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In this paper we propose a stochastic broadeastlculus which can be used to model server-client
based systems where synchronization is always governedlppoe participant. Therefore, there is
no need to determine the joint synchronization rates. Wetalke immediate transitions into account
which is useful to model behaviors with no impact on the terapproperties of a system. Since
immediate transitions may introduce non-determinism, vieslhiow how these non-determinism
can be resolved, and as result a valid CTMC will be obtainealfinAlso some practical examples
are given to show the application of this calculus.

1 Introduction

Process algebras such as CCS [19], CSP [17], and ACP [2] heare successfully used to model and
analyze concurrent systems. The system behavior of thassichl process algebras is usually given
by labeled transition system@TS) which have proved to be a convenient framework for \ariab
gualitative properties of large complex system. As these models areammgerned about functional
aspects of concurrent systems, process algebras have Xteadezl with stochastic variables in order
to model performance-oriented systems in recent yearsh &amples include TIPP [11], PEPA[15],
EMPA [6], stochasticr-calculus [20], IMC [13], StoKlaim[][B], and Stochastic Aneit Calculus[[21].
The semantics of these models are given by a variant of Cb&tinuous Time Markov Cha(CTMC),
which can be used to analygeantitativeproperties directly. Each transition in a CTMC is associate
with an exponentially distributed random variable whicke@pes the duration of this transition. The
underlying CTMC captures the necessary information fohliohctional verification and performance
evaluation.

Synchronization in stochastic scenarios have been addi@s§15,13] 1] using dierent techniques.
In this paper we develop a stochastic broadaasalculus aiming at modeling server-client based sys-
tems which are used widely in practice. In such systems sgnétation are always governed by one
participant, so there is no need to determine synchronizattes like others. In our calculus only out-
puts are associated with rates and their durations are erfially distributed while inputs are always
passive. We all know that the nondeterministic choices ayautputs can be resolved lbgce condi-
tionsprobabilistically. Similarly, to resolve nondeterminésthoices among inputs, we let each input be
associated with a weight as usual and the probability of patireceiving a message is determined by its
weight and the total weight of all current inputs. In additibe communication in our calculus is based
on broadcast, that is, when one component outputs a messagkbe received by all the recipients
instead of only one of them. Such scenarios can be found ttipeavery often. For example consid-
ering the checking out in a supermarket, the arrivals ofausts can be assumed to be exponentially
distributed. When a customer comes to the counteyshbewill choose dierent counters according to
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the lengths of their queues, the longer the queue the ledy likwill be chosen, meanwhile when the
customer is checking out, not only the counter knows it bs ather departments will know and react
accordingly such as financial, purchasing and so on.

To enhance the expressiveness of our calculus we alsartakediate actiongnto account. The
immediate actions will happen instantaneously and have beelied in[[5[ 11/, 14]. They are useful to
describe certain management and control activities whasie mo impact on the temporal behavior of
a system. Since immediate action takes no time to execut@csocondition does not apply here. In-
stead we assign each immediate action a weight to resohaetenministic choices between immediate
transitions which is similar as inputs. For instance ati@igisuch as "when the Her of a server is full,
the coming clients will be transferred to another servetaimsneously” can only be modeled by using
immediate actions. In this paper we give several classicalets from performance analysis which can
be modeled in a compositional way by making use of immedratesttions. Accordingly, we will call
the non-immediate transitions (resp. actioMgrkovian transitions (resp. actions) the sequel.

Usually the problem of immediate action is that the existemican underlying CTMC can no longer
be guaranteed. In this paper, we solve this in two ways. Aslusunediate transitions take no time
and should have priority over Markovian transitions, so whe immediate transition is available, it
will block the executions of Markovian transitions. We digithe whole process space into two sets:
Immediate Process€B?) andMarkovian Processe@ViP). IP only contains processes where at least one
immediate transition is available aiP contains processes where no immediate transition is alaila
Since immediate transitions can exempt the execution okb@an transitions, we can say that states in
IP can only perform immediate transitions. All states in a CTMIT belong to MP. To calculate the
rate fromP to P’ in a CTMC, we accumulate the rates of all the possible trimamsitfromP to P’ where
transitions might be via states IR. Sometimes it is possible for a process reaching a statehvemd
all its derivations belong téP. In this case, no time is allowed to elapse and the processds® be
absorbing We use a special staBtuck to denote such situation and show how a CTMC can be obtained
even with the existence of immediate actions.

Similar with the existing calculi whose semantics are gibgrLTS, we also give the LTS for our
calculus. Diferently, each Markovian transition in our LTS is labeled byate instead of an action.

