
Bart Jacobs, Peter Selinger, and Bas Spitters (Eds.):
8th International Workshop on Quantum Physics and Logic (QPL 2011)
EPTCS 95, 2012, pp. 123–141, doi:10.4204/EPTCS.95.11

c© K. Honda
This work is licensed under the
Creative Commons Attribution License.

Graphical Classification of Entangled Qutrits

Kentaro Honda
Dept. Computer Science, University of Tokyo, Japan

honda@is.s.u-tokyo.ac.jp

A multipartite quantum state is entangled if it is not separable. Quantum entanglement plays a
fundamental role in many applications of quantum information theory, such as quantum teleporta-
tion. Stochastic local quantum operations and classical communication (SLOCC) cannot essentially
change quantum entanglement without destroying it. Therefore, entanglement can be classified by
dividing quantum states into equivalence classes, where two states are equivalent if each can be
converted into the other by SLOCC. Properties of this classification, especially in the case of non
two-dimensional quantum systems, have not been well studied. Graphical representation is some-
times used to clarify the nature and structural features of entangled states. SLOCC equivalence of
quantum bits (qubits) has been described graphically via a connection between tripartite entangled
qubit states and commutative Frobenius algebras (CFAs) in monoidal categories. In this paper, we
extend this method to qutrits, i.e., systems that have threebasis states. We examine the correspon-
dence between CFAs and tripartite entangled qutrits. Usingthe symmetry property, which is required
by the definition of a CFA, we find that there are only three equivalence classes that correspond to
CFAs. We represent qutrits graphically, using the connection to CFAs. We derive equations that
characterize the three equivalence classes. Moreover, we show that any qutrit can be represented as
a composite of three graphs that correspond to the three classes.

1 Introduction

In quantum computing, it may be necessary to send quantum information, but quantum information
cannot be replicated [19]. Foundational methods of quantuminformation theory, such as quantum tele-
portation [3], provide a way to send quantum information using quantum entanglement, i.e., states that
cannot be separated. Quantum entanglement is a non-local property of quantum states, so entanglement
does not increase by stochastic local quantum operations and classical communication (SLOCC). The en-
tangled states are divided into equivalence classes by SLOCC-equivalence, which relates states that can
be converted into each other by SLOCC. Several recent studies have investigated SLOCC-equivalence
classes [8][9][10][12][18][20]. In this paper, we focus ontripartite qutrits. Qutrits are systems that have
three-dimensional state spaces. They are not as well-studied as qubits [2][4][5]. To describe and clarify
the SLOCC-equivalence classes of qutrits and their structural features, we express them graphically.

Morphisms of categories can be expressed graphically [17].Moreover, recently, quantum protocols
and quantum computing have been interpreted in monoidal categories, which are categories with a ten-
sor product. Abramsky and Coecke gave quantum axioms and an interpretation of quantum protocols
in a kind of monoidal category called a biproduct dagger compact closed category [1]. Selinger gave a
categorical semantics for a quantum programming language QPL [15][16]. Using graphical representa-
tions of morphisms in monoidal categories, and connectionsbetween quantum information theory and
category theory, qutrits can also be expressed graphically.

For graphical expression, we adopted an extension of a previous method [6], in which highly en-
tangled and highly symmetric quantum systems correspond tocommutative Frobenius algebras (CFAs)
in monoidal categories. That study employed a graphical representation of qubits. This representation
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reflects the degree of entangledness. In this paper, we used qutrits. Although the classes of tripartite
qutrits are infinite, there are a limited number of SLOCC-equivalence classes of tripartite qubits. Using
symmetry, we found that only three classes corresponded to CFAs. The classifications are based on the
algebraic structure of some kinds of qutrits. We characterized each of these by applying the equations
and graphing the results; we obtained three graphs. Finally, we showed that any qutrits can be expressed
graphically using the three graphs and single qutrits.

The remainder of this paper is organized as follows. In section 2, we define SLOCC-equivalence and
describe the infinite classes of tripartite qutrits. In section 3, we provide graphical representations of a
monoidal category and a CFA, and describe some theorems as well as the qubits used in a previous study
[6]. Our results are presented in section 4. We classify SLOCC-equivalence classes into non-maximal,
non-symmetric, Frobenius, or other classes, and show that there are only three Frobenius classes. We
also define ISCFA, a type of CFA, and prove the uniqueness of the correspondence between Frobenius
classes and the three CFAs (SCFA, ACFA, and ISCFA). Finally,we demonstrate how to construct a
qutrit.

2 SLOCC-equivalence

Whether or not a state is entangled is an important question.Another important question is how entangled
the state is. For example, we consider the following two tripartite qubits. In the following, we omit the
normalization factor of states.

|GHZ〉 := |000〉+ |111〉, (1)

|W〉 := |001〉+ |010〉+ |100〉. (2)

There are two states: the GHZ state and the W state. Let the first qubit of each tripartite qubit be observed
with respect to the canonical basis ofC

2. After the GHZ state is observed, the changed state is|000〉 or
|111〉. Both states are separable. However, after the W state is observed, the changed state is|01〉+ |10〉
or |00〉. |00〉 is separable, but|01〉+ |10〉 is entangled. Hence, both the GHZ state and the W state are
entangled, but to different degrees. We need to classify systems based on their degree of entanglement.

Entanglement is a property of a multi-partite system, so local operations within each system cannot
essentially change entanglement without destroying it. Classical communication does not change the
properties of a system. Therefore, quantum local operations and classical communication (LOCC) do
not essentially change the entanglement of systems withoutdestroying it. If a state|ψ〉 can be converted
into |φ〉 by LOCC with non-zero probability, we say that|ψ〉 can be converted into|φ〉 by stochas-
tic local quantum operations and classical communication (SLOCC). Using SLOCC, we can define an
equivalence relation on entangled states.

