
L. Bortolussi and H. Wiklicky (Eds.): QAPL 2013
EPTCS 117, 2013, pp. 97–115, doi:10.4204/EPTCS.117.7

Probabilistic Concurrent Kleene Algebra

Annabelle McIver Tahiry Rabehaja
Department of Computing∗

Macquarie University
Sydney, Australia

{annabelle.mciver,tahiry.rabehaja}@mq.edu.au

Georg Struth
Department of computer Science

University of Sheffield
United Kingdom

g.struth@dcs.shef.ac.uk

We provide an extension of concurrent Kleene algebras to account for probabilistic properties. The
algebra yields a unified framework containing nondeterminism, concurrency and probability and is
sound with respect to the set of probabilistic automata modulo probabilistic simulation. We use the
resulting algebra to generalise the algebraic formulationof a variant of Jones’ rely/guarantee calculus.

1 Introduction

Since Rabin’s seminal paper introducing probabilistic algorithms [18], the role of probability in the de-
sign of systems has increased in popularity and effectiveness. However, probability and concurrency
results in greater complexity and so the formal verificationof such system poses a particular chal-
lenge. Many process algebras and automated tools have been developed to combine probability and
concurrency but there are some important features of concurrent systems such as interference between
shared variables that are not easily captured. Interference is for example a feature that appears in Jones’
rely/guarantee calculus. In this paper, we generalise concurrent Kleene algebra and extend the variant of
Jones’ rely/guarantee rules found in [5] to apply to systemswith probability.

Introduced by Kleene in his study of automata and regular languages [7], Kleene algebras provide
an elegant tool that is able to express static properties of standard sequential programs [10–12]. The
axiomatisation of Kleene algebras and their extensions have been well studied by Conway [1], Kozen [9],
Salomaa [19] and others [4,17].

Concurrent Kleene algebra has been developed and used to give robust proofs of concurrent systems,
and in particular for verification techniques such as a variant of Jones’ rely/guarantee rules [5,6]. Algebra
is an important mathematical tool for carrying out complex proofs, however its effectiveness relies on
realistic models. In this paper, we give the first Kleene likestructure that extends concurrent Kleene
algebra with probabilistic behaviour.

Our algebra is constructed from concurrent and probabilistic Kleene algebras [5, 16]. It provides an
abstraction of concurrent systems and is able to express properties such as interference. The most impor-
tant rule of concurrent Kleene algebra is the interchange law which establishes the interaction between
concurrency and sequential execution. Informally, it saysthat the sequential execution of two concurrent
systems entails an explicit dependency between the two concurrent parts, therefore no interference. But
the concurrent execution of two sequential systems allows interference between any parts of the two
systems. The relationship between these behaviours is expressed within a partial order determined by
traces, and the algebraic rules mandate program operators’behaviours when used in combination.

In contrast, probabilistic Kleene algebra provides an abstraction of probability whose existence can
be deduced from a subdistributivity law. The law describes the interaction between sequential execution

∗This research has been supported by the Australia Research Council Discovery Grant DP1092464 and the iMQRS Grant
from Macquarie University.

http://dx.doi.org/10.4204/EPTCS.117.7

98 Probabilistic Concurrent Kleene Algebra

and nondeterminism in the presence of probability. Informally, it says that a nondeterministic choice
preceded by a probabilistic action can be resolved using theoutcome of the probabilistic choice, that is,

x·y+x·z≤ x· (y+z)

wherex,y,z are probabilistic programs,+ is the nondeterministic choice and· denotes sequential exe-
cution. This law also ensure monotonicity of the sequentialcomposition which is an important property
for combining sequential system from smaller components.

Our first contribution is to expand the set of axioms for concurrent Kleene algebra to account for
the presence of probability and prove their soundness with respect to an automata model of probabilistic
concurrency modulo simulation equivalence. In proving thesoundness we find that some of the original
axioms, both from concurrent and probabilistic Kleene algebras, needed to be weakened to accommodate
the presence of both features in a single framework. Our simulation is based on the definition of Deng et
al. [2] though we show that it is equivalent to Segala’s definition of probabilistic weak forward simula-
tion [21]. Segala’s simulation completely characterises the coarsest precongruence included in the trace
distribution equivalence of probabilistic automata [14] and coincides with the infinitary probabilistic
vector may testing order [22].

Our second contribution is the extension of the rely/guarantee calculus of [5] to concurrent systems
exhibiting probabilistic behaviours. We show that with theaxiomatisation presented in Section 4, the
algebra is sufficient to prove some important rely/guarantee rules which hold in the action-based in-
terleaving model as well as any other semantics that satisfythe necessary algebraic properties. Since
the inequality in the rules can be interpreted as the existence of a probabilistic simulation, the testing
interpretation of simulation [3] allows us to provide bounds for the maximal probability of failure.

In Section 2, we provide a summary of probabilistic automataand the operators which will be used
to interpret our algebraic terms. Section 3 contains a survey of probabilistic simulation where the for-
mulation of Deng et al is shown to be equivalent to Segala’s definition of probabilistic weak forward
simulation. Section 4 provides the soundness of the algebrawith respect to automata and probabilistic
simulation. In particular, we show how the probability interacts with the sequential as well as concurrent
operators. We also provide the derivation of some rely/guarantee rules within and study a simple example
to show the application of the algebraic reasoning developed.

2 Probabilistic Automata and Operations

The standard constructions of automata theory have been generalised to capture probabilistic behaviour
which we summarise briefly here. We will use these automata asa model to exhibit soundness for the
generalised concurrent Kleena Algebra we describe in Section 4.

Probability is encoded in terms of distributions over the state space. A transition in a probabilistic
automaton starts from a source state, executes an action from a given alphabetΣ and ends in a target
distribution [21]. Such a distribution is then resolved into a probabilistic choice which specifies the new
state of the automaton up to some probabilistic factor.

Definition 2.1. A probabilistic automaton is a tuple(P,Σ,−→,φP,FP) where

- P is a set of states,

- Σ is a set of actions,

- −→: P×Σ×D(P) is a set of probabilistic transitions whereD(P) is the set of finitely (or count-
ably) supported probability distributions over P,

Annabelle McIver, Tahiry Rabehaja, Georg Struth 99

- φP is the start or initial distribution over the states in P,

- and FP is a set of final states.

We usually identify an automoton with its set of states and explicit distinction will be made only
when confusion may arise.

Example 2.2. Figure 1 depicts two probabilistic automata. The automatonon the left models a faulty
vending machine that becomes stuck with probability0.2; on the right the automaton represents the
actions of a user interacting with the automaton by kicking it if he fails to get his tea. Two kicks means
the machine really is broken.1

The states of the two automata are labelled by si , ti respectively and distributions are not labelled
unless they are initial and their components correspond to dotted arrows labelled with the probability.
The set of actions isΣ = {coin,tea,kick,fail,stuck} wherestuck is the only internal action. We
assume that the two automata have no final state to facilitatethe upcoming calculations.

s0

coin

��

0.2 0.8

s1

stuck

��

s2

tea

��
s3

kick

KK

s4

t1

coin

��
t2

kick

��⑧⑧
⑧⑧
⑧⑧
⑧

tea

��❄
❄❄

❄❄
❄❄

❄

t3

kick

��

tea

// t4

t5

fail

ll

Figure 1: A probabilistic vending machineV = coin ·M and a userU = coin ·U ′ who kicks the machine
once if it gets stuck.