For example, a typical transition looks lile—L~ AP where denotes that the execution time of this
transition is exponentially distributed with ratendAP is a distribution over pairs of action and process

(@, Q). Intuitively, if P—1- AP, that means tha® will leave its original state with raté (sojourn time of

P is exponentially distributed with rat®) and get toQ via actiona with probability p if the probability

of (@, Q) in AP is equal top. By defining an LTS in this way, the correspondent CTMC canlitaioed

in a natural way. It is worth mentioning that our frameworkiltbalso be used as an alternative general
way to specify the LTS as rate-base transition systéms [9hadt relying on diferent techniques, for
example multi relations, proved transition systems anguairate names used in PEPA, stochastic
calculus, and StoKlaim respectively, we can have a uniforay % define the underlying models for
these stochastic calculi.

The paper is organized as follows: the syntax of our calcidyzesented in the next section and
in Section 3 we give the Labeled Transition System. In Sedfiave illustrate the use of immediate
transitions by giving a few examples. We show how to get thaedging CTMC even with existence of
immediate transitions in Section 5. Finally, we end by coditig and describing the future work.
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2 Syntax

Before introducing our calculus, we first give the followiggneral definition of probability space. A
probability space is a triple#® = (Q, F,n7) whereQ is a setF is a collection of subsets ¢ that includes
Q and is closed under complement and countable unionpark— [0,1] is a probability distribution
function such thap(Q) = 1 and for any collectio{C;}; of at most countably many pairwise disjoint
elements of, n(UiC) = X n(Ci). A probability space®, F, ) is discrete ifQ is countable ané = 2,
and hence abbreviated &2,(). Given probability space?; = (Qi,ni)}ici and weightsy; > 0 for each

i such thaty;; wi = 1, theconvex combinatior},ic, w;#; is defined as the probability spade, ) such
thatQ = [ Ji Qi and for each set € Q, n(Y) = Xicy Wini (Y N ;). Usually, we usép; : Pj}ic| to denote a
probability space” = ({Pi}ic1,n) such that;({P;}) = pi, herel is a countable index seirac probability
space{l : P} will be written asP directly in the sequel. 1§ poi <1 then we call it asub probability
space We also usé’(P;) = p;j to denote the probability d?; in . The summation and parallel between
two sub probability spaces can be defined in a natural wayllasvi

P1+ P2 ={p1+p2: P|P1(P) = p1 AP2(P) = p2 AP1(Q1) + P2(Q2) < 1},

P1P2={p1Xp2: P1ll P2 |P1(P1) = p1 AP2(P2) = p2}.
Note in the above”1(Q1) + P2(Q2) < 1 is used to guarantee thai + P, is still a valid sub probability
space.

We presuppose a countable getof constants and a countable sétof variables ranged over by
a,b,c... andx,y,z... respectively such th& N7 =0. n,m,l... € ¥ U ¥ are called names. The syntax
of processes is given as follows where R.q is the exponential rate antle R is the weight of the
input action. When the rate of an output is infinite, it isiammediateaction which takes no time for
it to be performed. We use,, to denote an infinite rate with weight. In the following 1 is used to
denote eithen or o0,y and g ranges over exponential rates as well as 0, thalpig, R.o. It is obvious
that every output action must be prefixed by an exponentialaad every input action has a specified
weight, if the rate of an output is infinite then it will be agsed with a weight instead. We assume that
there is a countable set of constants, ranged ové, lyhich are used to denote processes. By giving an

equation such tha\ft\d:ef P we say that constait will behave asP, hereA is required to be guarded B,
i.e. every constant appearingfrhas to be prefixed bict. We only consider closed processes here and
useP, Q--- to range over closed processés

Act ::= n(x,w) | n{m, 1)
PQ:=0|ActP|vaP|P+Q|[n=mP.Q|P| Q|A

A substitution{a/x} can be applied to a process or process distribution. Wheliedpp a process
distribution, it means applying this substitution to eacbgess with probability greater than O in it.
The set of free names and bound nameP,ienoted byn(P) andbn(P) respectively, are defined as
expected ana(P) = fn(P) U bn(P) denotes the set of all the namesRn Structural congruences, is
the least equivalence relation and congruence closed hylé®in Tablé Il and-conversion.= is also
extended to network distributions as usual.

3 Semantics

The actions of processe®, ranged by, - - -, are defined by
a =a(x) | vbaby | T
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Table 1: Structural Congruence

vavbP=vbvaP P+ Q=Q+P P|Q=Q|P [a=aPQ=P
[a=b]JPRQ=Qa#b (vaP)||Q=va(P|Q)a¢fn(Q)

Table 2: Functiory evaluating weight of input on a given channel

y(@,0) =0
(a,Act.P) _jw Act=a(x,w) for somex
v ~ |0 otherwise
0 a=b

ahn ) {7(& P) otherwise
v(@P+Q = y(@P)+y(@&Q)

b=c]P, _ y(&P) b=c
valb=ar) {V(a, Q b=c
y@PllQ = y(@aP)+y(aQ)
) = yaP) AZP

Hereb is a set of constants, whére b, b is bounded, otherwise it is free. The functidnsbn, andn can
be lifted from processes to actions as usual.