Definition 2.1 (SLOCC-equivalence). If states|ψ〉 and|φ〉 can be converted into each other by SLOCC,
then they areSLOCC-equivalent.

Moreover, based on SLOCC-equivalence, SLOCC-maximality can be defined.

Definition 2.2 (SLOCC-maximality). Let |ψ〉 be a state. If every|φ〉 that can be converted into|ψ〉 by
SLOCC is SLOCC-equivalent to|ψ〉, then|ψ〉 is SLOCC-maximal.

SLOCC-equivalence is an equivalence relation, and therefore it determines a notion of equivalence
class (SLOCC class). Whenx is a representative of a SLOCC class, we usex to indicate the SLOCC class.
It has been shown thatN-partite systems|ψ〉 and |φ〉 are SLOCC-equivalent iff there exist invertible
matricesL1, . . . ,Ln such that|ψ〉=

⊗N
i=1Li|φ〉 [8].
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There are six possible SLOCC classes of tripartite qubits, namely|000〉, |000〉+ |011〉, |000〉+ |101〉,
|000〉+ |110〉, |GHZ〉, and|W〉. In contrast, there is an infinite number of SLOCC classes of the tripartite
qutrits in which we are interested here. A previous study used an inductive method [9] to identify some
SLOCC classes of tripartite qutrits [20]. These classes areshown in Table 1 below. In the table,φ , ϕ , χ ,
andψ are unit vectors ofC3. Notice that|π(φ ,ϕ ,χ ,ψ)〉 indicates an infinite number of SLOCC classes.
|φ03(φ ,ϕ)〉, |ϕ2(φ ,ϕ)〉, and|φ04(φ ,ϕ)〉 also indicate infinite families of classes.

3 Commutative Frobenius Algebra

In this section, we present the mathematical basis for our study of qutrits, most of which is based on
previous research [6]. First, we provide a graphical representation of symmetric monoidal categories.
Then we define a CFA in such a category, and present a graphicalrepresentation of this algebra. Finally,
we describe the special states that correspond to the algebra, and then classify the CFAs.

3.1 Graphical representation of symmetric monoidal categories

To represent quantum systems graphically, we use the graphical representation of symmetric monoidal
categories.

Definition 3.1 (Symmetric Monoidal Category). A monoidal categoryM consists of
(i) a categoryC;
(ii) a bifunctor tensor product⊗ : C×C→C;
(iii) a unit objecte∈C;
(iv) a natural isomorphismλa : e⊗a∼= a;
(v) a natural isomorphismρa : a⊗e∼= a;
(vi) a natural isomorphismαa,b,c : a⊗ (b⊗c)∼= (a⊗b)⊗c.

M satisfies the following two equations.

αa⊗b,c,d ◦αa,b,c⊗d = (αa,b,c⊗1a)◦αa,b⊗c,d ◦ (1a⊗αb,c,d) (3)

λb = ρa◦αa,e,b (4)

If M has a natural isomorphismγa,b : a⊗b∼= b⊗a such that the following three equations hold, thenM
is called a symmetric monoidal category:

λa◦ γa,e = ρa (5)

γb,a ◦ γa,b = 1a⊗b (6)

αa,c,b ◦ (1a⊗ γb,c)◦α−1
a,b,c = (γc,a⊗1b)◦αc,a,b ◦ γa⊗b,c (7)

.

Theorem 3.2(Coherence Theorem [11]). The coherence theorem states that any diagram that is com-
posed of the mapsα , λ , ρ , andγ , and their tensor products, commutes.

This means that any two objects that are tensor products ofa1, . . . ,an ande can be identified, even if
they differ in bracketing, or in the number of position ofe’s.

Example 3.3. FdHilb is a monoidal category whose objects are finite dimensional Hilbert spaces, and
whose arrows are all linear functions, with the usual tensorproduct and the unit objectC.
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Name Representative Name Representative
|ψ0〉 |000〉 |ψ12〉 |000〉+ |011〉+ |101〉+ |112〉
|ψ1〉 |000〉+ |011〉 |ψ13〉 |000〉+ |011〉+ |112〉+ |120〉
|ψ2〉 |000〉+ |011〉+ |022〉 |ψ14〉 |000〉+ |011〉+ |120〉+ |101〉
|ψ3〉 |000〉+ |101〉 |ψ15〉 |000〉+ |011〉+ |120〉+ |102〉
|ψ4〉 |000〉+ |110〉 |ψ16〉 |000〉+ |011〉+ |022〉+ |101〉
|ψ5〉 |000〉+ |111〉 |ψ17〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉
|ψ6〉 |000〉+ |011〉+ |101〉 |ψ18〉 |000〉+ |011〉+ |022〉+ |112〉+ |120〉
|ψ7〉 |000〉+ |011〉+ |112〉 |ψ19〉 |000〉+ |011〉+ |022〉+ |120〉+ |101〉
|ψ8〉 |000〉+ |011〉+ |120〉 |ψ20〉 |000〉+ |011〉+ |122〉
|ψ9〉 |000〉+ |101〉+ |202〉 |ψ21〉 |000〉+ |110〉+ |220〉
|ψ10〉 |000〉+ |111〉+ |202〉 |ψ22〉 |000〉+ |111〉+ |220〉
|ψ11〉 |000〉+ |111〉+ |201〉 |G 〉 |000〉+ |111〉+ |222〉