Definition 2.1 provides a specialised version of probabilistic automata. Generally, a transition is
composed of a state and a distribution overΣ×P but restriction to automata with simple transitions
suffices for our results in this paper. We denote byPAut the set of such probabilistic automata.

The set of actionsΣ is divided into two parts, namely,internal andexternalactions. Internal actions
are either local or invisible and are usually intrinsic to the automaton where they are defined. They are not
shared with other automata in the sense that they can be executed independently from the environment.
A special case is the silent actionτ which does not belong to the set of internal actionsI and we write
Iτ = I ∪{τ}. In contrast, external actions are visible to the environment and may be synchronised. We
denote the set of external actions byE, and defineΣ = I ∪E and Στ = Iτ ∪E. The setΣ is assumed
implicitly and is fixed for every automaton.

The linear run of a probabilistic automaton yields apath, as in the standard case, which is quantified
with respect to a family of probability measures (indexed with a set of probabilistic scheduler). Formally,
a path is a sequencex0a1x1a2x2 · · · of alternating states and actions such that there is a sequence of
transitionsxi

ai+1
−→ µi+1, i ≥ 0, wherexi ∈ supp(µi) (the support ofµ) for every i > 0. A pathα always

1This example was suggested by Steve Schneider [20].

100 Probabilistic Concurrent Kleene Algebra

starts with a state and ends with another state, denoted last(α), if it is finite. Usually, we want a path to
start from a state in the support of the initial distribution. We denote Path(P) the set of all finite paths of
an automatonP.

Next we provide some operations over probabilistic automata. The regular operators include non-
deterministic choice (+), sequential composition (·) and Kleene star (∗) which abstracts tail iteration
together with the constants skip (1), deadlock (0) and the automaton that enables a single successfully
terminating action. Such an automaton is denoteda where the action isa. Formally, we have

- Deadlock0 corresponds to({x}, /0,δx, /0) whereδx is the point probability distribution concentrated
on the statex.

- Skip1 corresponds to({x}, /0,δx,{x}).

- a corresponds to({x,x′},{x
a

−→ δx′},δx,{x′}).

In the reminder of this section, we fix two probabilistic automataP,Q with respective initial distri-
bution µ0,ν0, sets of final statesFP,FQ and sets of transitions−→P,−→Q. We also assume that the state
spaces ofP andQ are disjoint. We now give an automata semantics for each of the named operators.

Nondeterminism is defined as in the standard case by constructing a new initial point distributionδz

such thatz leads to the respective initial distributions of the operands viaτ transitions.

Definition 2.3. Nondeterministic choice between P and Q is defined by:

P+Q= (P∪Q∪{z},−→P ∪ −→Q ∪{z
τ

−→ µ0,z
τ

−→ ν0},δz,FP∪FQ)

where z/∈ P∪Q.

Definition 2.4. The sequential composition of P followed by Q is defined by:

P·Q= (P∪Q,−→P·Q,µ0,FQ)

where
−→P·Q=−→P ∪ −→Q ∪{x

τ
−→ ν0 | x∈ FP}.

This definition is a straightforward generalisation of the standard definition from automata theory.
Now we define the Kleene star in the standard way.

Definition 2.5. The tail iteration or Kleene star of P is P∗ = (P∪{z},−→P∗ ,δz,{z}) where

−→P∗=−→P ∪{z
τ

−→ µ0,x
τ

−→ δz | x∈ FP}

and z/∈ P.

The implementation of a probabilistic choice between two automata is defined below.

Definition 2.6. We define the probabilistic choice between P, with probability p, and Q, with probability
1− p, as

P p⊕ Q= (P∪Q,−→P ∪ −→Q, pµ0+(1− p)ν0,FP∪FQ).

Finally, the parallel composition is defined using a probabilistic version of CSP parallel composition
operation that synchronises on the actions inA⊆ E. The frame setA is assumed to be fixed throughout
this paper.

Firstly, given µ ∈ D(P) and ν ∈ D(Q), the productµ × ν is a distribution overP×Q such that
(µ ×ν)(x,y) = µ(x)ν(y) (component-wise multiplication).

Annabelle McIver, Tahiry Rabehaja, Georg Struth 101

Definition 2.7. We define the parallel composition of P and Q as

PA‖Q= (P×Q,−→PA‖Q,µ0×ν0,FP×FQ)

where, for each a∈ Στ , a transition(x,y)
a

−→ µ ×ν belongs to−→P‖Q if one of the following conditions
holds:

• a∈ A and x
a

−→ µ and y
a

−→ ν ,

• a /∈ A and x
a

−→ µ andν = δy,

• a /∈ A and y
a

−→ ν andµ = δx.

In the construction of the transition relations ofPA‖Q, given a transition ofP, if it is labelled by an
action inA then it is blocked until it gets synchronised with a transition of Q labelled with the same
action. Otherwise, that transition is interleaved with thetransitions ofQ.

Example 2.8. Using this language we can describe the automata from Figure1. The right hand side
automaton of Figure 1 corresponds to the algebraic expression

coin · (kick · (kick ·fail∗+tea)+tea)

where we have abused notation by denoting the automaton thatdoes a single action, saycoin, and then
terminates successfully with the same notationcoin.

The left hand side is obtained as a sequential compositioncoin ·M where M corresponds to the least
fixed point of

f (X) = stuck ·kick ·X ·0 0.2⊕ tea ·0.

We will express the least fixed point of f as an algebraic expression in Section 4.

3 Probabilistic Simulation

In this section, we define an inequality on the setPAut as per the constructions of [2, 3, 14, 22]. The
equivalence relation is based on weak simulation and we are mainly interested in the equational theory
of this model and relate it to the axiomatisation of probabilistic and concurrent Kleene algebras.

We provide two equivalent definitions of simulation. The first definition is the probabilistic simula-
tion of [2] and the second is probabilistic weak forward simulation of [22]. Both definitions of simulation
rely on the lifting of relations from states to distributions. Given a relationS⊆ X×D(Y), the lifting [2]
of S is a relationS⊆ D(X)×D(Y) such thatµSν if and only if there exists a family of real number
{pn | n∈ N} ⊆ [0,1] such that∑n pn = 1 and

1. µ = ∑n∈N pnδxn,

2. for eachn∈ N, there existsνn ∈ D(X) such thatxnSνn,

3. ν = ∑n∈N pnνn.

The lifting is a probability preserving function that associates to each probabilistic relationR a stan-
dard relationR over the set of distributions. It is important to notice thatthe decomposition ofµ is not
necessarily canonical that is, there may be some repetitionin thexis. Moreover, the lifting also applies to
labelled transition because·

a
−→ · ⊆ P×D(P) for any probabilistic automatonP and any actiona∈ Στ .

Hence, we denote
a

−→ the lifting of this transition which corresponds to the notion of combined transition
of [14,22].

102 Probabilistic Concurrent Kleene Algebra

Lastly, we extend internal transitions with reflexivity, that is, we writex
τ

−→ µ if such a transition

exists in the automaton orµ = δx. The lifted version is again denoted
τ

−→⊆D(P)×D(P). Finally, weak

transitions are obtained from the reflexive transitive closure of
τ

−→, denoted=⇒, and we writeµ a
=⇒ µ ′

if there existµ1,µ2 such thatµ =⇒ µ1
a

−→ µ2 =⇒ µ ′.
We now give the formal definition of simulation by straightforwardly generalising [2] to automata

with final states.

