 P12 P21 P22

P
8

1/12

1/6 1/4

1/2 2/3

4/3
2

4

(a) (b)

Figure 1: A Simple CTMC

Example 2 Given a process P≡ a〈b1,2〉 ‖ a〈b2,6〉 ‖ (a(x,1).P1 + a(x,2).P2), then P will broadcast a
message (b1 or b2) on channel a with an exponential delay 8 and then evolve intoa process action
distributionAP. By semantics in Table 4, we know

AP = {
1
12

: (a〈b1〉,P11),
1
6

: (a〈b1〉,P12),
1
4

: (a〈b2〉,P21),
1
2

: (a〈b2〉,P22)}

where

P11= a〈b2,6〉 ‖ P1{b1/x} P12= a〈b2,6〉 ‖ P2{b1/x}

P21= a〈b1,2〉 ‖ P1{b2/x} P22= a〈b1,2〉 ‖ P2{b2/x}

This is displayed in Fig. 1(a) and the correspondentCTMC is shown in Fig. 1(b), here we use dot lines
to denote probabilistic choices and omit actions of the transitions.

In the above example we briefly illustrated how to get a CTMC from a process. Now we are going to
give the general construction by which we can get the correspondent CTMC from a process. UseM(P,Q)
to denote the rate fromP to Q in a CTMC, and defineDer(P) as the smallest set of processes satisfying:

i) P ∈ Der(P); ii) P2 ∈ Der(P) iff there existsP1 ∈ Der(P) such thatP1
λ

//AP with AP(P2) > 0. So
Der(P) is the set of all the processes which are reachable fromP with positive probability via arbitrary
steps. For each two processesP1,P2 ∈ Der(P), the rate fromP1 to P2 is equal toλ×AP(P2), that is

M(P1,P2) = λ×AP(P2) such thatP1
λ

//AP, otherwiseM(P1,P2) = 0.

4 Immediate Transitions

In this section, we will give a few examples and show how can webenefit from immediate transitions.
First we consider a model calledClosed Queueing Networks(CQN) [7] from performance analysis.

A queueing network is a collection of servers. Customers must proceed from one server to another
in order to satisfy their service requirements. The queueing network is closed if neither arrivals nor
departures of customers are permitted; instead the number of customers in the network are fixed at all
times. We useM to denote the number of servers in the network andN for the number of customers
circulating around. The service time for a customer at server i is exponentially distributed with rateλi

and the probability a customer will proceed to thej-th server after completing a service request at server
i is equal topi j for i, j = 1,2, . . . ,M.

Example 3 Suppose we are given a CQN with 5 servers and 15 customers shown in Fig. 2 where the
numbers in the rectangles denote the length of the queue of each server as well as their indexes, the
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2 4 5

3
8 6

10

Q1 Q2 Q3

Q0

Figure 3: Open Queue Network with Blocking

numbers on the edges denote the transition probabilities and the numbers in the circles denote the rate
of each service time.

The communication in the CQN is ”point-to-point” in the sense that each leaving customer will
arrive at only one server, while in our calculus the communication is based on broadcast. But with
immediate transitions we can model such ”point-to-point” communication as follows. Here we assume
that the weight of each input is 1 by default, that is, ci(x) is equal to ci(x,1). SQi(wi) denotes server i
with wi customers waiting for service in its queue. In Table 5,CQN(1,2,3,4,5) denotes the system where
the i-th parameter is the length of the i-th queue.