Name Representative
|π(φ ,ϕ ,χ ,ψ)〉 |000〉+ |011〉+ |1φϕ〉+ |2χψ〉

|φ0〉 |000〉+ |011〉+ |022〉+ |101〉+ |202〉
|φ1〉 |000〉+ |011〉+ |022〉+ |110〉+ |220〉
|ϕ1〉 |000〉+ |011〉+ |022〉+ |101〉+ |212〉

|φ2(φ ,ϕ)〉 |000〉+ |011〉+ |101〉+ |112〉+ |2φϕ〉

|ϕ2(φ ,ϕ)〉 |000〉+ |011〉+ |112〉+ |120〉+ |2φϕ〉

|φ3(φ ,ϕ)〉 |000〉+ |011〉+ |120〉+ |101〉+ |2φϕ〉

|φ4〉 |000〉+ |011〉+ |101〉+ |112〉+ |202〉+ |221〉
|ψ23〉 |000〉+ |011〉+ |101〉+ |112〉+ |210〉+ |202〉
|φ5〉 |000〉+ |011〉+ |101〉+ |112〉+ |221〉+ |210〉
|s0〉 |000〉+ |011〉+ |112〉+ |120〉+ |202〉+ |221〉
|φ6〉 |000〉+ |011〉+ |112〉+ |120〉+ |221〉+ |210〉
|ψ24〉 |000〉+ |011〉+ |120〉+ |101〉+ |221〉+ |210〉
|φ7〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |202〉+ |221〉
|φ8〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |210〉+ |202〉
|s1〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |221〉+ |210〉
|w0〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |202〉
|ϕ3〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |220〉
|φ9〉 |000〉+ |011〉+ |022〉+ |101〉+ |112〉+ |221〉

Table 1: Representatives in SLOCC classes of tripartite qutrits
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Arrows in monoidal categories can be expressed graphically[17]. We assume a flow from top to
bottom. An objecta is written as a line.

(8)

The unit objecte is expressed as no wire. The tensor producta⊗b is written as two lines.

(9)

An arrow f : a1⊗·· ·⊗an → b1⊗·· ·⊗bm is written as a box labeledf from input wiresa1, . . . ,an to
output wiresb1, . . . ,bm.

(10)

e is not written graphically; hence, according to the coherence theorem,αa,b,c, λa, andρa are graphically
expressed in the same way as identity arrows. An identity arrow 1a is written as a wirea.

(11)

The compositiong◦ f of arrows f : a1⊗·· ·⊗an → b1⊗·· ·⊗bm andg : b1⊗·· ·⊗bm → c1⊗·· ·⊗cl is
expressed as a vertical juxtaposition.

(12)

Two wires can be connected only if they are labeled by the sameobject. The tensor productf ⊗ g :
a⊗b→ c⊗d of arrows f : a→ c andg : b→ d is expressed as a horizontal juxtaposition.

(13)

Furthermore, the natural isomorphismγa,b of symmetric monoidal categories is expressed as an intersec-
tion.

(14)

Using these expressions, all arrows of monoidal categoriescan be represented graphically. Generally, a
state vector|ψ〉 of a state spacea can be considered a function fromC to a. Specifically, emphasizing
no-input,|ψ〉 is written as a triangle.

(15)
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〈ψ | is written as a reversed triangle.

(16)

3.2 Commutative Frobenius Algebra

Using the graphical representation of monoidal categories, all arrows of monoidal categories can be
represented graphically. Therefore, if systems correspond to arrows of monoidal categories, then any
system can be represented graphically. Previous research [6] suggests that some kinds of system strictly
correspond to a specific kind of algebra.
Definition 3.4 (Commutative Frobenius Algebra). A Frobenius algebra Fin a monoidal categoryM
consists of:

(i) an objecta∈ M;

(ii) multiplication µ : a⊗a→ a;

(iii) a unit η : e→ a;

(iv) a comultiplicationδ : a→ a⊗a;

(v) a counit:ε : a→ e, wheree is the unit object ofM;
such thatF makes the following equations hold:

(δ ⊗1a)◦δ = αa,a,a ◦ (1a⊗δ )◦δ (17)

λa◦ (ε ⊗1a)◦δ = 1a = ρa◦ (1a⊗ ε)◦δ (18)

µ ◦ (µ ⊗1a)◦αa,a,a = µ ◦ (1a⊗µ) (19)

µ ◦ (η ⊗1a)◦λ−1
a = 1a = µ ◦ (1a⊗η)◦ρ−1

a (20)

(1a⊗µ)◦α−1
a,a,a ◦ (δ ⊗1a) = δ ◦µ = (µ ⊗1a)◦αa,a,a ◦ (1a⊗δ ) (21)

If M is a symmetric monoidal category andF satisfies the following equations, thenF is called acom-
mutative Frobenius algebra (CFA):

µ ◦ γa,a = µ (22)

γa,a ◦δ = δ (23)

Definition 3.5 (F-graph). An F-graph of a CFAF is an arrow that is composed ofµ , δ , ε , δ , αa,a,a, ρa,
λa, γa,a, 1a, and their tensor products.

The domain-codomain pairs of all components of a CFA differ from each other. Therefore, without
labeling each arrow, we can present a CFA graphically, as follows.

µ = η = δ = ε = (24)

Using the representation of CFAs and monoidal categories, any F-graph can be represented graphi-
cally. Of course, the axioms of CFAs can be expressed graphically as follows.

= = = = = =

= = = =

(25)
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Because of these axioms, the representation of anF-graph is determined by its topological properties.

