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Recently, Zhang and Van Breugel introduced the notion of a progress measure for a probabilistic
model checker. Given a linear-time property φ and a description of the part of the system that
has already been checked, the progress measure returns a real number in the unit interval. The real
number captures how much progress the model checker has made towards verifying φ . If the progress
is zero, no progress has been made. If it is one, the model checker is done. They showed that the
progress measure provides a lower bound for the measure of the set of execution paths that satisfy φ .
They also presented an algorithm to compute the progress measure when φ is an invariant.

In this paper, we present an algorithm to compute the progress measure when φ is a formula of a
positive fragment of linear temporal logic. In this fragment, we can express invariants but also many
other interesting properties. The algorithm is exponential in the size of φ and polynomial in the size
of that part of the system that has already been checked. We also present an algorithm to compute a
lower bound for the progress measure in polynomial time.

1 Introduction

Due to the infamous state space explosion problem, model checking a property of source code that
contains randomization often fails. In many cases, the probabilistic model checker simply runs out of
memory without reporting any useful information. In [11], Zhang and Van Breugel proposed a progress
measure for probabilistic model checkers. This measure captures the amount of progress the model
checker has made with its verification effort. Even if the model checker runs out of memory, the amount
of progress may provide useful information.

Our aim is to develop a theory that is applicable to probabilistic model checkers in general. Our
initial development has been guided by a probabilistic extension of the model checker Java PathFinder
(JPF) [9]. This model checker can check properties, expressed in linear temporal logic (LTL), of Java
code containing probabilistic choices.

We model the code under verification as a probabilistic transition system (PTS), and the systematic
search of the system by the model checker as the set of explored transitions of the PTS. We focus on
linear-time properties, in particular those expressed in LTL. The progress measure is defined in terms
of the set of explored transitions and the linear-time property under verification. The progress measure
returns a real number in the interval [0,1]. The larger this number, the more progress the model checker
has made with its verification effort.

Zhang and Van Breugel showed that their progress measure provides a lower bound for the measure
of the set of execution paths that satisfy the linear-time property under verification. If, for example, the
progress is 0.9999, then the probability that we encounter a violation of the linear-time property when
we run the code is at most 0.0001. Hence, despite the fact the model checker may fail by running out
of memory, the verification effort may still be a success by providing an acceptable upper bound on the
probability of a violation of the property.
∗Supported by an Ontario Graduate Scholarship.
†Supported by the Natural Sciences and Engineering Research Council of Canada and the Leverhulme Trust.

http://dx.doi.org/10.4204/EPTCS.85.3


34 Measuring Progress of Probabilistic LTL Model Checking

The two main contributions of this paper are

1. a characterization of the progress measure for a positive fragment of LTL. This fragment includes
invariants, and most examples found in, for example, [2, Section 5.1] can be expressed in this
fragment. This characterization forms the basis for an algorithm to compute the progress measure.

2. a polynomial time algorithm to compute a lower bound for the progress measure for the positive
fragment of LTL. The lower bound is tight for invariants, that is, this algorithm computes the
progress for invariants.

2 A Progress Measure

In this section, we review some of the key notions and results of [11]. We represent the system to be
verified by the probabilistic model checker as a probabilistic transition system.

Definition 1 A probabilistic transition system is a tuple 〈S,T,AP,s0,source, target,prob, label〉 consist-
ing of

• a countable set S of states,

• a countable set T of transitions,

• a set AP of atomic propositions,

• an initial state s0,

• a function source : T → S,

• a function target : T → S,

• a function prob : T → (0,1], and

• a function label : S→ 2AP

such that

• s0 ∈ S and

• for all s ∈ S, ∑{prob(t) | source(t) = s}= 1.

Example 2 The probabilistic transition system S depicted by

s1

1
2 //1

2

{{

s3

1


s0
1
2

;;

1
2
&&
s2

1


has three states and six transitions. In this example, we use the indices of the source and target to name
the transitions. For example, the transition from s0 to s2 is named t02. Given this naming convention,
the functions sourceS and targetS are defined in the obvious way. For example, sourceS (t02) = s0 and
targetS (t02) = s2. The function probS can be easily extracted from the above diagram. For example,
probS (t02) =

1
2 . All states are labelled with the atomic proposition a and the states s1 and s2 are also

labelled with the atomic proposition b. Hence, for example, labelS (s2) = {a,b}.
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Instead of 〈S,T,AP,s0,source, target,prob, label〉 we usually write S and we denote, for example,
its set of states by SS . We model the potential executions of the system under verification as execution
paths of the PTS.

Definition 3 An execution path of a PTS S is an infinite sequence of transitions t1t2 . . . such that

• for all i≥ 1, ti ∈ TS ,

• sourceS (t1) = s0S , and

• for all i≥ 1, targetS (ti) = sourceS (ti+1).

The set of all execution paths is denoted by ExecS .

Example 4 Consider the PTS of Example 2. For this system, t02t22
ω , t01t13t33

ω , and t01t10t02t22
ω are

examples of execution paths.

To define the progress measure, we use a measurable space of execution paths. We assume that the
reader is familiar with the basics of measure theory as can be found in, for example, [3]. Recall that a
measurable space consists of a set, a σ -algebra and a measure. In our case, the set is ExecS . The σ -
algebra ΣS is generated from the basic cylinder sets defined below. We denote the set of finite prefixes
of execution paths in ExecS by pref(ExecS ).