Table 5: Model of Closed Queueing Network

Rev(i, j,wj ) = ci(x).[x= w](c〈r,∞pi j 〉.(SQ j (wj +1) ‖ SQi (w−1))+ c(x).SQ j(wj )) w ∈ [1,15]

SQ j (wj) =
∑

1≤i≤5,pi j>0

Rev(i, j,wj ) + ([wj = 0]0,c j〈wj ,λ j〉)

CQN(1,2,3,4,5)= νc(‖5i=1 SQi(i))

EachSQ j(w j) contains two parts: receivers denoted by
∑

1≤i≤5,pi j>0Rev(i, j,w j) listen on the chan-
nels of their predecessors, and after being notified that a customer is coming, it will try to broadcast on
channel c immediately with a specific weight∞pi j . The one which succeeds to do so will be the desti-
nation of the customer and all the others will be informed by receiving a message on c. The other part
[w j = 0]0,c j〈w j ,λ j〉 takes care of the requests of the customers in its queue if it is not empty, the rate of
the customer leaving depends on the service rate. By puttingthese five servers in parallel, we get the
whole systemCQN(1,2,3,4,5). Our semantics guarantees that each leaving customer will finally arrive
at one and only one server. Actually, this can be seen as a way to model ”point-to-point” communication
with immediate transitions. For example if a customer is leaving server 3, then both server 4 and 5 will
be informed by broadcasting a message on channel c3. But after that server 4 and 5 will try to broadcast
an acknowledge r on channel c, with probability 0.4 and 0.6 respectively. The one which succeeds to
send r will be the real destination of the customer. The otherserver will know this fact by listening on
channel c and roll back to its original state at the same time.The model in Table 5 is quite flexible, for
example, we can add self loops easily, that is, the destination of a leaving customer can be the same
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server as its departure server, or instead of having fixed transfer probabilities, we can make them change
based on the current lengths of queues.

In Example 3 we have shown a typical closed queueing network where we assume that every server
has a queue with infinite capacity. But in practice the capacity of queues is often limited. In [10] a variant
of closed queueing network is proposed where the queue of each serveri only has finite capacityBi for
1≤ i ≤ M. A customer which requests service at serveri while the queue of serveri is full will instantly
be routed to another serverj with probability pi j as if it is served by serveri at an infinite speed. For this
kind of model, it is hard (if not impossible) to model it in a compositional way without using immediate
actions. With immediate actions, the model is easy to obtainwithout changing the model in Table 5 a lot.

Example 4 Suppose the queueing network we are about to model is the sameas the queueing network in
Example 3 except that the capacity of every queue is maximum 10. If one server is full, it will just transfer
the coming customers to its next servers. The model can be obtained by simply replacing theSQ j(w j +1)
in Rev(i, j,w j) in Table 5 with[wi = 10]ci〈11,∞1〉,SQ j(w j + 1). This means instead of accepting any
coming customers, we require an extra checking on the current queue. If a customer arrives at a server
whose queue is not full, the customer will be accepted, otherwise, the customer will also be accepted
but will be transferred to the next server via action ci〈11,∞1〉 just like it is served with infinite rate, that
gives excuse of parameter 11. The same process will continueuntil the customer arrives at some server
which has free space for it.

From the semantics in Table 4, we know that all the outputs arenon-blocking, i.e., for one message
to be broadcasted, it is not necessary to have recipients. But sometimes we may have models where
components are not completely independent and one component can do something only after some other
components finish, that is, some behaviors are blocking. Blocking here means that an output action can-
not happen spontaneously but has to wait until certain conditions are fulfilled. For instance in Example
4, every queue has finite capacity. When a customer arrives ata server without free space, it will simply
be transferred to other servers. What if the customer cannotbe transferred but can only wait until the
server has free spaces? Refer to the following example from [18] which is also a variant of queueing
network calledopen queueing network with blocking.