Definition 3.1. A probabilistic simulation S from P to Q is a relation S⊆ P×D(Q) satisfying the
following properties:

1. there existsν ′
0 such thatµ0Sν ′

0 andν0 =⇒ ν ′
0,

2. if x
a

−→ µ ′ is a valid transition of P and xSν , there existsν ′ ∈D(Q) such thatν a
=⇒ ν ′ andµ ′Sν ′,

3. if x∈ FP and xSν then there existsν ′ ∈ D(FQ) such thatν =⇒ ν ′.

Property (a) ensures that precedingτ actions do not interfere with probabilistic choice (i.e.P p⊕ Q
andτ · (P p⊕ Q) are equal). Property (b) is the usual co-inductive definition of simulation and property
(c) ensures that if a statex∈ P is simulated by a distributionν ∈ D(Q) andP can terminate successfully
at x thenQ can also terminate successfully fromν after afinite numberof internal transitions.

A simulation is always total on reachable states, that is, ifS⊆ P×D(Q) is a simulation andx∈ P
such thatx0a1x1 · · ·x is a path that occurs with positive maximal probability, then there existsν ∈ D(Q)
such thatxSν .

We writeP≤ Q if there is a simulation fromP to Q andP≡ Q iff P≤ Q andQ≤ P.

Example 3.2. Figure 2 depicts two automata related by a simulation relation i.e. M≤ H where M
(resp. H) is the left (resp. right) automaton. The simulation is obtained from the relation S= S′ ∪
{(s3,µ) | (s1,µ) ∈ S′} where

S′ = {(s1,0.2δu0 +0.8δu1),(s1,δu2),(s1,δu4),(s2,δu1),(s2,δu3),(s4,δu5)}.

In fact, we can writeν0 = 0.2(0.2δu0 +0.8δu1)+0.8δu1 where s1S(0.2δu0 +0.8δu1) and s2Sδu1. Hence,

µ0Sν0. Sincestuck is an internal action, it follows s3Sµ and µ τ
=⇒ µ for every distributionµ such

that s1Sµ . Next, we have s3S(0.2δu0 + 0.8δu1) and s3
kick

−→ µ0. Sinceµ0 = 0.2δs1 + 0.8δs2 and s1Sδu2

and s2Sδu3, it follows thatµ0S(0.2δu2 +0.8δu3) and (0.2δu0 +0.8δu1)
kick
=⇒ (0.2δu2 +0.8δu3). The other

inductive cases are proved in similar fashion. Moreover, analgebraic proof is given in the next section.

Proposition 3.3. The simulation relation is a preorder.

Any probabilistic simulation satisfying Definition 3.1 will be referred simply as a simulation. In
contrast, the definition of forward simulation [22] relies on adouble lifting. Given a relationS⊆ X×Y,
the double lifting ofS, denotedS, is a subset ofD(X)×D(Y) whereµSν iff there exists a function
w : X×Y → [0,1] such that

1. if w(x,y)> 0 thenxSy,

2. for everyx∈ X, ∑y∈Y w(x,y) = µ(x),

3. for everyy∈Y, ∑x∈X w(x,y) = ν(y).

The functionw is again a probability preserving function that provides corresponding decompositions
for µ andν . Double lifting generates a distribution over the set of distributions which complicates the

Annabelle McIver, Tahiry Rabehaja, Georg Struth 103

µ0

0.2 0.8

ν0

0.04 0.96

s1

..

++

0.2
110.8 ..

stuck

��

s2

..

11

tea

��

u0

kick

��

u1
kick

~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

tea

��

u2

kick

��

u3

tea
 ❇

❇❇
❇❇

❇❇
❇

s3

kick

LL

s4 11u4

kick,tea,fail

33 u5

Figure 2: Two automata related by simulation: the left is M and the right is H. Remind thatstuck is an
internal action so we have removed the arrows froms3 because they are exactly the same as fors1. The
dotted arrow represents non-trivial distribution again.

lifting of transitions. To obtain a standard relation over the set of distributions, Segala [14, 22] provided
a flat version of a distribution inD(D(Q)) through the use ofπ : D(D(X))→ D(X) such that

π(φ) = ∑
µ∈supp(φ)

φ(µ)µ .

We now give the modified version of Segala’s probabilistic weak forward simulation.

Definition 3.4. A relation S⊆ P×D(Q) is a probabilistic weak forward simulation if

a) there existψ0 ∈ D(D(Q)), such thatµ0Sψ0 andν0 =⇒ π(ψ0),

b) if x
a

−→ µ ′ is a valid transition of P and xSν , there existsψ ∈D(D(Q)) such thatν a
=⇒ π(ψ) and

µ ′Sψ .

c) if x∈ FP and xSν then there existsψ ∈ D(D(FQ)) such thatν =⇒ π(ψ).

Proposition 3.5. Let X,Y be two sets, S⊆ X ×D(Y), µ ∈ D(X) and ψ ∈ D(D(Y)). If µSψ then
µSπ(ψ).

Proof. If µSψ , then there existsw : X×D(Y)→ [0,1] satisfying the condition above. Then by consid-
ering I = supp(w), it directly follows thatµ = ∑i∈I w(i)δxi , eachxi is related to someνi andπ(ψ) =

∑i∈I w(i)νi .

Corollary 3.6. A relation is a probabilistic simulation iff it is a probabilistic weak forward simulation
on PAut.

Proof. We provide a sketch for the proof though the complete proof should not be hard to obtain from it.
That Definition 3.4 implies Definition 3.1 follows directly from the previous proposition.
Assume thatS⊆ P×D(Q) satisfies Definition 3.1. IfµSν , then there exsits a decompositionµ =

∑i∈I piδxi such that for eachi, there existsνi ∈ D(Q) such thatxiSνi for eachi, andν = ∑i∈I piνi . Hence

µS∑i∈I piδνi . We just apply this simple construction for each of the threecases.

104 Probabilistic Concurrent Kleene Algebra

Proposition 3.7. Simulation is a precongruence i.e. if P≤ Q then P+R≤ Q+R, P·R≤ Q·R, P∗ ≤ Q∗,
P p⊕R≤Q p⊕R, PA‖R≤QA‖R and the same holds for binary operators when the order of thearguments
is reversed.

The proof of this proposition can be found in the Appendix Proposition A.1.
We conclude this section with a remark about the simulation of Definitions 3.1 and 3.4. In Propo-

sition 3.6, we have shown that the corresponding definitionsof [21] and [2] coincide (Notice that we
can replace final states with some special external action and obtain a formulation closer to [2, 22]). On
the one hand, Segala has shown that the largest precongruence included in the trace distribution equiv-
alence coincides withvector may testingwhere there are uncountably many success actions [22]. On
the other hand, Deng et al. have shown that vector and scalar testings coincide on the recursion-free
fragment of probabilistic automata and that with the same restriction, Definition 3.1 is complete for test-
ing equivalence [3]. With the help of Proposition 3.6 and theequivalence between probabilistic weak
forward simulation (Definition 3.4) and the coarsest precongruence included in the trace distribution,
we conclude that Deng’s completeness for may testing extends to automata with countable state spaces.
However, it is still unknown whether the equivalence between scalar and vector testing in the infinite
case is valid.