Definition 5 Let e ∈ pref(ExecS ). Its basic cylinder set Be
S is defined by

Be
S = {e′ ∈ ExecS | e is a prefix of e′ }.

The measure µS is defined on a basic cylinder set Bt1...tn
S by

µS (Bt1...tn
S ) = ∏

1≤i≤n
probS (ti).

The measurable space 〈ExecS ,ΣS ,µS 〉 is a sequence space as defined, for example, in [5, Chapter 2].
The verification effort of the probabilistic model checker is represented by its search of the PTS. The

search is captured by the set of transitions that have been explored during the search.

Definition 6 A search of a PTS S is a finite subset of TS .

Example 7 Consider the PTS of Example 2. The sets /0, {t01}, {t02}, {t01, t02} and {t01, t02, t10, t13, t22, t33}
are examples of searches.

A PTS is said to extend a search if the transitions of the search are part of the PTS. We will use this
notion in the definition of the progress measure.

Definition 8 The PTS S ′ extends the search T of the PTS S if for all t ∈ T ,

• t ∈ TS ′ ,

• s0S = s0S ′ ,

• sourceS ′(t) = sourceS (t),

• targetS ′(t) = targetS (t),

• probS ′(t) = probS (t),

• labelS ′(sourceS ′(t)) = labelS (sourceS (t)), and
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• labelS ′(targetS ′(t)) = labelS (targetS (t)).

Example 9 Consider the PTS of Example 2 and the search {t01, t02}. The PTS

s1 1
&&

s0
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s3
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s2
1

88

extends the search.

Since the PTSs we will consider in the remainder of this paper all extend a search T of a PTS S , we
write s0 instead of s0S to avoid clutter. PTSs that extend a particular search give rise to the same set of
execution paths if we restrict ourselves to those execution paths that only consist of transitions explored
during the search.

Proposition 10 If the PTS S ′ extends the search T of the PTS S , then

(a) T ∗∩pref(ExecS ) = T ∗∩pref(ExecS ′) and

(b) T ω ∩ExecS = T ω ∩ExecS ′ .

PTSs that extend a particular search also assign the same measure to basic cylinder sets of prefixes
of execution paths only consisting of transitions explored during the search.

Proposition 11 If the PTS S ′ extends the search T of the PTS S , then µS (Be
S ) = µS ′(Be

S ′) for all
e ∈ T ∗∩pref(ExecS ).

The function labelS assigns to each state the set of atomic propositions that hold in the state. This
function is extended to (prefixes of) execution paths as follows.

Definition 12 The function traceS : ExecS → (2APS )ω is defined by

traceS (t1t2 . . .) = labelS (sourceS (t1))labelS (sourceS (t2)) . . .

The function traceS : pref(ExecS )→ (2APS )∗ is defined by

traceS (t1 . . . tn) = labelS (sourceS (t1)) . . . labelS (sourceS (tn))labelS (targetS (tn))

Example 13 Consider the PTS S of Example 2.

traceS (t02t22
ω) = {a}{a,b}ω

traceS (t01t13t33
ω) = {a}{a,b}{a}ω

traceS (t01t10t02t22
ω) = {a}{a,b}{a}{a,b}ω

For the definition of linear-time property and the satisfaction relation |= we refer the reader to, for
example, [2, Section 3.2]. Based on these notions, we define when an execution path of a PTS satisfies a
linear-time property.

Definition 14 The satisfaction relation |=S is defined by

e |=S φ if traceS (e) |= φ .
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For PTSs that extend a particular search, those execution paths that only consist of transitions ex-
plored by the search satisfy the same linear-time properties.

Proposition 15 Let φ be a linear-time property. If the PTS S ′ extends the search T of the PTS S , then
e |=S φ iff e |=S ′ φ for all e ∈ T ω ∩ExecS .

Proof Since S ′ extends T of S , traceS (e) = traceS ′(e) for all e ∈ T ω ∩ExecS . �

Next, we introduce the notion of a progress measure. Given a search of a PTS and a linear-time
property, it captures the amount of progress the search of the probabilistic model checker has made
towards verifying the linear-time property.

Definition 16 Let the PTS S ′ extend the search T of PTS S and let φ be a linear-time property. The
set Bφ

S ′(T ) is defined by

Bφ

S ′(T ) =
⋃
{Be

S ′ | e ∈ T ∗∧∀e′ ∈ Be
S ′ : e′ |=S ′ φ }.

The set Bφ

S ′(T ) is the union of those basic cylinder sets Be
S ′ the execution paths of which satisfy the

linear-time property φ . Hence, Be
S ′ does not contain any execution paths violating φ . The set Bφ

S ′(T ) is
measurable, as shown in [11, Proposition 1]. Hence, the measure µS ′ assigns it a real number in the unit
interval. This number represents the “size” of the basic cylinder sets that do not contain any violations
of φ . This number captures the amount of progress of the search T verifying φ , provided that the PTS
under consideration is S ′. However, we have no knowledge of the transitions other than the search.
Therefore, we consider all extensions S ′ of T and consider the worst case in terms of progress.