To evaluate the total weight of inputs on a given channel iroagss, we define function: €' x &2 —
R.g as TablgD.

Similarly, we also give the function : ¥ x & — R, to evaluate the total rate of outputs on a given
channel in a process which is defined in the Table 3. To evathatweight of outputs with infinity rates,
we define functionu., : € x & — R.g which is the same gsexcept that:

W A1=ocoyAa=b

~(a,b(m, 1).P) = :
Heo(BX )-P) {0 otherwise

In addition, u(P) = Y acou(a, P) anduw(P) = Y ac (@, P) are used to evaluate the total rate and
total weight associated with infinite rates of outputs in@cpss.

We defineprocess distributionranged over byP,Q..., as a probability space whefe= 2. Sim-
ilarly, process action distributiorran be defined as a probability space where A x &2. We use
AP,AQ... to range over process action distributions. The set of allattions inAP is defined by
A(AP) = {a | AP.AP(a, P) > 0} while the corresponding sub process distributionrafi AP is denoted
by AP(a) = {p : P| AP(a,P) = p > 0}. We will write AP as @,P) if A(AP) = {a} whereP = AP(«@). In

addition, we usé\P(P) = Y, AP(«,P) to denote the total probability ¢t in AP.
€A

We lift new operator to process action distributions [ih (1f).the channel is restricted, then the
broadcast action will change g if the message is restricted, then the broadcast actidibevilipdated
accordingly; otherwise the broadcast will stay unchangbkiieswhe new operator will be put on the result
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Table 3: Functionu evaluating rate on a channel of a process

u(a,0) =0
- A A=AAna=b
u@bm.py = {0 otherwise
ul@n(xw).P) = 0
0 a=>b
u(@.vbF) - u(a, P) otherwise
u@ P+ Q) = wu@P)+u(@Q)

_ _ Ju@P)  b=c
u@[b=c]PQ) = {,u(a,Q) bac
u@ Pl Q) = wu@P)+u(@Q)
u(@ A) - w@apP) AEP

process. )
vaAP ={p : (r,vaP) | AP(vba(b), P) = p}
Ufp: (vaiXay,P) | AP(b(a),P) = p Aa + b} 1)
Ufp: (a,vaP) | AP(a,P) = pAa ¢ fn(a)}

The semantics of our calculus is shown in Table 4 wHesnd J are finite index sets. We use
~~ to denote—— or — — >, where —%~ is the Markovian Transitionwith rate A, and - Yo is

the Immediate Transitiorwith rate infinity and weightw. A transition with rate 0—2- is called a

passive transitiorf15]. All the transitions have the forr® ~%~ AP which means thaP will evolve
into processQ by performing actionr with probability p if AP(a,Q) = p. In addition, when it is a
Markovian transition with ratel, it means thaP will leave to other states with raté or the duration

of the transition is exponentially distributed with rate It is not hard to see from the semantics that
for a Markovian transition, all the actions in the resultidigtribution A(AP) are either outputs or
actions, while for the passive transitiols@(AP) only contains an input action, therefore can be written
as @(x),P) whereP = AP(a(x)). Rule (REC) means that proceaf,w).P can receive a message on
channela and then evolve int® with probability 1. Similarly, in rule (mBRD}@(b, 2).P will leave to
other states with raté and evolve intdP by broadcasting the messagen channeh with probability

1, this is a Markovian transition. If the rate of output is mitie, it should be performed instantly. This
is called immediate transition which is shown by (iBRD). Maeight associated with the infinite rate is
used to resolve nondeterministic choices as in input asti®ule (RES) only applies to Markovian and
immediate transitions, since> 0 can guarantee that the transition is not passive. The nevatmgy on
process action distribution is defined by (1). By definitidnyan Table[2, ify(a, P) = 0 which means