These equivalences are the main motivation for our use of simulation in order to create an interleaving
model for our algebra. It should be noted that simulation equivalence is decidable for finite automata but
it is unknown whether an efficient decision procedure exists. This is in contrast to other related results in
the literature showing that strong simulation is decidablein polynomial time [8].

4 Probabilistic Concurrent Kleene Algebra

In this section, we introduce probabilistic concurrent Kleene algebra. We show that the set of probabilis-
tic automata modulo probabilistic simulation as defined by Definitions 3.1 or 3.4 satisfies an extension
of Kleene algebras that includes probability and concurrency.

Concurrent Kleene Algebra has four unary and binary operators, namely,+, ·,‖ and∗. These op-
erators have pomset operation semantics but the axiomatisation is too weak to allow the presence of
probability. In contrast, Probabilistic Kleene Algebra has three operators, namely,+, · and∗. We ensure
that these operators coincide with the respective operators of Concurrent Kleene Algebra and provide a
new probabilistic concurrent Kleene algebra that extends both structures. Without explicit probabilistic
choice, such combination generates a weak Concurrent Kleene Algebra.

Definition 4.1. A weak concurrent Kleene algebra is an algebraic structure with signature(K,+, ·,‖,∗,0,1)
where K is a set closed under the operations and satisfies Equations (1-4), (8-13) and (16-21)

To gain complete control of probabilities, we append explicit probabilistic choices to weak concurrent
Kleene algebra. Many of the following equations have been proven elsewhere so we will prove only
those that are specific to our algebra. We concentrate on equations describing the interactions between
probabilistic choices, sequential composition, Kleene star and the exchange law (20).

We assume the following precedence between the operators. The Kleene star∗ binds more tightly
than · which binds more tightly than‖. The operator‖ binds more tightly than+ and p⊕ and we use
parenthesis to parse expressions having+ and p⊕ at the same level.

The following equations are standard and the proofs are omitted (they can be found in [2]).

P ≡ P+P (1)

Annabelle McIver, Tahiry Rabehaja, Georg Struth 105

P ≡ P+0 (2)

P+Q ≡ Q+P (3)

P+(Q+R) ≡ (P+Q)+R (4)

P ≡ P p⊕ P (5)

P p⊕ Q ≡ Q 1−p⊕ P (6)

P p⊕ (Q q⊕ R) ≡ (P p′⊕ Q) q′⊕ R (7)

wherep′q′ = p, (1− p′)q′ = (1− p)q and 1− q′ = (1− p)(1− q). Moreover, the equivalenceP ≤ Q
iff P+Q ≡ Q follows from these equations, that is, simulation coincides with the natural order of the
algebra. Remind that in our interpretationQ has more behaviours thanP. A complete characterisation of
the consequences of Equation (5-7) with respect to probabilistic bisimulation can be found in [24].

The proof of the following propositions can be found in the Appendix under Proposition A.2, A.3
and A.4 respectively.

Proposition 4.2. The sequential composition satisfies

P ≡ P·1 (8)

P ≡ 1·P (9)

0 ≡ 0·P (10)

P· (Q ·R) ≡ (P·Q) ·R (11)

P·R+Q ·R ≡ (P+Q) ·R (12)

P·Q+P·R ≤ P· (Q+R) (13)

(P p⊕ Q) ·R ≡ P·R p⊕ Q ·R (14)

P· (Q p⊕ R) ≤ P·Q p⊕ P·R (15)

Proposition 4.3. The Kleene star satisfies the following laws:

P∗ ≡ 1+P·P∗ (16)

P·Q≤ Q ⇒ P∗ ·Q≤ Q (17)

For the parallel composition, we assume synchronisation over all external actions and denote it sim-
ply with ‖ without any frame as defined in Section 2.

Proposition 4.4. The parallel composition satisfies

P‖Q ≡ Q‖P (18)

P‖(Q‖R) ≡ (P‖Q)‖R (19)

(P‖Q) · (P′‖Q′) ≤ P·P′‖Q ·Q′ (20)

P‖Q+P‖R ≤ P‖(Q+R) (21)

P‖Q p⊕ P‖R ≡ P‖(Q p⊕ R) (22)

Notice that we cannot have equality for the interchange law (20) even with a fully synchronised‖.
For examplea‖a≡ (a·1)‖(1·a)> (a‖1) ·(1‖a)≡ 0 where we assume that the actiona is external, hence
sychronised.

Theorem 4.5. (PAut,+, ·,‖,∗ ,deadlock,skip) is a weak concurrent Kleene algebra.

106 Probabilistic Concurrent Kleene Algebra

Definition 4.6. A probabilistic concurrent Kleene algebra is a weak concurrent Kleene algebra with a
collection of probabilistic choicesp⊕ , p∈ [0,1], satisfying equations (5-7,14-15,22).

Example 4.7. We end this section by providing an algebraic proof for the existence of a simulation
between the automata in Figure 2. First, we express the leastfixed point of the function f of Example 2.8
as promised. We prove that

f (X) = (stuck ·kick 0.2⊕ tea ·0) ·X ·0

using equations (10) and (14). Now, we show that the least fixed point of f(X) = P ·X ·0 is P∗ ·0. In
fact f(P∗ ·0) = P ·P∗ ·0= (1+P ·P∗) ·0 = P∗ ·0 because of equations (9), (12) and (16). Now let Q
be a suffix point of f i.e. P·Q ·0 ≤ Q, then monotonicity and Equation (10) implies P·Q · 0 ≤ Q · 0.
Therefore, P∗ ·Q ·0≤ Q ·0≤ Q because of the induction law (17) and0≤ 1. Hence P∗ ·0≤ Q follows
from Equation (10) and monotonicity of·.

Therefore, the left hand side automaton is simulation equivalent to

M = (stuck ·kick 0.2⊕ tea ·0)∗ ·0

One unfold of this automaton gives

M ≡ (stuck ·kick 0.2⊕ tea ·0) · (stuck ·kick 0.2⊕ tea ·0)∗ ·0

≡ stuck ·kick · (stuck ·kick 0.2⊕ tea ·0)∗ ·0 0.2⊕ tea ·0

≡ stuck ·kick · (stuck ·kick 0.2⊕ tea ·0) ·M 0.2⊕ tea ·0

≤ (stuck ·kick ·stuck ·kick ·M 0.2⊕ stuck ·kick ·tea ·0) 0.2⊕ tea ·0

≡ stuck ·kick ·stuck ·kick ·M 0.04⊕ (stuck ·kick ·tea ·0 0.16/0.96⊕ tea ·0)

≤ stuck ·kick ·stuck ·kick ·M 0.04⊕ (stuck ·kick ·tea ·0+tea ·0)

The second equality follows from Equations (14) and (10). The third equality follows from an unfolding
of the Kleene star and the definition of M. The fourth inequality follows from Equation (15). The fifth
equality follows from Equation (7) and in the last equality,we have used the fact that Pp⊕ Q ≤ P+
Q. We use monotonicity to finally deduce that M≤ H because M≤ run({kick,tea,fail}) where
run({ai}i=0,n)) = (∑n

i=0ai)
∗ and

H = kick ·kick · run({kick,tea,fail}) 0.04⊕ (kick ·tea ·0+tea ·0).