Definition 17 The progress of the search T of the PTS S of the linear-time property φ is defined by

progS (T,φ) = inf
{

µS ′

(
Bφ

S ′(T )
)
|S ′ extends T of S

}
.

Example 18 Consider the PTS S of Example 2 and the linear temporal logic formulae �a, ♦a, ♦b and
©b. In the table below, we present the progress of these properties for a number of searches.

search �a ♦a ♦b ©b
/0 0 1 0 0
{t01} 0 1 1

2
1
2

{t02} 0 1 1
2

1
2

{t01, t02} 0 1 1 1
{t01, t13, t33} 1

4 1 1
2

1
2

{t01, t10, t13, t33} 1
3 1 1

2
1
2

In [11, Theorem 1], Zhang and Van Breugel prove the following key property of their progress
measure. They show that it is a lower bound for the probability that the linear-time property holds.

Theorem 19 Let T be a search of the PTS S and let φ be a linear-time property. Then

progS (T,φ)≤ µS ({e ∈ ExecS | e |=S φ }).

The setting in this paper is slightly different from the one in [11]. In this paper we assume that PTSs
do not have final states. This assumption can be made without loss of any generality: simply add a self
loop with probability one to each final state.
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3 Negation and Violations

In this section, we consider the relationship between making progress towards verifying a linear-time
property and finding a violation of its negation. First, we formalize that a search has not found a violation
of a linear-time property.

Definition 20 The search T of the PTS S has not found a violation of the linear-time property φ if there
exists a PTS S ′ which extends T of S such that e |=S ′ φ for all e ∈ ExecS ′ .

This definition is slightly stronger than the one given in [11, Definition 7]. All results of [11] remain
valid for this stronger version. Next, we prove that if a search has made some progress towards verifying
a linear-time property ¬φ , then that search has also found a violation of φ .

Proposition 21 Let T be a search of the PTS S and let φ be a linear-time property. If progS (T,¬φ)>0
then T has found a violation of φ .

Proof By the definition of prog, µS ′(B¬φ

S ′(T ))> 0 for each PTS S ′ which extends T of S . Hence,
B¬φ

S ′(T ) 6= /0. Therefore, there exists e∈ T ∗ such that Be
S ′ 6= /0 and ∀e′ ∈ Be

S ′ : e′ |=S ′ ¬φ . Hence, e′ 6|= φ

and e′ ∈ ExecS ′ . Therefore, T has found a violation of φ . �

The reverse implication does not hold in general, as shown in the following example.

Example 22 Consider the PTS

s0 1
2

//

1
2


s1

1


Assume that the state s0 satisfies the atomic proposition a and the state s1 does not. Consider the linear-
time property �a and the search {t00}. Note that t00

ω 6|= ¬�a and, hence, {t00} has found a violation of
¬�a. Also note that progS ({t00},�a) = 0.

We conjecture that the reverse implication does hold for safety properties (see, for example, [2,
Definition 3.22] for a formal definition of safety property). However, so far we have only been able to
prove it for invariants.

Proposition 23 If the search T of the PTS S has found a violation of the invariant φ then
progS (T,¬φ)>0.

Proof For every PTS S ′ that extends T , e 6|=S ′ �a for some e ∈ ExecS ′ . Hence, e = e f te` for some
e f ∈ T ∗ ∩ pref(ExecS ′) and t ∈ T such that a 6∈ labelS ′(sourceS ′(t)). Therefore, for all e′ ∈ Be f

S ′ we
have that e′ |=S ′ ¬�a and Be f

S ′ 6= /0. Hence, µS ′(Be f
S ′)>0 and, therefore, progS (T,¬�a)>0. �

4 A Positive Fragment of LTL

Next, we introduce a positive fragment of linear temporal logic (LTL). This fragment lacks negation. In
Section 5 we will show how to compute the progress measure for this fragment.

Definition 24 The logic LTL+ is defined by

φ ::= true | false | a | φ ∧φ | φ ∨φ | ©φ | φ1 U φ2 | φ1 R φ2

where a ∈ AP.
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The grammar defining LTL+ is the same as the grammar defining the logic PNF introduced in [2,
Definition 5.23], except that the grammar of LTL+ does not contain ¬a. For each LTL formula, there
exists an equivalent PNF formula (see, for example, [2, Section 5.1.5]). Such a result, of course, does
not hold for LTL+.

A property of LTL+ that is key for our development is presented next.

Proposition 25 For all LTL+ formulae φ and σ ∈ (2AP)∗, σ /0ω |= φ iff ∀ρ ∈ (2AP)ω : σρ |= φ .

Proof We prove two implications. Let φ be a LTL+ formula and let σ ∈ (2AP)∗. Assume that
∀ρ ∈ (2AP)ω : σρ |= φ . Since /0ω ∈ (2AP)ω , we can immediately conclude that σ /0ω |= φ .
The other implication is proved by structural induction on φ . Let σ ∈ (2AP)∗. We distinguish the follow-
ing cases.