P is not ready to receive messages on chaangi this caseP will ignore all the messages broadcasted
on channeh. This results in rule (LOS). Every input action is assodatdth a weight which can be
used to resolve nondeterministic choices amoritgiint input actions probabilistically. For example
after receiving a messa@®n channeg, a(x, 2).P; + a(x, 1).P, will evolve into P,{b/x} with probability
le and P»{b/x} with probability ?11 This is shown in (SUM1). (PARL1) is straightforward since ou
calculus is based on broadcast. Two parallelized procegfievolve together after receiving a message
on a certain channel. Intuitively, when we put proced3gand P, together, the compositional process
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P will leave to other states with rat& + A, if the rates ofP; and P, for leaving their original states
are 11 and A, respectively. WhethelP; or P, will be executed first depends on the race condition, that
is, P1 will be executed befor®; with probability -~ and the probability for the other case-j-.
This is captured by rules (SUM2) and (PAR2) when= = ——. In (PAR2) when~~= = —— we
also need to consider all the possible synchronization éat® and Q. For example, ifP can evolve
into a sub process distributiohP(vbia;(b;)) after actionvb;a(b;) andQ will evolve into Q;{b;/x} after
receivingb; on channel;, thenP || Q will evolve into sub process distributioﬁP(vﬁia;<bi>) || Qi{bi/x}

by performing actionvbia(b;) after leaving from the original statet§ N fn(Q) = 0). SinceP andQ may
have several outputs available at the same time, we neest &dlithe possible synchronization and then
add all the resulting sub process action distributions tmfthe final result. The following example is to

show how (PAR2) works.

Example 1 Suppose we have two processes: Ry, 3) || (M(x, 2).P1 + m(x,4).P») and

Q=mz2) | n(x,1).Q:;. By the semantics, P3—>{1 s (nKyy, m(x,2).P1 + m(x,4).P2)} = (n(y),P) and
Q—2>{1 s (K2, m(x,1).Q1)} = (M2),Q). When we put the two processes in parallel, we have to con-
sider all possible synchronization between them. P candwast y on channel n and Q can broadcast z

on channel m, in the meanwhile P can receive a message onaharemd Q can receive a message on
channel n, formally,

(M(x), Ky, 3) || P1)
(M(x), Ky, 3) || P2)

Q—-{1: ((¥,M(z.2) | Qu)} = (N(¥), Q).
In P|| Q, either P or Q will broadcast a message first, and the nomitieihism is resolved probabilis-
tically by race condition, i.e. B Q will perform n(y) first with probability% and the probability of rr)
being executed first ié. When ) is performed, Q will receive it and evolve in@{y/x}. Similarly,
when miz) is executed, P will evolve int®{z/x} accordingly. So

o
\Lo

—N—

WIN Wik

} = (M(x), '),

3 2
PIlQ—~ = X (). P 1 Q'1y/x) + £ x (M2, Q| P'{2/x).

Rules (SUM3) and (PAR3) are similar with rules (SUM2) and [R2, but they only apply to pro-
cesses wher® can only have a passive transition (with label 0), this isrgnteed by(Q) = 0. (SUM3)
and (PAR3) cannot be omitted since in (SUM2) and (PAR2) Bdtnd Q are required to have non-
passive transition, while in (SUM3) and (PAR3) only one arthhas non-passive transition. The argu-
ments for these rules when~= = — — = are similar. Rules (CON) and (STR) are standard and need no
more comments.

From the syntax and semantics we know that the nondetetinicisoices among Markovian tran-
sitions can be resolved by a race condition while both thedatarministic choices among immediate
outputs and inputs can be resolved based on their weights.stBluthere might be nondeterminis-
tic choices during the evolution of a process, such as nenuéatism between passive transitions and
Markovian transitions and nondeterminism between imntediansitions and Markovian transitions.
These nondeterminism can be resolved easily since we aghamienmediate transitions can preempt
other transitions while passive transitions should notdresiclered when talking about the underlying
CTMC of a process. We will talk about this in details in Seaf®

In this section we will not discuss immediate transitions,l@ave it to the next section. The following
simple example is to show how to geCaMC from a process without immediate actions and we often
omit the tail process 0.
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Table 4: Inference Rules¢ denotes either or --»)

(REC) (mBRD)
a(x,w).P—2={1: (a(x), P)} a(b, 1).P—~ (1 @by, P)}
P~Ls AP
(iBRD) ———  (RES)
a(b, cow).P— ¥ = {1 : (b, P)} vaP~Ls vaAP

,X¢ fn(P) andy(a,P) = 0 (LOS)
P2 (1:@(x),P)}
P—2>(@@(x).P) Q——=(a(x),Q)

0 (a.P) @9
@X).arraf * sarig@

y(aP+ Q) #0 (SUM1)

P+Q

P-2eaP Q-2-40

(SUM2)
A1+A2

P+Q Tt A APy f2

Ai+15 1+4A2 A1+42 AQ

PAnhP (== —— Ap(Q=0)V (= = — > Au(Q =0)

(SUM3)
P+Q~LsAP

P @x,P) Q—2-(a(x),Q)
Pl Q—2=(a(x),P || Q)