Theorem 3.6 ([6]). Any two F-graphs f and g whose graphical representations areconnected and
which have the same numbers of inputs, outputs, and loops, are in fact the same. The number of loops
represents the maximum number of wires that can be removed without destroying the connections of the
representation.

Here, for simplification, we provide notations for someF-graphs. A notation (called aspider notation
in previous work [6]) is used forF-graphs that do not have any loops. AnF-graph that hasm inputs and
n outputs is written as follows.

(26)

An F-graph that has no inputs or outputs is written as follows.

(27)

Moreover, someF-graphs that have exactly one loop have special notations. An F-graph that has one
loop, no input, and one output is written as follows.

(28)

Similarly, anF-graph that has one loop, one input, and no outputs is expressed as follows.

(29)

Finally, anF-graph that has one loop and no inputs or outputs is expressedas a circle.

(30)

3.3 Frobenius States

CFAs correspond to Frobenius states, which require strong SLOCC-maximality and symmetry proper-
ties.

Definition 3.7 (Strong SLOCC-maximality). Let |Ψ〉 be a tripartite state. If there are〈Φi | and〈ξi| such
that the following holds, then|Ψ〉 is strongly SLOCC-maximal:

= = = (31)
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The following theorem shows the relation between SLOCC-maximality and strong SLOCC-maxi-
mality.

Theorem 3.8([6]). Let |Ψ〉 be a tripartite symmetric state. If|Ψ〉 is strongly SLOCC-maximal, then|Ψ〉
is SLOCC-maximal.

Definition 3.9 (Symmetric State). Let |Ψ〉 be a tripartite state. If|Ψ〉 satisfies the following equations,
then|Ψ〉 is a symmetric state:

= = (32)

N-partite symmetric states are defined similarly. For symmetric states, the definition of strong
SLOCC-maximality can be rewritten simply as the following proposition.

Proposition 3.10([6]). Let |Ψ〉 be a tripartite symmetric state.|Ψ〉 is strongly SLOCC-maximal iff there
are 〈Φ| and〈ξ | such that

= (33)

For any strongly SLOCC-maximal and tripartite symmetric state |Ψ〉, if 〈ξ | is given, then〈Φ| is
uniquely determined. The converse is also true.

Proposition 3.11([6]). Let |Ψ〉 be a strongly SLOCC-maximal and tripartite symmetric state. Each of a
pair of states〈Φ| and〈ξ | satisfying (33) is uniquely determined by the other.

Proof. Suppose (|Ψ〉, 〈Φ|, 〈ξ |) and (|Ψ〉, 〈Φ|, 〈ξ ′|) satisfy (33).

= = = = (34)

Similarly, assume (|Ψ〉, 〈Φ|, 〈ξ |) and (|Ψ〉, 〈Φ′|, 〈ξ |) satisfy (33).

= = = = (35)

Then, substituting|Φ〉 for |Φ′〉,

= = . (36)
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Frobenius states also require not only symmetry but also strong symmetry to correspond to CFAs.
Definition 3.12 (Strong Symmetry). Let |Ψ〉 be a tripartite state. If|Ψ〉 is a symmetric state and there is
〈Φ| such that

= (37)

then|Ψ〉 is strongly symmetric.
Definition 3.13 (Frobenius State). Let |Ψ〉 be a tripartite state. If there are〈Φ| and〈ξ | such that they
satisfy (33) and (37), then|Ψ〉 is a Frobenius state.

Notice that this definition requires all equations with the same〈Φ| and〈ξ | to be satisfied. According
to Proposition 3.11, we write a Frobenius state|Ψ〉 with 〈ξ | to indicate the triple|Ψ〉, 〈Φ|, and〈ξ | such
that they satisfy the Frobenius conditions. Note that for a Frobenius state|Ψ〉, more than one pair (〈ξ |,
〈Φ|) is generally possible such that|Ψ〉, 〈Φ|, and〈ξ | satisfy the Frobenius conditions.

Frobenius states and CFAs are strictly connected. The connection is given by the following theorems.
Theorem 3.14([6]). For any CFA,

|Ψ〉 := 〈Φ| := 〈ξ | := (38)

|Ψ〉 is a Frobenius state with〈Φ| and |ξ 〉.

Theorem 3.15([6]). Any Frobenius state defines a CFA(H , , , , ) as

:= := := := (39)

Theorem 3.14 describes how to create a Frobenius state from aCFA, and Theorem 3.15 describes the
converse. Note that a CFA induced by a Frobenius state with〈ξ | and〈Φ| is the same as the original CFA.
For example, we can show CFAs that correspond to tripartite qubits; these CFAs are defined inFdHilb .
In tripartite qubits, six SLOCC classes are possible:|000〉, |000〉+ |011〉, |000〉+ |101〉, |000〉+ |110〉,
|GHZ〉, and|W〉. Obviously the first four classes are not strongly SLOCC-maximal. In contrast,|GHZ〉
and|W〉, which were defined in (1) and (2), are Frobenius states, so these states correspond to CFAs.
Example 3.16. |GHZ〉 with 〈ξ | := 〈0|+ 〈1| induces a CFA

:= |0〉〈00|+ |1〉〈11| := |0〉+ |1〉 := |00〉〈0|+ |11〉〈1| := 〈0|+ 〈1| (40)

Example 3.17. |W〉 with 〈ξ | := 〈0| induces a CFA

:= |0〉〈01|+ |0〉〈10|+ |1〉〈11| := |1〉 := |00〉〈0|+ |01〉〈1|+ |10〉〈1| := 〈0| (41)
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3.4 Classification of Tripartite Qubits

In [6], two kinds of CFAs were defined to classify tripartite qubit states.