• In case φ = true, clearly ∀ρ ∈ (2AP)ω : σρ |= φ and, hence, the property is satisfied.
• In case φ = false, obviously σ /0ω |= φ is not satisfied and, therefore, the property holds.
• Let φ = a. If σ /0ω |= φ , then |σ |>0 and a ∈ σ [0] and, hence, ∀ρ ∈ (2AP)ω : σρ |= φ .
• Let φ = φ1 ∧ φ2. Assume that σ /0ω |= φ . Then σ /0ω |= φ1 and σ /0ω |= φ2. By induction,
∀ρ ∈ (2AP)ω : σρ |= φ1 and ∀ρ ∈ (2AP)ω : σρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : σρ |= φ .
• The case φ = φ1∨φ2 is similar to the previous case.
• For ©φ we distinguish the following two cases. Assume |σ | = 0. Suppose σ /0ω |=©φ . Then

/0ω [1 . . .] = /0ω |= φ . By induction, ∀ρ ∈ (2AP)ω : ρ |= φ . Hence, ∀ρ ∈ (2AP)ω : ρ |=©φ .
Assume |σ | ≥ 1. Suppose σ /0ω |= ©φ . Then (σ /0ω)[1 . . .] = σ [1 . . .] /0ω |= φ . By induction,
∀ρ ∈ (2AP)ω : σ [1 . . .]ρ |= φ . Since σ [1 . . .]ρ = (σρ)[1 . . .], we have that ∀ρ ∈ (2AP)ω : σρ |=©φ .
• Next, let φ = φ1 U φ2. Assume that σ /0ω |= φ . Then there exists some j ≥ 0 such that

(a) (σ /0ω)[i . . .] |= φ1 for all 0≤ i< j and
(b) (σ /0ω)[ j . . .] |= φ2 .
We distinguish two cases. Suppose j < |σ |. From (a) we can conclude that for all 0 ≤ i < j,
(σ /0ω)[i . . .] = σ [i . . .] /0ω |= φ1. By induction, ∀ρ ∈ (2AP)ω : σ [i . . .]ρ |= φ1. Since σ [i . . .]ρ =
(σρ)[i . . .], we have that ∀ρ ∈ (2AP)ω : (σρ)[i . . .] |= φ1. From (b) we can deduce that (σ /0ω)[ j . . .] =
σ [ j . . .] /0ω |= φ2. By induction, ∀ρ ∈ (2AP)ω : σ [ j . . .]ρ |= φ2. Since σ [ j . . .]ρ = (σρ)[ j . . .], we have
that ∀ρ ∈ (2AP)ω : (σρ)[ j . . .] |= φ2. Combining the above, we get ∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.
Suppose j ≥ |σ |. For 0 ≤ i< |σ |, the argument for (a) is the same as above. For |σ | ≤ i< j,
(a) simply says that /0ω |= φ1, which, by induction, implies that ∀ρ ∈ (2AP)ω : ρ |= φ1. Hence,
∀ρ ∈ (2AP)ω : (σρ)[i . . .] |= φ1 for all 0≤ i< j. In this case, (b) means /0ω |= φ2, which, by induction,
implies that ∀ρ ∈ (2AP)ω : ρ |= φ2. Hence, ∀ρ ∈ (2AP)ω : (σρ)[ j . . .] |= φ2. Combining the above,
we obtain that ∀ρ ∈ (2AP)ω : σρ |= φ1 U φ2.
• Finally, we consider φ1 R φ2. According to [2, page 256], φ1 R φ2 ≡ ¬(¬φ1 U ¬φ2) and
¬(φ1 U φ2) ≡ (¬φ2)W (¬φ1 ∧¬φ2). According to [2, page 252], φ1 W φ2 ≡ (φ1 U φ2)∨�φ1.
Hence, we can derive that φ1 R φ2 ≡ (φ2 U (φ1∧φ2))∨�φ2. Therefore, proving that the property
is satisfied by �φ , combined with the proofs for ∧, ∨ and U above, suffices as proof for φ1 R φ2.
Thus, we consider �φ . Suppose that σ /0ω |= �φ . Then (σ /0ω)[ j . . .] |= φ for all j ≥ 0. We dis-
tinguish two cases. For all 0 ≤ j< |σ |, we have that (σ /0ω)[ j . . .] = σ [ j . . .] /0ω |= φ . By induction,
∀ρ ∈ (2AP)ω : σ [ j . . .]ρ |= φ and, hence, ∀ρ ∈ (2AP)ω : (σρ)[ j . . .] |= φ .
For all j ≥ |σ |, we have that (σ /0ω)[ j . . .] = /0ω |= φ . By induction, ∀ρ ∈ (2AP)ω : ρ |= φ and,
therefore, ∀ρ ∈ (2AP)ω : (σρ)[ j . . .] |= φ . Combining the above, we get ∀ρ ∈ (2AP)ω : σρ |=�φ .

�
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The above result does not hold for all LTL formulae, as shown in the following example.

Example 26 Consider the LTL formula ¬a. Note that this formula is not equivalent to any LTL+ for-
mula. Let σ = ε . Obviously, /0ω |= ¬a, but it is not the case that ∀ρ ∈ (2AP)ω : ρ |= ¬a (just take a
ρ ∈ (2AP)ω with a ∈ ρ[0]).