5 Rely-Guarantee Rules

The rely/guarantee formalism provides a powerful tool for verifying a system with multiple interact-
ing components. The concept is based on deriving the properties of the larger system through the use of
inference rules on the specification of the components. We are interested in generating these inference
rules algebraically.

In this section we extend the algebraic formulation of the rely-guarantee calculus in [5] to in-
clude probabilistic systems. Notice that the automata model provides a particular interpretation of
rely/guarantee tuples because it is action based though thealgebraic laws persist to any model satis-
fying the axioms. Moreover, our results are based on the definition of [5] instead of providing another
interpretation of Jones’ rely/guarantee components [6].

Annabelle McIver, Tahiry Rabehaja, Georg Struth 107

A rely/guarantee quintuple is composed of five componentsP R{U}Q GwhereP,Qare pre/postconditions,
R is a rely property andG is the guaranteed part. These components are usually algebraic specifications
and can be interpreted as automata when needed where the parallel composition has a fixed frame. In the
automata model,run denotes the automata with self-loop constructed from the external actions and the
algebraic proofs are valid for every model whererun is replaced by the unit of‖ (if it exists).

Definition 5.1. A rely guarantee quintuple P R{U} Q G holds if and only if

P· (R‖U)≤ Q ∧ U ≤ G

In other words, ifU is part of a system that satisfies the propertyR, then the system will satisfy the
specification determined by(P,Q) andU ’s behaviour is determined byG.

The difference between our approach and that of Kwiatkowskaet al in [13] lies in the definition of the
rely/guarantee tuple, that is, the interpretations of tuple satisfaction are different. In [13], the guaranteed
property is somehow part of the postcondition and they are expressed using safety properties instead of
simulation relations. Our approach is an extension of the work in [5] and has a similar flavour as [8].

We now provide some simple rely/guarantee rules together with their algebraic proofs. Notice that
these rules are valid for all models satisfying the axioms ofprobabilistic concurrent Kleene algebra. This
nicely illustrates the power of algebras where they provideresults that are model independent. Of course,
this power comes with the disadvantage that many details arelost through abstraction. The importance
of these details depends on the system and the properties to be studied.

Remind that, given a finite set of external actionsA= {a1, . . . ,an}, we denoterun(A) = (∑n
i=1ai)

∗

which is similar to the run of standard CSP. Notice that for every termP constructed fromA and the
algebraic operators, we haveP≤ run(A) andPA‖run(A) = P.

An isolated systemis composed of two components that interact without any interference from an
outside environment. An example of isolated system is givenby our vending machine and user.

Proposition 5.2. For every term P,P′,Q,Q′,U,U ′,R,R′,G and G′ we have the following concurrent rule
for isolated system:

P R{U} Q G P′ R′ {U ′} Q′ G′ G≤ R′ G′ ≤ R
T run {U‖U ′} Q (G‖G′)

(23)

whererun is constructed from the external actions of U‖U ′ and the conclusion is valid whenever
T ≤ P and T≤ P′.

Proof. We haveP · (R‖U) ≤ Q andU ≤ G from the interpretation of the first quintuple. The premise
G≤ R′ implies thatU ≤ R′. Therefore, monotonicity yieldsP· (U‖U ′)≤ Q. Hence, ifT ≤ P andT ≤ P′

thenT · (U‖U ′) satisfies bothQ. Since we assume that the external actions ofU andU ′ coincide which
is used in the parametrisation of‖ and≤, we haverun‖(U‖U ′) =U‖U ′ and we obtain the guaranteed
part of the conclusion with monotonicity of‖.

The Rule (23) implies that the quintupleT run {U‖U ′} Q′ (G‖G′) also holds. This rule can only be
used for isolated systems.

Corollary 5.3. The following asymmetric rule holds for isolated systems

1 run {U} run G P′ R′ {U ′} Q′ G′ G≤ R′

P′ run {U‖U ′} Q′ (G‖G′)
(24)

108 Probabilistic Concurrent Kleene Algebra

When the system is not isolated, a more general rule is needed. We can show that if there existsS
such thatS≤ R, S≤ R′ andS‖S≤ S then we can infer from the premises of Rule (23) that the quintuple

T S{U‖U ′} Q (G‖G′)

holds, whereT ≤ P andT ≤ P′. In other words, if the systemU‖U ′ is run within an environment that
guaranteesS then it satisfies the postconditionsQ andQ′ and guaranteesG‖G′.

Proposition 5.4. We have the following sequential rule:

P R{U} Q G P′ R′ {U ′} Q′ G′ Q≤ P′

(R‖U) · (R′‖U ′) = (R·R′)‖(U ·U ′)

P (R·R′) {U ·U ′} Q′ (G ·G′)
(25)

Proof. We haveP · (R‖U) ≤ Q andP′ · (R′‖U ′) ≤ Q′, sinceQ ≤ P′, monotonicity impliesP · (R‖U) ·
(R′‖U ′)≤ Q′ and the last premise gives usP· [(R·R′)‖(U ·U ′)]≤ Q′. The guaranteed part follows from
monotonicity of·.

These rules support the construction of larger systems fromthe components using concurrent and/or
sequential compositions. Together with these rely/guarantee rules, we will also make extensive use
of Equation (15) because it provides the transport of probabilistic choices to the “upper level” of the
specification automaton. That is, it allows us to write simple rely properties and postconditions of the
form (bad+good) p⊕ goodor evenbad p⊕ goodwheregoodandbad are usually standard automata.
With the testing interpretation of simulation, we concludethat the maximal probability forbad to happen
is bounded from above by 1− p.

Example 5.5. Using our running example, we have the following rely/guarantee quintuples

1 run {M} run H and coin H {U ′} Q run

where Q is given by the diagram in Figure 3.

The first quintuple has been established algebraically in the previous section, that is, M≤ H. As for
the second one, it is clear that H‖U ′ ≤ Q′ which can be established by direct automata calculation or
using the algebra as before.

Therefore, Rule (24) implies that the quintuple

coin run {M‖U ′} Q H

is valid. That is, V‖U = coin ·(M‖U ′)≤Q 2 which says that with probability at least0.96 the user needs
to kick the machine at most once to get tea. (Note we have used the fact that(coin ·M)‖(coin ·U ′) ≡
coin · (M‖U ′) which is a stronger version of the interchange law).

2Notice thatM‖U ′ does not enable any transition labelled byfail because that action has to be synchronised. But the
established property says that fail can occur only with probability at most 0.04, but not that it has to occur at all. If we wanted
an explicitfail, we can form self loops labelled byfail on each state ofV.

Annabelle McIver, Tahiry Rabehaja, Georg Struth 109

w0

coin

��

0.04 0.96

w1

kick

��

w2

kick,tea

��
w3

kick

��

w4

tea

kk

w5

fail

33

Figure 3: The postcondition for the system in the formQ= coin ·Q′.