Definition 3.18 (Special Commutative Frobenius Algebra). A commutative Frobenius algebra that sat-
isfies the following equation is called aspecial commutative Frobenius algebra (SCFA):

= . (42)

Definition 3.19 (Anti-special Commutative Frobenius Algebra). A commutative Frobenius algebra that
satisfies the following equation is called ananti-special commutative Frobenius algebra (ACFA):

= . (43)

These algebras are topologically different from each other. Using simple calculations, it is obvious
that (40) is an SCFA and that (41) is an ACFA. For distinction,an SCFA is expressed as a white dot
and an ACFA is expressed as a black dot. In [6], it was demonstrated that these two types of CFAs
strictly correspond to the two SLOCC classes of tripartite qubits.

Theorem 3.20([6]). Let |Ψ〉 be a Frobenius state.|Ψ〉 is SLOCC-equivalent to the GHZ state iff there is
〈ξ | such that|Ψ〉 with 〈ξ | induces an SCFA.|Ψ〉 is SLOCC-equivalent to the W state if and only if there
is 〈ξ | such that|Ψ〉 with 〈ξ | induces an ACFA.

4 Qutrits and Commutative Frobenius Algebras

In this section, we classify three-dimensional CFAs, show correspondence between tripartite qutrits and
CFAs, and demonstrate how to compose any qutrit graphicallyusing arguments similar to those used
in [6]. However, unlike in the case of qubits, infinitely manySLOCC classes are possible in tripartite
qutrits. Hence, we must distinguish between SLOCC classes that include Frobenius states and those
that do not. To this end, we use the requirements of Frobeniusstates, i.e., strong SLOCC-maximality,
symmetry, and strong symmetry. First, we identify any classthat does not have a SLOCC-maximal state.
Then we examine which classes include a symmetric state. Next, we classify Frobenius states using
the strong symmetry condition, and then define three CFAs that correspond to Frobenius states, classify
these using graphical equations, and prove that the classification strictly corresponds to the three CFAs.
Finally, we represent any qutrits graphically.

4.1 Non-Maximal Class

First, we use the first condition, strong SLOCC-maximality.It requires a tripartite qutrit to have a full
rank density matrix in each single qutrit. Some SLOCC classes do not include strong SLOCC-maximal
states. The absence of states in a SLOCC class determines theproperties of the class. We call a SLOCC
class that does not include any strong SLOCC-maximal state anon-maximal class.

Lemma 4.1. For any tripartite SLOCC class X, if X includes a tripartite qutrit that is not strongly
SLOCC-maximal, then X is a non-maximal class.
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Proof. Let |φ〉 be a tripartite qutrit that is SLOCC-equivalent to a strongly SLOCC-maximal state|ψ〉.
|ψ〉 has〈ξi | and〈Φi | (i ∈ {1,2,3}) such that they satisfy the SLOCC-maximal conditions. Because|φ〉
and|ψ〉 are SLOCC-equivalent, there are invertible matricesL1, L2, andL3 such that|φ〉 = (L1⊗L2⊗
L3)|ψ〉. 〈ξ ′

i | := 〈ξi| ◦L−1
i and〈Φ′

i | := 〈Φi | ◦ (L
−1
j ⊗L−1

k ) with i, j,k ∈ {1,2,3}, which differ from each
other.|φ〉, 〈ξ ′

i |, and〈Φ′
i | satisfy the SLOCC-maximal conditions.

Frobenius states require strong SLOCC-maximality, so a non-maximal class does not have Frobenius
states. Using simple calculations, we can prove that for anyi ∈ {0, . . . ,24}, |ψi〉 is a non-maximal class.

In |π(φ ,ϕ ,χ ,ψ)〉, if |φ〉 and |χ〉 can be expressed as|φ〉 = α |0〉+ β |1〉 and |χ〉 = γ |0〉+ δ |1〉 by
some complex numbersα , β ,γ , andδ , then this class does not include a strong SLOCC-maximal state.
The same can be said for|ϕ〉 and|ψ〉.

4.2 Non-Symmetric Class

Next, we use the second condition, i.e., symmetry. Many SLOCC classes include strong SLOCC-
maximal states, but a few of them include symmetric states. ASLOCC class with strong SLOCC-
maximal states but no symmetric states is called anon-symmetric class. The following lemma is used to
identify non-symmetric classes.

Lemma 4.2. For any permutation P, if a tripartite qutrit|φ〉 is SLOCC-equivalent to a tripartite sym-
metric state|ψ〉, P|φ〉 is SLOCC-equivalent to|φ〉.

Applying this lemma to representations, we can prove that for any i ∈ {0, . . . ,9}, |φi〉 is a non-
symmetric class. In addition to Lemma 4.2, any permutation of two qutrits can be represented in a 3×3
matrix.

Lemma 4.3. For any N-partite qutrit|φ〉 and any permutation P between an ith qutrit and a jth qutrit,
if |φ〉 is SLOCC-equivalent to an N-partite symmetric state|ψ〉, then there is a3×3 invertible matrix L
and

Mk =







L (k= i)
L−1 (k= j)

I (otherwise)
(44)

such that P|φ〉= (⊗N
k=1Mk)|φ〉. Here I is the identity matrix.

Proof. Let |φ〉 be a tripartite qutrit that is SLOCC-equivalent to a tripartite symmetric state|ψ〉. There
are invertible matricesLk such that|ψ〉=⊗N

k=1Lk|φ〉. Let Fk be a function such that

Fk :=







L−1
j (k= i)

L−1
i (k= j)

L−1
k (otherwise)

(45)

This satisfiesP|φ〉 = ⊗N
k=1Fk|ψ〉. Let L = L−1

j ◦Li , then theMk defined in this lemma satisfiesP|φ〉 =
⊗N

k=1(Fk ◦Lk)|φ〉=⊗N
k=1Mk|φ〉.