P~s AP UBiNmP)=0 v biajb))e AAQ).P—2= (a;(X).P))
IS je

(PAR1)

Q~%-4Q UBNMQ=0 v vbiai(b) € A(AF).Q— > (a1, Qi)

(PAR2)

Ay /11_’_/1 (+(Vb|a+<b|> AP(VbIa{<bI>) I Qifbi/x}) + (r, AP(7) || Q))

PIlQ~=

A (+ (vbjaj(by), Pi{bj/x} || AQ(vbjaj(by))) + (. P || AQ(7)))
1+/l

PmaP  Vbia(d) € ALP).Q—>(@(9.2) Yhinf(Q)=0

(== —— Ap(Q)=0)V (~~ = — — > Aue(Q) =0)

- - - (PAR3)
PIIQ~~ i-Erl(vbieu<Ioi>,1AxP(vbiau<bi>) 1y /x)) + (r. AB(@) 1| Q)

Ao
P~Ls AP P=Q~ ~AQ= AP
; AL"P (cony - (STR)
A0 AP p-2s AP
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Figure 1: A Simple CTMC

Example2 Given a process B a(by,2) || a(b,,6) || (a(x,1).P1 + a(x,2).P,), then P will broadcast a
message (@por by) on channel a with an exponential delay 8 and then evolve anpyocess action
distribution AP. By semantics in Tablg 4, we know

1 1 1 1
AP = {1—2 - (a(by), P11), 5 (aby), P12), 7 (a(b2), P21), 5 (a(bo), P22)}
where

P11=a(b2,6) | P1{b1/X} P12=aby,6) || Po{by/X}
Po1=a(by,2) | P1{b2/X} P2 =aby,2) || Po{b2/X}

This is displayed in Fid.]1(a) and the correspond@&@TtMC is shown in Fig[L(b), here we use dot lines
to denote probabilistic choices and omit actions of the siaons.

In the above example we briefly illustrated how to get a CTM@rfia process. Now we are going to
give the general construction by which we can get the coomdent CTMC from a process. Uad(P, Q)
to denote the rate from to Q in a CTMC, and defin®er(P) as the smallest set of processes satisfying:

i) P € Der(P); ii) P, € Der(P) iff there exists; € Der(P) such thalPl—A>AIP with AP(P2) > 0. So
Der(P) is the set of all the processes which are reachable fawith positive probability via arbitrary
steps. For each two procesdes P, € Der(P), the rate fromP; to P, is equal tod x AP(P»), that is

M(P1,P5) = 1x AP(P,) such thaP; —+~ AP, otherwiseM(Py, P;) = 0.

4 Immediate Transitions

In this section, we will give a few examples and show how carberefit from immediate transitions.
First we consider a model calléglosed Queueing Network€QN) [7] from performance analysis.

A gqueueing network is a collection of servers. Customerstpusceed from one server to another

in order to satisfy their service requirements. The quape@ietwork is closed if neither arrivals nor

departures of customers are permitted; instead the nunfileeistomers in the network are fixed at all

times. We useM to denote the number of servers in the network Bhfibr the number of customers

circulating around. The service time for a customer at sarigeexponentially distributed with ratg

and the probability a customer will proceed to jhth server after completing a service request at server

i is equal top;j fori, j=1,2,...,M.

Example 3 Suppose we are given a CQN with 5 servers and 15 customersishdvig.[2 where the
numbers in the rectangles denote the length of the queuecbf ®aver as well as their indexes, the
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Q1 Q2 Q3
3 8 6
Qo
10
Figure 2: A CQN with 5 Servers Figure 3: Open Queue Network with Blocking

numbers on the edges denote the transition probabilitiestha numbers in the circles denote the rate
of each service time.

The communication in the CQN is "point-to-point” in the senthat each leaving customer will
arrive at only one server, while in our calculus the commatian is based on broadcast. But with
immediate transitions we can model such "point-to-poinghetmunication as follows. Here we assume
that the weight of each input is 1 by default, that igxcis equal to ¢(x,1). SQ;(w;) denotes server i
with w; customers waiting for service in its queue. In TABIEBN(1, 2, 3,4,5) denotes the system where
the i-th parameter is the length of the i-th queue.