The network consists ofN parallel servers calledmergingqueues; there is a queue receiving the
outputs of these merging queues and is calledmergedqueue (or queue 0). The service time at queuei
is exponentially distributed with rateλi . The queue network is open since the number of the customers
circulating in the network is not fixed and some external customers may arrive from the outside. Arrivals
to queuei are independentPoisson Processeswith rateµi. There is no external arrival to the merged
queue. The length of thei-th merging queue isBi. The capacity of the queue 0 isB0, andλ0 is its service
rate at queue 0. If a customer arrives at a merging queue when it is full, the customer will be lost. When
a customer completes service at serveri, it will be transferred to queue 0 only if it is not full; otherwise,
the customer waits in thei-th server until it can enter queue 0. During this time thei-th server cannot
serve other customers that might wait in its queue. In this case, the queue is said to beblockedand queue
0 is blocking. Since there areM servers in parallel, there might be more than one queue blocked at the
same time. When more than one queues are blocked, it is assumed that they will enter queue 0 on a
”First-Blocked-First-Enter” basis.

From the description of open queue network with blocking, weknow there are two kinds of actions
involving in this model: one is blocking and the other one is non-blocking. For instance, when queue 0
is full, any other arrivals have to wait until queue 0 has freespace, this is blocking action. On the other
hand, when the merging queues are full, instead of blocking the external arrivals it will just discard them,
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Table 6: Model of Open Queueing Network with Blocking

Ai = ai〈arrival,µi〉.Ai

Si(wi) = [wi = 0,1,2]ai(x,1).Si(wi +1)+ [wi = 1,2,3]si〈leavei ,λi〉.bi(x,1).Si(wi −1)

S0(w, S̃) = [w= 1,2,3,4,5]s0〈leave0,λ0〉.S0(w−1, S̃) + [w= 5]
∑

i

si(x,1).S0(w, S̃ i)

+ [w= 0,1,2,3,4∧H(S̃) = i]bi〈unblocking,∞1〉.S0(w+1,T(S̃))

+ [w= 0,1,2,3,4∧H(S̃) = ⊥]
∑

i

si (x,1).bi〈unblocking,∞1〉.S0(w+1, S̃)

so the external arrivals are non-blocking actions. In the following we will show how to model both kinds
of actions in our calculus.

Example 5 Fig. 3 gives a concrete example with 3 servers marked as Q1, Q2, and Q3 respectively. The
length of each queue is 3 and the numbers on the in-edges and out-edges are used to denote arrival rates
and service rates, that is,λ1 = 3, λ2 = 8, λ3 = 6, µ1 = 2, µ2 = 4, andµ3 = 5, andλ0 = 10. The Q0 at the
bottom is the queue 0 with service rate 10, and the capacity ofits queue is 5. Initially, every queue is
empty.

Here is the model of the queueing network in Fig. 3 where Ai denotes the arrival process of queue i,
Qi(w) denotes queue i with w customers in the queue for1≤ i ≤ 3, and Q0(w, S̃) denotes queue 0 with w
customers. ThẽS is a sequence of queues which are waiting for queue 0 when it is full, it is an element
of SQ which is defined by enumerating all the possible sequences ofqueues waiting for queue 0. The
symbol⊥ is used to denote empty sequence.

SQ = {⊥,1,2,3,12,21,13,31,23,32,123,132,213,231,312,321}

For simplicity, we define two functions on this set: H(S̃) : SQ→ {⊥,1,2,3} and T(S̃) : SQ→ SQ which
return the head of sequence and the left sequence by deletingthe first element respectively. For example,
H(123)= 1 and T(123)= 23; H (⊥) =⊥ and T(⊥) =⊥. We usẽS i to denote a new sequence by attaching
i to the end ofS̃ . Note here that these functions are just used to give a compact model, they can be
replaced by the standard operators by enumerating all the possible cases. It is similar for conditions like
[w = 0,1,2∧H(S̃) = i]. The model of each component in Fig. 3 is shown in Table 6. The whole system
can be denoted as P= ‖

i
Ai ‖

i
Si(0) ‖ S0(0,⊥) with 1≤ i ≤ 3.