Using these lemmas, we can consider all classes expressed as|π(φ ,ϕ ,χ ,ψ)〉. We pick up a SLOCC-
maximal class|π(φ ,ϕ ,χ ,ψ)〉. By the above arguments and calculation, it is divided into two cases, i.e.,
|π(φ ′

,ϕ ′
, |2〉, |2〉)〉 and|π(φ ′

, |2〉, |2〉,α |0〉+β |1〉)〉.
First, we assume that|π(φ ′

, |2〉, |2〉,ψ ′)〉 belongs to the class such that|ψ ′〉= α |0〉+β |1〉. Consider
a permutation between the second and third qutrits. According to Lemma 4.3, there is an invertible
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matrix L such that|π(φ ′
, |2〉, |2〉,ψ ′)〉 = (I ⊗ L⊗ L−1)|π(φ ′

, |2〉, |2〉,ψ ′)〉. Performing this calculation,
we getα = β = 0. As a result,|π(φ ′

, |2〉, |2〉,ψ ′)〉 is a non-symmetric class.
Second, we consider|π(φ ′

,ϕ ′
, |2〉, |2〉)〉. |φ ′〉 and|ϕ ′〉 are

|φ ′〉 = α |0〉+β |1〉+ γ |2〉 (46)

|ϕ ′〉 = δ |0〉+η |1〉+θ |2〉 (47)

Using a similar calculation, we arrive atγ = θ = 0.
Using the same process, we can check whether the classes|ϕ1〉, |ϕ2〉, and|ϕ3〉 are non-symmetric.
We have identified all non-symmetric classes. The rest of theclasses are|G 〉, |w0〉, |s0〉, |s1〉,

|π(φ ′
,ϕ ′

, |2〉, |2〉)〉. There are symmetric states in the following classes:|G 〉, |W 〉 := |002〉+ |011〉+
|020〉+ |101〉+ |110〉+ |200〉, |s2〉 := |000〉+ |012〉+ |021〉+ |102〉+ |120〉+ |201〉+ |210〉, |s3〉 :=
|012〉+ |021〉+ |102〉+ |120〉+ |201〉+ |210〉, |I 〉 := |001〉+ |010〉+ |100〉+ |222〉.

For |π(φ ′
,ϕ ′

, |2〉, |2〉)〉, there are two cases that are SLOCC-equivalent to|000〉+ |011〉+ |100〉+
|222〉 and|000〉+ |011〉+ |101〉+ |222〉. The first case is the same class as|G 〉. In the second class, there
is a symmetric state|I 〉.

4.3 Frobenius Class

A SLOCC class that includes a Frobenius state is called aFrobenius class. We already know that only five
classes include symmetric states. To restrict the classes to Frobenius classes, we can use the following
theorem.

Theorem 4.4. For any tripartite symmetric states|φ〉 and|ψ〉, if they are SLOCC-equivalent, then there
is a3×3 matrix L such that|φ〉= (L⊗L⊗L)|ψ〉.

Proof. This can be proved using arguments similar to those used in [12]. Suppose|φ〉 and |ψ〉 are
connected by a non-symmetric transformation such as|φ〉 = (L1 ⊗ L2⊗ L3)|ψ〉. There isB such that
|ψ〉 = (B⊗B−1 ⊗ I)|ψ〉. B may be diagonalizable, converted into a Jordan block, or converted into
two Jordan blocks. Moreover, the first two cases are divided by their eigenvalues. In any case, we
can prove that there isL such that|ψ〉 = (L⊗ L⊗ L)|ψ0〉, where|ψ0〉 is one of|000〉, |000〉+ |111〉,
|001〉+ |010〉+ |111〉, |G 〉, |W 〉, and |I 〉. We know that these classes are not SLOCC-equivalent to
each other. Then,|ψ〉 can be converted into|φ〉 by symmetric transformation via|ψ0〉.

As a reminder, any symmetric state that is SLOCC-equivalentto a Frobenius state is also a Frobe-
nius state. Hence, we only need to check for a tripartite symmetric state in all symmetric classes to
judge whether or not the classes are Frobenius classes. Using simple calculations, we can obtain three
Frobenius states:

|G 〉 with 〈ξ | := 〈0|+ 〈1|+ 〈2|:

:= |0〉〈00|+ |1〉〈11|+ |2〉〈22| := |0〉+ |1〉+ |2〉

:= |00〉〈0|+ |11〉〈1|+ |22〉〈2| := 〈0|+ 〈1|+ 〈2|
(48)

|W 〉 with 〈ξ | := 〈0|:

:= |0〉〈02|+ |0〉〈11|+ |0〉〈20|+ |1〉〈12|+ |1〉〈21|+ |2〉〈22| := |2〉

:= |00〉〈0|+ |01〉〈1|+ |10〉〈1|+ |02〉〈2|+ |11〉〈2|+ |20〉〈2| := 〈0|
(49)
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|I 〉 with 〈ξ | := 〈0|+ 〈2|:

:= |0〉〈01|+ |0〉〈10|+ |1〉〈11|+ |2〉〈22| := |1〉+ |2〉

:= |00〉〈0|+ |01〉〈1|+ |10〉〈1|+ |22〉〈2| := 〈0|+ 〈2|
(50)

We call these algebrasG , W , andI .
However, the other two classes are not Frobenius classes. First, we consider|s2〉. Let 〈ξ | = α〈0|+