Table 5: Model of Closed Queueing Network

Rev(i, j,wj) = Gi(X).[x= W](c(r,oopij ).(SQj(wj +1) I SQi(w—1)) + c(x).SQj(w;j)) we[1,15]

SQjw) = > Rev(i,j,w;) + ([w; = 0]0,ci¢wj, 1))
l§i§5,pij>0

CQN(1,2,3,4,5)= vc(lI>., SQi(i)

Each SQj(wj) contains two parts: receivers denoted By.is p,; -0 Rev(i, j,wj) listen on the chan-
nels of their predecessors, and after being notified thatsaraer is coming, it will try to broadcast on
channel c immediately with a specific weighp, . The one which succeeds to do so will be the desti-
nation of the customer and all the others will be informed égeiving a message on c. The other part
[w; = 0]0,cj{wj, 1;) takes care of the requests of the customers in its queuesifittiempty, the rate of
the customer leaving depends on the service rate. By puttiege five servers in parallel, we get the
whole systen€QN(1,2,3,4,5). Our semantics guarantees that each leaving customer nalllyi arrive
at one and only one server. Actually, this can be seen as aovaptlel "point-to-point” communication
with immediate transitions. For example if a customer is/leg server 3, then both server 4 and 5 will
be informed by broadcasting a message on channdBot after that server 4 and 5 will try to broadcast
an acknowledge r on channel c, with probability 0.4 and 0$pextively. The one which succeeds to
send r will be the real destination of the customer. The oegver will know this fact by listening on
channel ¢ and roll back to its original state at the same tifike model in Tablgl5 is quite flexible, for
example, we can add self loops easily, that is, the desbimaif a leaving customer can be the same
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server as its departure server, or instead of having fixeddfer probabilities, we can make them change
based on the current lengths of queues.

In Example_B we have shown a typical closed queueing netwbedrewe assume that every server
has a queue with infinite capacity. But in practice the capafiqueues is often limited. 1h [10] a variant
of closed queueing network is proposed where the queue bfsaweri only has finite capacityg; for
1<i< M. A customer which requests service at serwehile the queue of serveris full will instantly
be routed to another servewith probability pjj as if it is served by serverat an infinite speed. For this
kind of model, it is hard (if not impossible) to model it in amapositional way without using immediate
actions. With immediate actions, the model is easy to olt@imout changing the model in Talilé 5 a lot.

Example 4 Suppose the queueing network we are about to model is theasathe queueing network in
ExampléB except that the capacity of every queue is maxirQuihdne server is full, it will just transfer
the coming customers to its next servers. The model can baettby simply replacing th8Q;(w; + 1)

in Rev(i, j,w;) in Table[® with[w; = 10]ci(11,c01), SQj(w;j + 1). This means instead of accepting any
coming customers, we require an extra checking on the cugeaue. If a customer arrives at a server
whose queue is not full, the customer will be accepted, wliser the customer will also be accepted
but will be transferred to the next server via actigild, co;) just like it is served with infinite rate, that
gives excuse of parameter 11. The same process will contimiléhe customer arrives at some server
which has free space for it.

From the semantics in Tablé 4, we know that all the outputsnareblocking, i.e., for one message
to be broadcasted, it is not necessary to have recipients.s@uoetimes we may have models where
components are not completely independent and one comipoearedo something only after some other
components finish, that is, some behaviors are blockingckid¢ig here means that an output action can-
not happen spontaneously but has to wait until certain ¢tandi are fulfilled. For instance in Example
[, every queue has finite capacity. When a customer arrivesatver without free space, it will simply
be transferred to other servers. What if the customer cammdtansferred but can only wait until the
server has free spaces? Refer to the following example fiidhwhich is also a variant of queueing
network calledopen queueing network with blocking

The network consists dil parallel servers callethergingqueues; there is a queue receiving the
outputs of these merging queues and is caltetgedqueue (or queue 0). The service time at quieue
is exponentially distributed with ratg§. The queue network is open since the number of the customers
circulating in the network is not fixed and some external@ugrs may arrive from the outside. Arrivals
to queuei are independerfPoisson Processesith rateyj. There is no external arrival to the merged
gueue. The length of theth merging queue iB;. The capacity of the queue 0Bp, andAg is its service
rate at queue 0. If a customer arrives at a merging queue wisefull, the customer will be lost. When
a customer completes service at seiiyérwill be transferred to queue 0 only if it is not full; othwise,
the customer waits in thieth server until it can enter queue 0. During this time itfie server cannot
serve other customers that might wait in its queue. In thég ctle queue is said to beackedand queue
0 isblocking Since there ar® servers in parallel, there might be more than one queue é&tbakthe
same time. When more than one queues are blocked, it is adgtatethey will enter queue 0 on a
"First-Blocked-First-Enter” basis.