5 An Algorithm to Compute Progress

To obtain an algorithm to compute the progress for the positive fragment of LTL, we present an alternative
characterization of the progress measure. This alternative characterization is cast in terms of a PTS built
from the search as follows. We start from the transitions of the search and their source and target states.
We add a sink state, which has a transition to itself with probability one and which does not satisfy
any atomic proposition. For each state which has not been fully explored yet, that is, the sum of the
probabilities of its outgoing transitions is less than one, we add a transition to the sink state with the
remaining probability. This PTS can be viewed as the minimal extension of the search (we will formalize
this in Proposition 34). The PTS is defined as follows.

Definition 27 Let T be a search of the PTS S . The set ST
S is defined by

ST
S = {sourceS (t) | t ∈ T }∪{ targetS (t) | t ∈ T }∪{s0}.

For each s ∈ ST
S ,

outS (s) = ∑{probS (t) | t ∈ T ∧ sourceS (t) = s}.

The PTS ST is defined by

• SST = ST
S ∪{s⊥},

• TST = T ∪{ ts | s ∈ ST
S ∧outS (s)<1}∪{t⊥},

• sourceST (t) =


sourceS (t) if t ∈ T
s if t = ts
s⊥ if t = t⊥

• targetST (t) =
{

targetS (t) if t ∈ T
s⊥ if t = t⊥ or t = ts

• probST (t) =


probS (t) if t ∈ T
1−outS (s) if t = ts
1 if t = t⊥

• labelST (s) =
{

/0 if s = s⊥
labelS (s) otherwise

The above definition is very similar to [11, Definition 10]. The main difference is that we do not have
final states.

Proposition 28 Let T be a search of the PTS S . Then the PTS ST extends T .

Proof Follows immediately from the definition of ST . �

Next, we will show that the PTS ST is the minimal extension of the search T of the PTS S . More
precisely, we will prove that for any other extension S ′ of T we have that µST (B

φ

ST
)≤ µS ′(Bφ

S ′). To
prove this result, we introduce two new notions and some of their properties.
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Definition 29 Let T be a search of the PTS S and let φ be a linear-time property. The set Eφ

S (T ) is
defined by

Eφ

S (T ) = {e ∈ T ∗∩pref(ExecS ) | ∀e′ ∈ Be
S : e′ |=S φ }.

The set Eφ

ST
(T ) is minimal among the Eφ

S ′(T ) where S ′ extends T .

Proposition 30 Let the PTS S ′ extend the search T of the PTS S . For any LTL+ formula φ ,
Eφ

ST
(T )⊆ Eφ

S ′(T ).

Next, we restrict our attention to those elements of Eφ

S (T ) which are minimal with respect to the
prefix order.

Definition 31 Let T be a search of the PTS S and let φ be a linear-time property. The set MEφ

S (T ) is
defined by

MEφ

S (T ) = {e ∈ Eφ

S (T ) | |e|>0⇒∃e′ ∈ Be[|e|−1]
S : e′ 6|=S φ }.

Note that e ∈MEφ

S (T ) if and only if it belongs to Eφ

S (T ) and none of its prefixes belong to Eφ

S (T ).

Proposition 32 Let the PTSs S ′ and S ′′ extend the search T of the PTS S and let φ be a linear-time
property. Then ⋃

ē∈MEφ

S ′′ (T )

Bē
S ′ =

⋃
e∈Eφ

S ′′ (T )

Be
S ′ .

Proof Since MEφ

S ′′(T ) ⊆ Eφ

S ′′(T ), we can conclude that the set on the left hand side is a subset of the
set on the right hand side. Next, we prove the other inclusion. We show that for each e ∈ Eφ

S ′′(T ) there
exists ē ∈ MEφ

S ′′(T ) such that Be
S ′ ⊆ Bē

S ′ by induction on the length of e. In the base case, |e| = 0,
then e ∈ Eφ

S ′′(T ) implies e ∈MEφ

S ′′(T ) and, hence, we take ē to be e. Let |e|> 0. We distinguish two
cases. If ∃e′ ∈ Be[|e|−1]

S ′ : e′ 6|=S φ then we also take ē to be e. Otherwise, e[|e|−1] ∈ Eφ

S ′′(T ). Obviously,
Be

S ′ ⊆ Be[|e|−1]
S ′ and, by induction, there exists a ē ∈MEφ

S ′′(T ) such that Be[|e|−1]
S ′ ⊆ Bē

S ′ . �

Proposition 33 Let the PTSs S ′ and S ′′ extend the search T of the PTS S , and let φ be a linear-time
property. If Eφ

S ′(T )⊆ Eφ

S ′′(T ) then

µS ′′(
⋃
{Be

S ′′ | e ∈MEφ

S ′(T )}) = ∑
e∈MEφ

S ′ (T )

µS ′′(Be
S ′′). (1)

Proof We have that

MEφ

S ′(T ) ⊆ Eφ

S ′(T ) [by definition]

⊆ Eφ

S ′′(T ) [by assumption]

⊆ pref(ExecS ′′) [by definition]

Hence, for all e ∈MEφ

S ′(T ), we have that Be
S ′′ ∈ ΣS ′′ . Since the set T is finite, the set T ∗ is countable

and, hence, the set MEφ

S ′(T ) is countable as well. Since a σ -algebra is closed under countable unions,⋃
{Be

S ′′ | e ∈MEφ

S ′(T )} ∈ ΣS ′′ . Hence, the measure µS ′′ is defined on this set.