β 〈1|+ γ〈2|, then 〈Φ| = 1
α(α2−2βγ)(α

2〈00| − αβ 〈10| −αγ〈20| − αβ 〈01|+ β 2〈11|+ (α2 − βγ)〈21| −

αγ〈02|+(α2−βγ)〈12|+ γ2〈22|). Calculating (37), we know that|s2〉 does not have strong symmetry.
Second, we consider|s3〉. Similarly, we let〈ξ | = α〈0|+ β 〈1|+ γ〈2|. A 〈Φ| that satisfies (33) is

− α
2βγ 〈00|+ 1

2γ 〈01|+ 1
2β 〈02|+ 1

2γ 〈10| − β
2αγ 〈11|+ 1

2α 〈12|+ 1
2β 〈20|+ 1

2α 〈21| − γ
2αβ 〈22|. The 〈ξ |, 〈Φ|,

and|s3〉 do not have strong symmetry.
As a result, we obtained three Frobenius classes and proved that the other classes are not Frobenius

classes.

4.4 Classification of Commutative Frobenius Algebras

We can judge which classes are SCFA or ACFA by calculating. We can use the language of smooth

manifolds to verify thatG is an SCFA andW is an ACFA, butI is neither an SCFA nor an ACFA. Next,
we define intermediate special commutative Frobenius algebras.
Definition 4.5 (ISCFA). A commutative Frobenius algebra that satisfies the following two equations is
an intermediate special commutative Frobenius algebra (ISCFA):

= (51)

= (52)

.
An ISCFA is expressed by a white dot with a central small blackdot . We can immediately verify

that I is an ISCFA, and thatG and W are not. Moreover, we can prove that these three algebras
correspond exactly to the three Frobenius classes.
Theorem 4.6. If a Frobenius state|ψ〉 is SLOCC-equivalent to a Frobenius state|φ〉 that induces an
SCFA, an ACFA, and an ISCFA with〈ξ |, then there is〈ξ ′| such that|ψ〉 with 〈ξ ′| induces an SCFA, an
ACFA, and an ISCFA, respectively.

Proof. Let X = (C3
, , , , ) be an SCFA induced by|φ〉 with 〈ξ |. There is an invertible matrix

L such that|ψ〉= (L⊗L⊗L)|φ〉. |ψ〉 with 〈ξ ′| := 〈ξ | ◦L−1 induces a CFAA = (C3
, , , , ):

:= := := := (53)
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A satisfies the SCFA condition. The remaining cases are provedin the same way.

Corollary 4.7. If a Frobenius state|ψ〉 is SLOCC-equivalent to|G 〉, |W 〉, and |I 〉, then there is〈ξ ′|
such that|ψ〉 with 〈ξ ′| induces an SCFA, an ACFA, and an ISCFA, respectively.

Theorem 4.8. Let |ψ〉 be a Frobenius state. If there is〈ξ | such that|ψ〉 with 〈ξ | induces an SCFA, then
|ψ〉 is SLOCC-equivalent to|G 〉.

Proof. Three copyable vectors ofδ form an orthogonal basis forC3 [7]. Hence, we can get an invertible
matrix L that converts|0〉, |1〉, and|2〉 into copyable vectors. ThisL satisfies

|ψ〉= (L⊗L⊗L)|G 〉. (54)

Theorem 4.9. Let |ψ〉 be a Frobenius state. If there is〈ξ | such that|ψ〉 with 〈ξ | induces an ACFA, then
|ψ〉 is SLOCC-equivalent to|W 〉.

Proof. |ψ〉 is a Frobenius state, so|ψ〉 is SLOCC-equivalent to one of the states|G 〉, |W 〉, and|I 〉.
First, assume|ψ〉 be SLOCC-equivalent to|G 〉. According to Theorem 4.6, there is〈ξ ′| such that

|G 〉 with 〈ξ ′| induces an ACFA. Let〈ξ ′| := α〈0|+ β 〈1|+ γ〈2| with arbitrary complex numbersα , β ,
andγ . Due to the strong SLOCC-maximal condition (33),α , β , andγ are restricted to nonzero. A CFA
induced by|G 〉 with 〈ξ ′| does not satisfy the ACFA condition. This contradicts the assumption.

By the same argument, a CFA induced by|I 〉 with 〈ξ ′| is not an ACFA. Therefore,|ψ〉 is SLOCC-
equivalent to|W 〉.

Theorem 4.10. Let |ψ〉 be a Frobenius state. If there is〈ξ | such that|ψ〉 with 〈ξ | induces an ISCFA,
then|ψ〉 is SLOCC-equivalent to|I 〉.

Proof. This can be proved in the same way as the previous theorem.

4.5 Multiple Commutative Frobenius Algebras

In [6], it was shown that some pairs of two-dimensional SCFAsand ACFAs, which the authors called
GHZ/W-pairs, can representN-partite qubits. Here, we show that an SCFA, an ACFA, and an ISCFA
can represent any qutrit.

We define a CFA trioT := (G ,W ,I ), and the following arrows.

Definition 4.11 (Tick, Knurl, Wave).

:= (55)

:= (56)

:= (57)
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First, we show howT can compose functions with the assistance of single vectors.

Theorem 4.12.Any invertible3×3 matrix F can be represented byT and single qutrits.