From the description of open queue network with blocking kwew there are two kinds of actions
involving in this model: one is blocking and the other oneasi#blocking. For instance, when queue 0
is full, any other arrivals have to wait until queue 0 has Bpace, this is blocking action. On the other
hand, when the merging queues are full, instead of blockiegekternal arrivals it will just discard them,
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Table 6: Model of Open Queueing Network with Blocking

A = ai(arrival, i ). A
Si(w) = [w; =0,1,2]a(x,1).Si(w; + 1) + [w; = 1,2,3]s{leave, 4;).bi(x, 1).Sj(w; — 1)

So(w, S) = [w=1,2,3,4,5]s0(leave, 10).So(W—1,5) + [w = 5] Z s(%,1).So(w, S )
i

+[w=0,1,2,3,4AH(S) = i]bi(unblockingeo1).Se(w+ 1, T(S))
+[W=0,1,2,3,4AH(S) = 1] Z s (x, 1).bi(unblockingeoy).So(w+ 1, S)
i

so the external arrivals are non-blocking actions. In tilevieng we will show how to model both kinds
of actions in our calculus.

Example5 Fig.[3 gives a concrete example with 3 servers marked € and Q; respectively. The
length of each queue is 3 and the numbers on the in-edges &mdiges are used to denote arrival rates
and service rates, that iy =3, 1o =8, 13 =6, u3 = 2, up = 4, anduz = 5, and 1o = 10. The Q at the
bottom is the queue 0 with service rate 10, and the capacitis @fueue is 5. Initially, every queue is
empty.

Here is the model of the queueing network in Eig. 3 wherdehotes the arrival process of queue i,
Qi(w) denotes queue i with w customers in the queud foi < 3, and Q(w, S) denotes queue 0 with w
customers. Th& is a sequence of queues which are waiting for queue 0 whefuit,iit is an element
of SQ which is defined by enumerating all the possible sequencgaeafes waiting for queue 0. The
symbolL is used to denote empty sequence.

SQ={1,1,2,3,1221,13 31,23 32123132213 231,312 321

For simplicity, we define two functions on this sett3H: SO — {1,1,2,3} and T(S) : SQ — SQ which
return the head of sequence and the left sequence by delpérigst element respectively. For example,
H(123)=1and T(123)=23, H(L) = L and T(L) = L. We useS i to denote a new sequence by attaching
i to the end ofS. Note here that these functions are just used to give a atinmpadel, they can be
replaced by the standard operators by enumerating all thesiide cases. It is similar for conditions like
[w=0,1,2AH(S) =i]. The model of each component in Hig. 3 is shown in Table 6. Huevsystem
can be denoted as P||A; [|Si(0) || So(0, L) with 1 <i < 3.

As we said beforel, brloadcasts such thalesve, 1;) are blocking, so when there is no inpy>sw)
available, that is, the queue 0 is full, server i has to waifobe it can perform other actions. To do so,
we let the server i wait for the message unblocking on chalpnafter one customer leaving from it to
server 0. If queue 0 has free spaces, it will perform actigarblockingeoy ) right after it receives the
request from server i. Otherwise if the queue 0 is full, it aftach the request to the end of its waiting
list. When server 0 is ready to handle the request after s¢geeps, it will send the message unblocking
to server i instantly via immediate action{bnblockingeo1). Server i will receive it at the same time
and then unblock itself.

Fig. 4 shows a fragment of the execution of P where>, ——>, and - > denote Markovian,
immediate and probabilistic transition respectively. ldditional A=|; Ai and S(qi1,92,a3) =Ili Si(),
when g is barred, it means that server i is blocked. For exampl@ S}, 0z) = S1(a1) Il b2(x,1).S2(ap) ||
S3(g3). When in state A S(3,2,1) || So(4, 3), it means that there is a free space in queue 0 while the
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Al1S(3.2.1) [ So(5.3)
7
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\ AllS(3.2,1) | So(5, 1)

Figure 4: Execution Fragment &f

server 3 is waiting for service. In this case, server 0 shaekponse to it and transfer to the state
Al S(3,2,1) | So(5, L) instantly where the request is removed from the waitingdigshe queue 0. The
self loop with probability%3 denotes that the arrivals of external customers to servehilevits queue
is full. In this case, the arriving customers will be discaddwithout causing anyffects. The other self
loop with probability3—58 is similar except that the arriving customer is discardeddese server 3 is
blocked.

From Exampld b, we can see that blocking actions can be mqesb easily by using immediate
transitions. In general when broadcash, 2) is blocking, it should be prefixed with an input such as
c(x,w).a(b,2). When certain conditions are fulfilled, the process shotilghér a¢b, 1) by sending a
message on channelnstantly, that is, by action like{unblocking o).

5 TheUnderlyingCTMC

In Examples B[ M4, and 5, we see that immediate transitiondiseid powerful to model some systems.
But the main disadvantage is that the underlying CTMC of &gse is not so obvious anymore. In this
section we will show how to define the underlying CTMC in catémamediate transitions. Dierent
from [3] where the eliminations of immediate transitions Based on the weak behavioral equivalence,
we solve this by dealing with a set of equations as follows.