To conclude (1), it suffices to prove that for all e1, e2 ∈ MEφ

S ′(T ) such that e1 6= e2, e1 is not a prefix
of e2, since this implies that Be1

S ′ and Be2
S ′ are disjoint. Towards a contradiction, assume that e1 is a

prefix of e2. Since ∀e′1 ∈ Be1
S ′ : e′1 |=S ′ φ and e1 is a prefix of e2 and e1 6= e2, it cannot be the case that

∃e′2 ∈ Be2[|e2|−1]
S ′ : e′2 6|=S ′ φ . This contradicts the assumption that e2 ∈MEφ

S ′(T ). �
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Now, we are ready to prove that the PTS ST is the minimal extension of the search T of the PTS S .

Proposition 34 Let the PTS S ′ extend the search T of the PTS S and let φ be a LTL+ formula. Then

µST (B
φ

ST
(T ))≤ µS ′(Bφ

S ′(T )).

Proof

µST (B
φ

ST
(T ))

= µST (
⋃
{Be

ST
| e ∈ Eφ

ST
(T )})

= µST (
⋃
{Be

ST
| e ∈MEφ

ST
(T )}) [Proposition 32]

= ∑
e∈MEφ

ST
(T )

µST (B
e
ST

) [Proposition 33]

= ∑
e∈MEφ

ST
(T )

µS ′(Be
S ′) [Proposition 11]

= µS ′(
⋃
{Be

S ′ | e ∈MEφ

ST
(T )}) [Proposition 30 and 33]

= µS ′(
⋃
{Be

S ′ | e ∈ Eφ

ST
(T )}) [Proposition 32]

≤ µS ′(
⋃
{Be

S ′ | e ∈ Eφ

S ′(T )}) [Proposition 30]

= µS ′(Bφ

S ′(T ))

�

The above proposition gives us an alternative characterization of the progress measure.

Theorem 35 Let T be a search of the PTS S and let φ be a LTL+ formula. Then

progS (T,φ) = µST (B
φ

ST
(T )).

Proof This is a direct consequence of the definition of the progress measure and Proposition 34. �

Hence, in order to compute progS (T,φ), it suffices to compute the measure of Bφ

ST
(T ). Next, we

will show that the latter is equal to the measure of the set of execution paths of ST that satisfy φ . The
proof consists of two parts. First, we prove the following inclusion.

Proposition 36 Let T be a search of the PTS S and let φ be a linear-time property. Then

Bφ

ST
(T )⊆ {e ∈ ExecST | e |=ST φ }.

Proof Let e ∈ Bφ

ST
(T ). Then e ∈ Be′

ST
for some e′ ∈ T ∗ such that ∀e′′ ∈ Be′

ST
: e′′ |=ST φ . Hence,

e |=ST φ . �

The opposite inclusion does not hold in general, as shown in the following example.

Example 37 Consider the PTS S

s0 1
2

//

1
2


s1

1
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Consider the search {t00}. Then the PTS ST can be depicted by

s0 1
2

//

1
2


s⊥

1


Assume that the state s0 satisfies the atomic proposition a. Hence, t00
ω |=ST �a. By construction, the

state s⊥ does not satisfy a. Therefore, t00
ω 6∈B�a

ST
.

However, we will show that the set {e ∈ ExecST | e |=ST φ } \Bφ

ST
(T ) has measure zero. In the

proof, we will use the following proposition.

Proposition 38 Let T be a search of the PTS S and let φ be a linear-time property. Assume that T has
not found a violation of φ . Then for all e ∈ T ω ∩ExecST , e |=ST φ .

Proof Let e ∈ T ω ∩ExecST . Since T has not found a violation of φ , by definition there exists a PTS S ′

that extends T of S such that e′ |=S ′ φ for all e′ ∈ ExecS ′ . Then e ∈ ExecS ′ ∩T ω by Proposition 10(b),
because S ′ and ST both extend T . Hence, e |=S ′ φ . Therefore, from Proposition 15 we can conclude
that e |=ST φ . �

Proposition 39 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a
violation of φ then

µST ({e ∈ ExecST | e |=ST φ }\Bφ

ST
(T )) = 0.

Proof To avoid clutter, we denote the set {e ∈ ExecST | e |=ST φ }\Bφ

ST
(T ) by Z.

First, we show that Z ⊆ T ω . Assume that e ∈ Z. Towards a contradiction, suppose that e 6∈ T ω . From
the construction of ST we can deduce that e = e′tst⊥ω for some e′ ∈ T ∗. Let traceST (e

′) = σ . Then
traceST (e) = σ /0ω . Since e ∈ Z, we have that e |=ST φ and, hence, σ /0ω |= φ . By Proposition 25,
∀ρ ∈ (2AP)ω : σρ |= φ . Hence, ∀e′′ ∈ Be′