As we said before, broadcasts such that si〈leavei ,λi〉 are blocking, so when there is no input si(x,w)
available, that is, the queue 0 is full, server i has to wait before it can perform other actions. To do so,
we let the server i wait for the message unblocking on channelbi after one customer leaving from it to
server 0. If queue 0 has free spaces, it will perform action bi〈unblocking,∞1〉 right after it receives the
request from server i. Otherwise if the queue 0 is full, it will attach the request to the end of its waiting
list. When server 0 is ready to handle the request after several steps, it will send the message unblocking
to server i instantly via immediate action bi〈unblocking,∞1〉. Server i will receive it at the same time
and then unblock itself.

Fig. 4 shows a fragment of the execution of P where // , //___ , and // denote Markovian,
immediate and probabilistic transition respectively. In additional A=‖i Ai and S(q1,q2,q3) =‖i Si(qi ),
when qi is barred, it means that server i is blocked. For example, S(q1, q̄2,q3) =S1(q1) ‖ b2(x,1).S2(q2) ‖
S3(q3). When in state A‖ S(3,2, 1̄) ‖ S0(4,3), it means that there is a free space in queue 0 while the
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A ‖ S(3,2, 1̄) ‖ S0(5,3)

A ‖ S(3,3, 1̄) ‖ S0(5,3)

A ‖ S(2̄,2, 1̄) ‖ S0(5,31) A ‖ S(3, 1̄, 1̄) ‖ S0(5,32)

A ‖ S(3,2, 1̄) ‖ S0(4,3)

A ‖ S(3,2,1) ‖ S0(5,⊥)

...

......

...

38

4
38

3
38

8
38

10
38

1

2
38

5
38

Figure 4: Execution Fragment ofP

server 3 is waiting for service. In this case, server 0 shouldresponse to it and transfer to the state
A ‖ S(3,2,1) ‖ S0(5,⊥) instantly where the request is removed from the waiting listto the queue 0. The
self loop with probability 2

38 denotes that the arrivals of external customers to server 1 while its queue
is full. In this case, the arriving customers will be discarded without causing any effects. The other self
loop with probability 5

38 is similar except that the arriving customer is discarded because server 3 is
blocked.

From Example 5, we can see that blocking actions can be represented easily by using immediate
transitions. In general when broadcasta〈b,λ〉 is blocking, it should be prefixed with an input such as
c(x,w).a〈b,λ〉. When certain conditions are fulfilled, the process should trigger a〈b,λ〉 by sending a
message on channelc instantly, that is, by action likec〈unblocking,∞w〉.

5 The Underlying CTMC

In Examples 3, 4, and 5, we see that immediate transition is indeed powerful to model some systems.
But the main disadvantage is that the underlying CTMC of a process is not so obvious anymore. In this
section we will show how to define the underlying CTMC in case of immediate transitions. Different
from [3] where the eliminations of immediate transitions are based on the weak behavioral equivalence,
we solve this by dealing with a set of equations as follows.

In this calculus choices between Markovian actions are probabilistic depending on their rates while
choices between immediate actions are also probabilistic depending on their associated weights. In
addition, if both types of actions are involved in a choice, the immediate action should be prioritized,
since they take no time, so the probability of the Markovian action being executed before the immediate
one is zero [14]. Since the priority of immediate actions arenot shown in Table 4, a CTMC cannot be
obtained directly from a process based on the semantics. In the following we distinguish betweenMP
and IP. MP only contains processes which do not have immediate transitions while IP only contains

processes which have immediate transitions available. Formally, IP = {P ∈P | ∃AP.P λ
//___ AP} and

MP = {P ∈P | ∄AP.P λ
//___ AP} =P \ IP. It is not hard to see that every state in a CTMC should be

seen as a Markovian process in this calculus, so instead of considering all the processes inDer(P) as in
Section 3, we only need to consider setDer(P)∩MP when talking about the corresponding CTMC ofP.
The question now is how to give the value ofM(P,Q) for any P,Q ∈ Der(P)∩MP. Due to immediate
actions, it is not enough to just consider one step Markoviantransition as before sinceP might have to
go through several immediate processes before reachingQ.
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P
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P1 ≡ c〈b1,∞2〉 ‖ c〈b2,∞3〉 ‖ c(x,6).c〈x,6〉