6 Related Work

This paper aims to develop an algebra that accounts for nondeterminism, probability and concurrency
in a Kleene algebraic fashion [1, 5, 9, 10, 16, 17]. To the bestof our knowledge, there is no algebraic
structure in the style of Kleene algebras that includes nondeterminism, probability and concurrency. The
algebra we develop is a mixture of concurrent [5] and probabilistic [16] Kleene algebras augmented with
probabilistic choices to manipulate quantitative properties. The soundness of the algebra is established
using probabilistic automata modulo simulation as in [2]. That paper provides an extensive survey of the
algebraic laws for such model in the style of a recursion-free process algebra, hence there is no sequen-
tial composition (which is mandatory for the encoding of interference) nor Kleene star (which provides
a meaning for terminating loops). Another related work is the quantitative Kleene coalgebra of [23].
That paper focuses on unifying various constructions of transition systems through the use of functor-
coalgebras. It also provides a coalgebra composed of algebraic expressions though the main focus is
on the generalisation of Kleene’s correspondence between operational semantics and the expressions
through the use of derivatives. Moreover, these expressions are generated from a signature that is differ-
ent from the one we propose in this paper, most importantly, concurrency is not considered. Reconciling
the two approaches seems very promising.

The algebraic approach to the rely/guarantee calculus of Section 5 is a straightforward generalisation
of [5] but now proved to be valid for probabilistic scenario as well. Our approach is conceptually related
to [8] where the rules are interpreted against probabilistic strong simulation. The precongruence of [8] is
not applicable in our setting because we need explicit internal actions to construct the algebraic operators
and these internal actions cannot usually be removed in presence of probability and nondeterminism.
Hence, strong simulation is inadequate for an algebraic approach that should be a generalisation of
Kleene algebras. The disadvantage of using weak simulationis that efficient decidability is unknown in
contrast to strong simulation [8]. Though this is an interesting problem, our focus is on using the algebra
for direct proof of the existence of a simulation rather thancomputing a simulation relation directly.
Therefore, we can use theorem provers or proof assistants tohandle the automation.

110 Probabilistic Concurrent Kleene Algebra

7 Conclusion

This paper presented a Kleene algebraic approach to systemsexhibiting nondeterminism, probability and
concurrency. A sound axiomatisation has been presented with respect to the set of probabilistic automata
modulo probabilistic simulation. The simulation used is equivalent to the vector may testing preorder
of [2] which provides the interpretation of maximal probability of failure. The algebra was constructed
as a combination of probabilistic and concurrent Kleene algebras. The nondeterminisms of both algebras
coincide, probability is handled by the subdistributivitylaw of probabilistic Kleene algebra as well as the
explicit probabilistic choices, and concurrency is mainlyhandled by a weakening of concurrent Kleene
algebra.

An important law of probability is summarised by the equation

P· (Q p⊕ R)≤ (P·Q) p⊕ (P ·R).

In multiple cases, it allows us to “move probabilities upward” and to write specification of the form
(bad+ good) p⊕ good. This expression says that the probability of executingbad is bounded above
by p because of the testing interpretation of the simulation. Infact, as shown in the vending machine
example, it is also possible to write properties such as “themaximal probability of failing afterk-steps is
less thanp”.

We note finally that the rely/guarantee calculus is valid forany model satisfying the axioms. This
applies to true-concurrent models as well as fragments of the establised automata models as long as they
have sequential composition instead of prefixing. However,the action-based interleaving model provides
a limited application of the rely/guarantee calculus. Therefore, the construction of an alternative model
of the algebra using true-concurrency semantics is part of our future investigation.

References

[1] J. H. Conway (1971):Regular Algebra and Finite Machines. Chapman and Hall, Mathematics series.

[2] Y. Deng, R. J. van Glabbeek, M. Hennessy, C. Morgan & C. Zhang (2007):Remarks on Testing Probabilistic
Processes. Electr. Notes Theor. Comput. Sci.172, pp. 359–397. doi:10.1016/j.entcs.2007.02.013.

[3] Y. Deng & R. Van Glabbeek (2007):Characterising testing preorders for finite probabilisticprocesses. In: In
LICS07: Proceedings of the 22nd Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, Los Alamitos, CA, pp. 313–325, doi:10.1109/LICS.2007.15.

[4] J. Desharnais, B. Möller & G. Struth (2006):Kleene algebra with domain. ACM Trans. Comput. Logic7,
pp. 798–833, doi:10.1145/1183278.1183285.

[5] C. A. R. Hoare, B. Möller, G. Struth & I. Wehrman (2011):Concurrent Kleene Algebra and its Foundations.
Journal of Logic and Algebraic Programming 80, pp. 266–296,doi:10.1016/j.jlap.2011.04.005.

[6] C. B. Jones (1981):Development methods for computer programs including a notion of interference. Tech-
nical Monograph. Programming Research Group, Oxford University Computing Laboratory. Available at
http://books.google.com.au/books?id=zjguSwAACAAJ.

[7] S. C. Kleene (1951):Representation of Events in Nerve Nets and Finite Automata. Automata Studies.

[8] A. Komuravelli, C. S. Pasareanu & E. M. Clarke (2012):Assume-Guarantee Abstraction Refinement for
Probabilistic Systems. CoRRabs/1207.5086. Available athttp://arxiv.org/abs/1207.5086, doi:10.
1007/978-3-642-31424-7_25.

[9] D. Kozen (1994):A completeness theorem for Kleene algebras and the algebra of regular events. Infor. and
Comput.110(2), pp. 366–390, doi:10.1006/inco.1994.1037.

http://dx.doi.org/10.1016/j.entcs.2007.02.013
http://dx.doi.org/10.1109/LICS.2007.15
http://dx.doi.org/10.1145/1183278.1183285
http://dx.doi.org/10.1016/j.jlap.2011.04.005
http://books.google.com.au/books?id=zjguSwAACAAJ
http://arxiv.org/abs/1207.5086
http://dx.doi.org/10.1007/978-3-642-31424-7_25
http://dx.doi.org/10.1007/978-3-642-31424-7_25
http://dx.doi.org/10.1006/inco.1994.1037

Annabelle McIver, Tahiry Rabehaja, Georg Struth 111

[10] D. Kozen (1997):Kleene algebra with tests. ACM Trans. Program. Lang. Syst.19, pp. 427–443, doi:10.
1145/256167.256195.

[11] D. Kozen (2000):On Hoare logic and Kleene algebra with tests. Trans. Computational Logic1(1), pp.
60–76, doi:10.1145/343369.343378.

[12] D. Kozen (2003):Kleene Algebras with Tests and the Static Analysis of Programs. Technical Report TR2003-
1915, Computer Science Department, Cornell University.

[13] M. Kwiatkowska, G. Norman, D. Parker & H. Qu (2010):Assume-Guarantee verification for probabilistic
systems. In: Proceedings of the 16th international conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, TACAS’10, Springer-Verlag, Berlin, Heidelberg, pp. 23–37, doi:10.1007/
978-3-642-12002-2_3.

[14] N. A. Lynch, R. Segala & F. W. Vaandrager (2003):Compositionality for Probabilistic Automata. In: CON-
CUR, pp. 204–222. doi:10.1007/978-3-540-45187-7_14.

[15] A. McIver, T. M. Rabehaja & G. Struth (2011):On probabilistic Kleene algebras, automata and simulations.
In: Proceedings of the 12th international conference on Relational and algebraic methods in computer sci-
ence, RAMICS’11, Springer-Verlag, Berlin, Heidelberg, pp. 264–279. Available athttp://dl.acm.org/
citation.cfm?id=2018285.2018305, doi:10.1007/978-3-642-21070-9_20.