ST
: e′′ |=ST φ . Since e ∈ Be′

ST
, we have that e ∈Bφ

ST
(T ), which

contradicts our assumption that e ∈ Z.
Next, we show that each state in { targetST (e) | e ∈ pref(Z)} is transient. Roughly speaking, a state s
is transient if the probability of reaching s in one or more transitions when starting in s is strictly less
than one (see, for example, [1, Section 7.3] for a formal definition). It suffices to show that each state in
{ targetST (e) | e ∈ pref(Z)} can reach the state s⊥, since in that case the probability of reaching s⊥ and,
hence, not returning to the state itself, is greater than zero.
Since T has not found a violation of φ , we can conclude from Proposition 38 that e |=ST φ for all e∈ T ω .
Hence, from the construction of ST we can deduce that if e 6|=ST φ then e 6∈ T ω and, hence, e reaches s⊥.
Let e ∈ pref(Z). Hence, there exists e′ ∈ Be

ST
such that e′ 6|=ST φ . Therefore, e′ reaches s⊥ and, hence,

targetST (e) can reach s⊥.
Since Z ⊆ T ω , the set { targetST (e) | e ∈ pref(Z)} is finite. According to [1, page 223], the probability
of remaining in a finite set of transient states is zero. As a consequence, the probability of remaining in
the set { targetS ′(e) | e ∈ pref(Z)} is zero. Hence, we can conclude that µST (Z) = 0. �

From the above, we can derive the following result.

Theorem 40 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a violation
of φ then

µST (B
φ

ST
(T )) = µST ({e ∈ ExecST | e |=ST φ }).
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Proof

µST (B
φ

ST
(T ))

≤ µST ({e ∈ ExecST | e |=ST φ }) [Proposition 36 and µST is monotone]

= µST (B
φ

ST
(T ))+µST ({e ∈ ExecST | e |=ST φ }\Bφ

ST
(T )) [Proposition 36 and µST is additive]

= µST (B
φ

ST
(T )) [Proposition 39]

�

Combining Theorem 35 and 40, we obtain the following characterization of the progress measure.

Corollary 41 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a
violation of φ then

progS (T,φ) = µST ({e ∈ ExecST | e |=ST φ }).

Proof Immediate consequence of Theorem 35 and 40. �

How to compute µST ({e ∈ ExecST | e |=ST φ }) can be found, for example, in [4, Section 3.1].
Computing this measure is exponential in the size of φ and polynomial in the size of T .

6 An Algorithm to Efficiently Compute a Lower Bound of Progress

The algorithm developed in the previous section to compute progS (T,φ) is exponential in the size
of φ . In this section, we trade precision for efficiency. We present an algorithm that does not com-
pute progS (T,φ), but only provides a lower bound in polynomial time. This lower bound is tight for
invariants. However, we also show an example in which the lower bound does not provide us any infor-
mation.

Next, we show that subsets of ExecS can be characterized as countable intersections of countable
unions of basic cylinder sets. For A ⊆ ExecS and n ∈ N, we use A[n] to denote the set {e[n] | e ∈ A},
where e[n] denotes the execution path e truncated at length n. We prove the characterization by showing
two inclusions. The first inclusion holds for arbitrary subsets of ExecS .

Proposition 42 For PTS S , let A⊆ ExecS . Then

A⊆
⋂

n∈N

⋃
e∈A[n]

Be
S .

Proof Let e′ ∈ A. It suffices to show that

e′ ∈
⋃

e∈A[n]

Be
S (2)

for all n ∈ N. Let n ∈ N. To prove (2), it suffices to show that e′ ∈ Be
S for some e ∈ A[n]. Since e′ ∈ A,

we have that e′[n] ∈ A[n]. Because e′[n] is a prefix of e′ and e′ ∈ ExecS , we have that e′ ∈ Be′[n]
S , which

concludes our proof. �

The reverse inclusion does not hold in general. In some of the proofs below we use some metric
topology. Those readers unfamiliar with metric topology are referred to, for example, [8]. To prove the
reverse inclusion, we use that the set is closed.
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Proposition 43 For PTS S , let A⊆ ExecS . If A is closed then⋂
n∈N

⋃
e∈A[n]

Be
S ⊆ A.

Proof Let e′ ∈
⋂

n∈N
⋃

e∈A[n] B
e
S . Then e′ ∈

⋃
e∈A[n] B

e
S for all n ∈ N. Hence, for each n ∈ N there exists

a en ∈ A[n] such that e′ ∈ Ben
S . Thus, for each n ∈ N there exists a e′n ∈ A such that e′ ∈ Be′n[n]

S and, hence,
e′n[n] is a prefix of e′.

We distinguish two cases. Assume that for some n ∈ N, e′n[n] = e′n. Then e′n is a prefix of e′. Since also
e′, e′n ∈ ExecS , we can conclude that e′ = e′n. Since e′n ∈ A we have that e′ ∈ A.

Otherwise, e′n[n] 6= e′n for all n ∈ N. Since also e′n[n] is a prefix of e′, we can conclude that e′n[n] = e′[n].
Let the distance function d : (pref(ExecS )∪ExecS )× (pref(ExecS )∪ExecS )→ [0,1] be defined by
d(e1,e2) = inf{2−n | e1[n] = e2[n]}. Then, d(e′n,e

′) ≤ 2−n, that is, the sequence (e′n)n converges to e′.
Because all the elements of the sequence (e′n)n are in A and A is closed, we can conclude that the limit e′

is in A as well (see, for example, [8, Proposition 3.7.15 and Lemma 7.2.2]). �

PTSs that extend a particular search assign the same measure to closed sets of execution paths con-
sisting only of explored transitions.