5

P2 ≡ c〈b2,∞3〉 ‖ c〈b1,6〉 P3 ≡ c〈b1,∞2〉 ‖ c〈b2,6〉

P4 ≡ c〈b1,6〉 P5 ≡ c〈b2,∞3〉
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6 2

Figure 5: Example with Immediate Transitions
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Figure 6: CTMC corresponding toP

We usePri(R,Q) to denote the probability fromR to Q via all possible immediate transitions where
R∈P andQ ∈MP. The value ofPri(R,Q) is given by the smallest solution defined by the following set
of equations:

Pri(R,Q) =



























1 R= Q
∑

AR(P)>0AR(P)×Pri(P,Q) R λ
//___ AR∧Der(R)∩MP , ∅

0 otherwise

(2)

Then for anyP,Q ∈MP,M(P,Q) can be defined as follows:

M(P,Q) = λ×
∑

AP(R)>0

AP(R)×Pri(R,Q) P λ
//AP

Example 6 Suppose P≡ a〈b,10〉 ‖ a(x,1).c〈b1,∞2〉 ‖ a(x,1).c〈b2,∞3〉 ‖ c(x,1).c〈x,6〉, by the semantics

in Table 4 we can draw a derivation tree as Fig. 6. We omit passive transitions like 0
// here.

In Fig. 5 nondeterministic choices emerge, such as process c〈b2,∞3〉 ‖ c〈b1,6〉 can choose either

immediate transition 3
//___ or Markovian transition 6

// . But since the probability of the Markovian
transition being executed before the immediate one is zero,so the transitions inside the dashed rectangle
is impossible and should be ignored.

In this example,Der(P)= {P,P1,P2,P3,P4,P5,P7,0}, Der(P)∩ IP = {P1,P2,P3,P5,P7}, andDer(P)∩
MP = {P,P4,P6,0}. To define the CTMC of P, we only need to consider the processesin Der(P)∩MP
and the corresponding CTMC of P is shown in Fig. 6 which is quite simple compared to the derivation
tree in Fig. 5.

In the second case of Equation (2), we require thatDer(R)∩MP , ∅, that is, there exists at least a
Markovian process which is reachable fromR. But sometimes it is also possible for one process reaching
an immediate state from which no Markovian process can be reached, that is, we have immediate loop.
We call states inSP = {P | Der(P) ⊆ IP} absorbing states and use a special processStuck to denote them.
Accordingly, the set of states of the CTMC should be (Der(P)∩MP)∪ {Stuck} andM(P,Stuck) where
P ∈MP can be defined as follows:

M(P,Stuck) = λ−
∑

Q∈Der(P)∩MP

M(P,Q) P λ
//AP.
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6 Conclusions and Future Works

In this paper we give a stochastic broadcastπ calculus which is useful to model some server-client based
systems where synchronization is governed by only one participant. Both Markovian transitions and
immediate transitions are taken into account. A few examples are given to show the expressivity of the
calculus which is enhanced a lot with immediate transitions. The semantics is given by Labeled Tran-
sition System without relying on techniques such as multi relations, proved transition systems, unique
rate names, and so on. Each transition is labeled with rate orweight instead of action and the resulting
distribution is over pairs of actions and processes insteadof only processes. In this way, the underlying
CTMC can be obtained naturally even with existence of immediate transitions.

A number of further developments are possible. In the futurewe would like to provide semantics to
some of the most representative stochastic process languages as [9, 4] and compare these different ways.
Another possible extension is to support parameters, that is, we do not need to know the value of each
parameter at beginning. We can also reuse the model by assigning parameters with different values and
so on. Sometimes, some CTMCs have special form, that is, product form which can be solved efficiently
[16, 12]. We try to answer whether the underlying CTMC of a process is in product form or not by
syntax-checking.
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