[16] A. K. McIver & C. C. Morgan (2004):Abstraction, Refinement And Proof For Probabilistic Systems (Mono-
graphs in Computer Science). SpringerVerlag.

[17] B. Möller (2007): Kleene getting lazy. Sci. Comput. Program.65, pp. 195–214, doi:10.1016/j.scico.
2006.01.010. Available athttp://dl.acm.org/citation.cfm?id=1225317.1225705.

[18] M. O. Rabin (1976):Probabilistic Algorithms. Technical Report RC 6164 (#26545), IBM Research Division,
San Jose, Yorktown, Zurich.

[19] A. Salomaa (1966):Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM 13, pp. 158–
169, doi:10.1145/321312.321326.

[20] S. Schneider (2012):Incorporating time to an integrated formal method. Available athttp://www.nii.
ac.jp/shonan/seminar017/files/2012/06/Slides1.pdf.

[21] R. Segala (1995):A Compositional Trace-Based Semantics for Probabilistic Automata. In: CONCUR, pp.
234–248. doi:10.1007/3-540-60218-6_17.

[22] R. Segala (1996): Testing Probabilistic Automata. In: CONCUR, pp. 299–314. doi:10.1007/
3-540-61604-7_62.

[23] A. Silva, F. Bonchi, M. Bonsangue & J. Rutten (2011):Quantitative Kleene coalgebras. Inf. Comput.209(5),
pp. 822–849, doi:10.1016/j.ic.2010.09.007.

[24] E. W. Stark & S. A. Smolka (1996):A Complete Axiom System for Finite-State Probabilistic Processes. In:
In Proof, Language, and Interaction: Essays in Honour of Robin Milner, MIT Press, pp. 571–595.

http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/343369.343378
http://dx.doi.org/10.1007/978-3-642-12002-2_3
http://dx.doi.org/10.1007/978-3-642-12002-2_3
http://dx.doi.org/10.1007/978-3-540-45187-7_14
http://dl.acm.org/citation.cfm?id=2018285.2018305
http://dl.acm.org/citation.cfm?id=2018285.2018305
http://dx.doi.org/10.1007/978-3-642-21070-9_20
http://dx.doi.org/10.1016/j.scico.2006.01.010
http://dx.doi.org/10.1016/j.scico.2006.01.010
http://dl.acm.org/citation.cfm?id=1225317.1225705
http://dx.doi.org/10.1145/321312.321326
http://www.nii.ac.jp/shonan/seminar017/files/2012/06/Slides1.pdf
http://www.nii.ac.jp/shonan/seminar017/files/2012/06/Slides1.pdf
http://dx.doi.org/10.1007/3-540-60218-6_17
http://dx.doi.org/10.1007/3-540-61604-7_62
http://dx.doi.org/10.1007/3-540-61604-7_62
http://dx.doi.org/10.1016/j.ic.2010.09.007

112 Probabilistic Concurrent Kleene Algebra

Appendix

Proposition A.1. Simulation is a precongruence i.e. if P≤ Q then P+R≤ Q+R, P·R≤ Q·R, P∗ ≤Q∗,
P p⊕ R≤P p⊕R, PA‖R≤QA‖R and the same holds for binary operators when the order of thearguments
is reversed.

Proof. The construction of simulation in each of these cases is easyand they have been proven else-
where [2,22] except for sequential composition and Kleene star which we present here.

Let P,Q,Rbe probabilistic automata such thatS: P→ Q is a simulation. We show that the relation

S′ = {(x,ν) | (x∈ P∧ν ∈ D(Q)∧xSν)∨ (x∈ R∧ν = δx)}

is a simulation fromP ·R to Q ·R. Since the initial distributions ofP ·R andQ ·R are respectively the
initial distributions ofP andQ, Properties (a) and (c) of Definition 3.1 are immediate for this case. As
for part (b), letx

a
−→ µ ∈−→P·R and(x,ν) ∈ S′. There are three cases:

- x
a

−→ µ ∈−→P, and then(x,ν) ∈ S and we are done becauseS is a simulation fromP to Q and
S⊆ S′.

- x
a

−→ µ ∈−→R, and thenν = δx and we are done becauseidR is a simulation.

- x
τ

−→ ψ0 such thatx∈ FP andψ0 is the initial distribution ofR. We are only interested in the case
wherex is reachable fromφ0. SinceP≤ Q, there existν ∈ D(Q) andν ′ ∈ D(FQ) such thatxSν ,
andν =⇒ ν ′. Therefore,ν =⇒ ψ0 is a valid weak transition inQ ·Rand we haveψ0idRψ0.

The dualR·P≤ R·Q also holds using an analogous relation.
Finally, we show that Kleene star is monotonic with respect to≤. Let S: P→ Q be a simulation and

denote byxP,xQ the respective initial states ofP∗ andQ∗ and consider the relation

S′ = S∪{(xP,δxQ)}.

Properties (a) and (b) are routine. Letx
a

−→ µ ∈−→P∗ andxS′ν , there are two cases:

- xSν , thenx
a

−→ µ ∈−→P or x∈ FP andµ = δxP.

– If x
a

−→ µ ∈−→P then there existsν ′ ∈ ∆(Q) such thatν a
=⇒ ν ′ and µSν ′ becauseS is

simulation. SinceS⊆ S′, we deduce thatµS′ν ′.

– If x ∈ FP and x
τ

−→ δxP, we can assume thatx is a reachable final state ofP because we
consider probabilistic automata to be simulation equivalent if and only if they reachable
parts are. SinceS is simulation andxSν , we haveν =⇒ ν ′ for someν ′ ∈ D(FQ). Therefore,
ν =⇒ δxQ andxPS′δxQ by definition ofS′.

- xPS′δxQ andxP
τ

−→ µ0 whereµ0 is the initial distribution ofP. SinceS is a simulation, there exists
ν ′

0 such thatν0 =⇒ ν ′
0 andµ0Sν ′

0. Hence,δxQ =⇒ ν ′
0 andµ0S′ν ′

0.

Proposition A.2. The sequential composition satisfies Equations (8-15).

Proof. Equations (8) and (9) are clear and (10) follows form the factthatP≡ Q iff their reachable parts
are simulation equivalent.

Associativity (11) is evident because the left and right hand side automata are exactly the same.
For distributivity (12), let us write the left hand side termasP ·R+Q ·Rc whereRc is a copy ofR

whose states are renamed toxc for every statex of R. We construct a relationS⊆ (P∪Q∪{z}∪R∪

Annabelle McIver, Tahiry Rabehaja, Georg Struth 113

Rc)×D(P∪Q∪{z}∪R) such thatS= {(x,δx),(xc,δx) | x∈ R∧xc is the copy ofx}∪ idP+Q. It is easy
to shown thatS is a simulation and so is its inverse.

For subdistributivity (13), we consider the relation

S= {(x,δx),(xc,δx) | x∈ P∧xc is the copy ofx}∪{(z,µ0)}∪ idQ∪ idR

wherez is the initial state ofP·Q+P·Randµ0 is the initial distribution ofP. It is again straightforward
to prove thatS is indeed a simulation.

Equation (14) is proved using the exact same simulation constructed in the case of Equation (12).
For the last equation, let

S= {(x,δx p⊕ δxc) | x∈ P∧xc is the copy ofx}∪ idQ∪ idR

This simulation essentially says that we carry down the probabilistic choice p⊕ on the left hand side
until it needs to be resolved.