Proposition 44 Let the PTS S ′ extend the search T of the PTS S and let A ⊆ T ω ∩ExecS . If A is
closed then µS (A) = µS ′(A).

Proof Obviously, for all e ∈ T ∗ and t ∈ T , we have Be
S ⊇ Bet

S . As a consequence,
⋃

e∈A[n] B
e
S ⊇⋃

e∈A[n+1] B
e
S for all n ∈ N. Furthermore, µS (

⋃
e∈A[0] B

e
S ) = µS (Bε

S ) = 1 and, hence, µS (
⋃

e∈A[0] B
e
S )

is finite. Since a measure is continuous (see, for example, [3, Theorem 2.1]), we can conclude from the
above that

µS

⋂
n∈N

⋃
e∈A[n]

Be
S

= lim
n∈N

µS

 ⋃
e∈A[n]

Be
S

 . (3)

Therefore,

µS (A) = µS

⋂
n∈N

⋃
e∈A[n]

Be
S

 [Proposition 42 and 43]

= lim
n∈N

µS

 ⋃
e∈A[n]

Be
S

 [(3)]

= lim
n∈N ∑

e∈A[n]
µS (Be

S ) [a measure is countably additive]

= lim
n∈N ∑

t1...tn∈A[n]
∏

1≤i≤n
probS (ti)

= lim
n∈N ∑

t1...tn∈A[n]
∏

1≤i≤n
probS ′(ti) [S ′ extends T of S ]

= µS ′(A) [by symmetric argument].

�
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Hence, the PTSs S and ST assign the same measure to the closed set of those execution paths
consisting only of explored transitions.

Corollary 45 Let T be a search of the PTS S . Then µS (T ω ∩ExecS ) = µST (T
ω ∩ExecST ).

Proof Since the sets ExecS and T ω are closed, their intersection is also closed (see, for example, [8,
Proposition 3.7.5]) and, hence, the result follows immediately from Proposition 44 and 10(b). �

Now we can show that the measure of the set of execution paths consisting only of explored transi-
tions is a lower bound for the progress measure.

Theorem 46 Let T be a search of the PTS S and let φ be a LTL+ formula. If T has not found a violation
of φ then

µST (T
ω ∩ExecST )≤ progS (T,φ).

Proof

µST (T
ω ∩ExecST )

≤ µST ({e ∈ ExecST | e |=ST φ }) [Proposition 38]

= progS (T,φ) [Corollary 41]

�

From the construction of ST we can conclude that µST (T
ω ∩ ExecST ) is the same as

µST ({e ∈ ExecST | e does not reach s⊥ }), which is the same as 1−µST ({e ∈ ExecST | e reaches s⊥ }).
The latter can be computed in polynomial time using, for example, Gaussian elimination (see, for exam-
ple, [2, Section 10.1.1]). This algorithm has been implemented and incorporated into an extension of the
model checker JPF [10]. While JPF is model checking sequential Java code which contains probabilistic
choices, our extension also keeps track of the underlying PTS. The amount of memory needed to store
this PTS is in general only a small fraction of the total amount of memory needed. Once our extension of
JPF runs almost out of memory, it can usually free enough memory so that the progress can be computed
from the stored PTS.

As was shown in [11, Theorem 4], the above bound is tight for invariants.

Proposition 47 If the search T of the PTS S has not found a violation of invariant φ then

µST (T
ω ∩ExecST ) = progS (T,φ).

In the example below, we present a search of a PTS for a LTL+ formula of which the progress is one
whereas the bound is zero. In this case, the bound does not provide us any information.

Example 48 Consider the PTS

s0 1
// s1

1


Assume that the state s1 satisfies the atomic proposition a. Consider the linear-time property ©a and
the search {t01}. In this case, we have that progS ({t01},©a) = 1 but µS{t01}

({t01}ω ∩ExecS{t01}
) =

µS{t01}
( /0) = 0.
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7 Conclusion

Our work is based on the paper by Zhang and Van Breugel [11]. The work by Pavese, Braberman and
Uchitel [6] is also related. They aim to measure the probability that a run of the system reaches a state
that has not been visited by the model checker. Also the work by Della Penna et al. [7] seems related.
They show how, given a Markov chain and an integer i, the probability of reaching a particular state s
within i transitions can be computed.

As we have seen, there seems to be a trade off between efficiency and accuracy when it comes to
computing progress. Our algorithm to compute progS (T,φ) is exponential in the size of the LTL+

formula φ and polynomial in the size of the search T . We even conjecture (and leave it to future work to
prove) that the problem of computing progress is PSPACE-hard. However, in general the size of the LTL
formula is small, whereas the size of the search is huge. Hence, we expect our algorithm to be useful.

Providing a lower bound for the progress measure can be done in polynomial time. As we have
shown, this bound is tight for invariants. Invariants form an important class of properties. Determining
the class of LTL+ formulae for which the bound is tight is another topic for further research.

The approach to handle the positive fragment of LTL seems not applicable to all of LTL. We believe
that a different approach is needed and leave this for future research.
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