In this calculus choices between Markovian actions areaiitistic depending on their rates while
choices between immediate actions are also probabiligpeding on their associated weights. In
addition, if both types of actions are involved in a choidee immediate action should be prioritized,
since they take no time, so the probability of the Markovietiom being executed before the immediate
one is zero[[14]. Since the priority of immediate actions rmweshown in Tablél4, a CTMC cannot be
obtained directly from a process based on the semanticselfotiowing we distinguish betweevP
andIP. MP only contains processes which do not have immediate transitvhile IP only contains

processes which have immediate transitions availablem&y, IP = {P € &7 | JAP.P- 4 = AP} and

MP ={Pe & | AAP.P- 4 = AP} = Z\IP. Itis not hard to see that every state in a CTMC should be
seen as a Markovian process in this calculus, so insteadnsfdaring all the processes er(P) as in
Sectior B, we only need to consider Betr(P) " MP when talking about the corresponding CTMCRf
The question now is how to give the value df(P, Q) for any P, Q € Der(P) N MP. Due to immediate
actions, it is not enough to just consider one step Markotriamsition as before sind@ might have to

go through several immediate processes before rea€hing
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P1 = ¢(by, 002) || &(b2, c03) || €(X, 6).C(X, 6)

]
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Figure 5: Example with Immediate Transitions Figure 6: CTMC corresponding ©

We usePr' (R, Q) to denote the probability frorR to Q via all possible immediate transitions where
Re & andQ € MP. The value ofPr'(R, Q) is given by the smallest solution defined by the following se
of equations:

1 R=Q
Pr(RQ) =3 1eps0ARMP)xPI(P,Q) R-2>ARADer(R)NMP 0 @)
0 otherwise

Then for anyP, Q € MP, M(P, Q) can be defined as follows:

M(P,Q) = Ax Z AP(R)xP'(RQ) P—1-AP
AP(R)>0

Example 6 Suppose B a(b,10) || a(x, 1).c{by,002) || a(X, 1).c{by, o03) || c(X, 1).c(X, 6), by the semantics

in Table[4 we can draw a derivation tree as Hig. 6. We omit passansitions like—2> here.
In Fig. @ nondeterministic choices emerge, such as procésss) || c(b;,6) can choose either

immediate transition- > > or Markovian transition—%~. But since the probability of the Markovian
transition being executed before the immediate one is gerthe transitions inside the dashed rectangle
is impossible and should be ignored.

In this exampleDer(P) = {P, P1, P2, P3, P4, Ps, P7,0}, Der(P)N IP = {P1, P2, P3, Ps, P7}, and Der(P) N
MP = {P,P4,Pg,0}. To define the CTMC of P, we only need to consider the procésdesr(P) N MP
and the corresponding CTMC of P is shown in [Efy. 6 which iseysitple compared to the derivation
tree in Fig.[B.

In the second case of Equatidd (2), we require B&t(R) N MP # 0, that is, there exists at least a
Markovian process which is reachable fr&nBut sometimes it is also possible for one process reaching
an immediate state from which no Markovian process can lEhegh that is, we have immediate loop.
We call states it8P = {P | Der(P) C IP} absorbing states and use a special proSassk to denote them.
Accordingly, the set of states of the CTMC should Ber(P) N MP) U {Stuck} and M(P, Stuck) where
P € MP can be defined as follows:

MPStuck)=1- > MPQ) P—>AP.
QeDer(P)NnMP
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6 Conclusionsand Future Works

In this paper we give a stochastic broadeasélculus which is useful to model some server-client based
systems where synchronization is governed by only oneqiaatit. Both Markovian transitions and
immediate transitions are taken into account. A few examate given to show the expressivity of the
calculus which is enhanced a lot with immediate transitiohlse semantics is given by Labeled Tran-
sition System without relying on techniques such as muléti@ens, proved transition systems, unique
rate names, and so on. Each transition is labeled with rateight instead of action and the resulting
distribution is over pairs of actions and processes instéahly processes. In this way, the underlying
CTMC can be obtained naturally even with existence of imatediransitions.

A number of further developments are possible. In the fuiveevould like to provide semantics to
some of the most representative stochastic process laegaad9, 4] and compare thesé&elient ways.
Another possible extension is to support parameters, shaté do not need to know the value of each
parameter at beginning. We can also reuse the model by awgigarameters with éierent values and
so on. Sometimes, some CTMCs have special form, that isuptdorm which can be solvedigiently
[16,[12]. We try to answer whether the underlying CTMC of agess is in product form or not by
syntax-checking.
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