- By construction of the simulation, we haveµ0S(µ0 p⊕ µ0c) whereµ0 andµ0c are the respective
initial distributions ofP andPc.

- Let x
a

−→ µ ∈−→P·(Q p⊕ R) andxSν , there are three cases

– x
a

−→ µ ∈−→P, thereforeν = δx p⊕ δxc andν a
−→ µ p⊕ µc whereµc is the copy ofµ .

– x
a

−→ µ ∈−→Q ∪−→R, then we are done becauseidQ∪ idR ⊆ S.

– x
τ

−→ µ0Q p⊕ µ0R andx∈ FP, thenx
τ

−→ µ0Q andx
τ

−→ µ0R are valid transitions ofP·Q and

Pc ·R. But ν = δx p⊕ δxc becausex∈ P, thereforeν τ
−→ µ0Q p⊕ µ0R.

- Let xSν andx is a final state. By definition ofp⊕ , x∈ FQ∪FR and henceν = δx ∈D(FQ)∪D(FR).

Before we prove that the Kleene star satisfies the usual unfold and left induction law of probabilistic
Kleene algebra, let us introduce the notion of unfolding which will simplify the proof of the induction
law considerably. It is essentially a cleaner version of ourconstruction in [15]. We denoteunfold(P) the
unfold of any automatonP [14], that is, the automaton

(Path(P),−→,µ0,F)

where

−→= {α a
−→ µ | α ∈ Path(P)∧∃µ ′ ∈ D(P) : last(α)

a
−→ µ ′ ∈−→P ∧µ(αax) = µ ′(x)}

and
F = {α ∈ Path(P) | last(α) ∈ FP}.

andµ0 is the initial distribution ofP. This construction provides us with an automaton whose states are
finite paths inP and there is a transition between two pathsα ,α ′ iff α ′ = αax wherea∈ Στ andx∈ P.
Such a transition is labelled bya. It is now easy to show that the relation{(α ,δlast(α)) | α ∈ Path(P)} is
a simulation fromunfold(P) to P and the inverse is also a simulation fromP to unfold(P) [14].

Proposition A.3. Kleene star satisfies Equation (16) and the induction law (17).

114 Probabilistic Concurrent Kleene Algebra

Proof. Let u be the initial state of1+P ·P∗ andv be the initial state ofP∗. Since we add only one state
and some transition in the construction ofP∗, we denotex∗ ∈ P∗ the state corresponding tox ∈ P. To
prove Equation (16), we consider the relation

S= {(x∗,δx∗),(x∗,δx) | x∈ P}∪{(v,δv),(v,δu)}

from P∗ to 1+P·P∗. We now prove thatS is a simulation.

- For the initial distribution, we havevSδu.

- Let y
a

−→ µ be a valid transition inP∗ andySν . There are two cases

– y= v and the transition isv
τ

−→ µ0 whereµ0 is the initial distribution ofP. If ν = δv then we
are done because{(v,δv)}∪{(x∗,δx∗) | x∈ P} = idP∗ . Else,ν = δu andu

τ
−→ µ0 is a valid

transition in1+P·P∗.

– y= x∗ for somex∈ P and:
∗ x∗

a
−→ µ∗ is the copy of a transition ofP. Therefore, ifν = δx∗ then the same transition

belongs toP·P∗. If ν = δx thenx
a

−→ µ is a transition ofP andµ∗Sµ .
∗ or, x∗

τ
−→ δv and in this case, ifν = δx∗ then that transition belongs toP·P∗ again, else

ν = δx andx∈ FP. Therefore,δx
τ

−→ δv is a lifted transition inP·P∗.

- The conservation of final state is obvious becauseFP∗ = {v} andu
τ

−→ δz wherez is the final state
of 1 in 1+P·P∗.

With the similar reasoning, it holds that the inverse ofS is a simulation from1+P·P∗ to P∗.
We now prove the induction law (17). We can assume thatP is loop-free by unfolding it and therefore

1+P · unfold(P∗) is again loop-free and simulation equivalent toP∗. Let F (X) = 1+P ·X. Since
P·0≤ P, we show easily by induction thatunfold(F n(0))E unfold(F n+1(0)) whereE is the inclusion
of automata i.e.X E Y if the state space ofX is a subset of the state space ofY, transitions ofX are
transitions ofY andFX ⊆ FY. We can then construct a limit automta limnF n(0) = F ∗(0) obtained as
the countable union of component by component (the set of states is the union of the sets of states, the
set of transitions is the union of sets of transitions,. . .).SinceP has no cycle, it follows thatF ∗(0) =
unfold(P∗).

Now assume thatP ·Q≤ Q, then(1+P ·0) ·Q≤ (1+P) ·Q≤ Q and by induction,F n(0) ·Q≤ Q
for everyn ∈ N. Moreover, sinceunfold(F n(0)) E unfold(F n+1(0)), we haveunfold(F n(0)) ·Q E

unfold(F n+1(0)) ·Qand sinceFunfold(F n(0))⊆Funfold(F n+1(0)) (inclusion of final states), limn(unfold(F n(0)) ·
Q) = F ∗(0) ·Q (the two automaton are equal by construction). HenceF ∗(0) ·Q≤ Q.

Proposition A.4. The parallel composition satisfies Equations (18-22).

Proof. Equations (18), (21) and(22) are proven in [2].
For the associativity, remind that when the frame is fixed then there is a standard simulation between

P‖(Q‖R) and (P‖Q)‖R by associating each tuple(x,(y,z)) to ((x,y),z). That simulation is lifted to
(P× (Q×R))×D((P×Q)×R) using point distributions and dually.

As for the interchange law (20), we consider the injection

S= {((x,y),δ(x,y)) | (x,y) ∈ (P×Q)∪ (P′×Q′)}

from U = (P‖Q) · (P′‖Q′) toV = P·P′‖Q ·Q′.

- Using the definition of‖ and·, we deduce that the initial distributions ofU andV are the same.

Annabelle McIver, Tahiry Rabehaja, Georg Struth 115

- Let (x,y)Sδ(x,y) and(x,y)
a

−→ µ ∈−→U . There are three cases:

– (x,y) ∈ P×Q andµ = µP×µQ ∈D(P×Q). In all three cases in the definition of‖, we have
(x,y)

a
−→ µP×µQ ∈−→V .

– (x,y) ∈ P′×Q′ andµ = µP′ ×µQ′ ∈ D(P′×Q′). This is the same as the previous case.

– (x,y) ∈ FP×FQ and the transition is(x,y)
τ

−→ µ0P′ ×µ0Q′ whereµ0P′ ,µ0Q′ are the respective

initial distributions ofP′,Q′. Sincex ∈ FP, x
τ

−→ µ0P′ ∈−→PP′ and similarly fory ∈ FQ.

Therefore,(x,y)
τ

−→ µ0P′ × δy
τ

−→ µ0P′ × µ0Q′ i.e. (x,y) =⇒ µ0P′ × µ0Q′ is a weak lifted
transition inV.

- Finally, FU = FV .

	1 Introduction
	2 Probabilistic Automata and Operations
	3 Probabilistic Simulation
	4 Probabilistic Concurrent Kleene Algebra
	5 Rely-Guarantee Rules
	6 Related Work
	7 Conclusion