Proof. F can be represented by an LDU decomposition as

F = PLDUP′ (58)

P andP′ are permutations,L is a lower triangle matrix,U is an upper triangle matrix, andD is a diagonal
matrix. Moreover, the diagonal elements ofL andU are all 1. In other words,L, U , andD are

L =





1 0 0
l2 1 0
l1 l0 1





, D =





d0 0 0
0 d1 0
0 0 d2





, U =





1 u0 u1

0 1 u2

0 0 1



 (59)

We define|ψ〉, |φ〉, |π〉, |η〉, and|ζ 〉 as

|ψ〉 := d0|0〉+d1|1〉+d2|2〉 (60)

|φ〉 := (u2−u0)|0〉+ |1〉+ |2〉 (61)

|π〉 := u1|0〉+u0|1〉+ |2〉 (62)

|η〉 := (l2− l0)|0〉+ |1〉+ |2〉 (63)

|ζ 〉 := l1|0〉+ l0|1〉+ |2〉 (64)

Using these qutrits,L, D, andU are represented as

L = D = U = (65)

Any permutation can be composed of, , and .

Therefore, if a qutrit can be composed ofT and single vectors, then all qutrits that are SLOCC-
equivalent to another qutrit are composed ofT and single vectors.

Moreover,T can ‘bring up’ qutrits. In [6], the authors defined a ‘quantummultiplexer’ of qubits,
which they called a QMUX. Here we define the qutrit version of QMUX.

Definition 4.13 (QMUX). A QMUX is

:= (66)
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Theorem 4.14.T can compose a function that converts single qutrits|ψ〉⊗|φ〉⊗|ζ 〉 into |0ψ〉+ |1φ〉+
|2ζ 〉.

Proof. Tracing each line, we can verify that QMUX converts single qutrits |ψ〉⊗ |φ〉⊗ |ζ 〉 into

〈φ |2〉〈ζ |2〉|0ψ〉+ 〈ζ |2〉〈ψ |2〉|1φ〉+ 〈ψ |2〉〈φ |2〉|2ζ 〉.

Based on Theorem 4.12, there is an invertible matrixL such that

L =







1
〈φ |2〉〈ζ |2〉 0 0

0 1
〈ζ |2〉〈ψ |2〉 0

0 0 1
〈ψ |2〉〈φ |2〉






(67)

(68)

converts|ψ〉⊗ |φ〉⊗ |ζ 〉 into |0ψ〉+ |1φ〉+ |2ζ 〉.

Furthermore, by aligning QMUXs, this can be extended to the case ofN-partite qutrits.

Theorem 4.15.Let |ψ〉, |φ〉, and|ζ 〉 be N-partite qutrits. Then

(69)

is |0ψ〉+ |1φ〉+ |2ζ 〉 with some invertible matrix L.

Therefore, if anyN-partite qutrit is composed ofT and single vectors, then any N+1-partite qutrit is
also composed ofT and single vectors.

5 Related Work

Abramsky and Coecke provided the graphical language for thecategorical axioms of quantum protocols
[1]; see also [16]. That paper explicitly showed the graphical representation of quantum entanglement.
This was based on an interpretation of entanglement as a nameand coname in a dagger compact closed
category provided in [1], which used this interpretation tographically express the flow of quantum in-
formation. However, this representation was limited in that it was uniform, so it did not clarify the
characteristics of the entanglement.
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The paper [6] provided a graphical representation of the entangledness of a qubit. Using that repre-
sentation, the authors classified SLOCC classes of entangled tripartite qubits. In this paper, we use this
method to express tripartite qutrits.

6 Conclusion

We identified Frobenius classes in tripartite qutrits. Frobenius states require strong SLOCC-maximality
and strong symmetry. Hence, by determining which classes were not strongly SLOCC-maximal, and
which infinite SLOCC classes did not have a symmetric state, we were able to obtain three Frobenius
classes that were SLOCC-equivalent to|G 〉, |W 〉, and |I 〉. Then we classified them further. One of
these corresponded to an SCFA and one to an ACFA that corresponded to tripartite qubits onC2. The
other one was an ISCFA. We also proved that their correspondences were unique. The classification used
the rank of . Based on the equations for SCFA and ACFA, the ranks ofare dimH and 1, respectively.

Our definition of an ISCFA requires the rank ofto be neither dimH nor 1. The uniqueness implies the
algebraic and graphical structure of Frobenius states.

Finally, we desmonstrated the utility of the three CFAs. They can growN-partite qutrits and con-
struct any linear function using single qutrits. Furthermore, any multipartite qutrits can be expressed
graphically using a graphical representation of the CFAs onC

3.

Our method for expressing qutrits graphically is an extension of that used for qubits introduced in [6].
The two methods have both similarities and differences. Forexample, both use Frobenius states that are
highly symmetric and highly entangled, as well as SCFAs and ACFAs. Additionally, the CFAs used in
both methods have the ability to makeN-partite become same-dimensional systems with the help of sin-
gle systems. This implies that these CFAs have some degree ofcompleteness. In contrast, the differences
include the fact that, although four SLOCC classes are not Frobenius classes in tripartite qubits, infinite
SLOCC classes are not Frobenius classes in tripartite qutrits. Moreover, all non-symmetric SLOCC
classes are non-maximal classes in tripartite qubits, whereas infinite non-symmetric SLOCC classes are
not non-maximal classes in tripartite qutrits. Additionally, in tripartite qutrits, there is an ISCFA that
is neither an SCFA nor an ACFA. Both characteristics are caused by the higher dimension of qutrits
compared to qubits. Qubits are two-dimensional, which is the lowest possible dimension of an entan-
gled state. Because of this low dimension, qubits do not haveany non-symmetric classes. The second
characteristic is also caused by the rank of. In qubits, the rank of a nontrivial function is limited to 1 or
dimH = 2. However, in qutrits, there is an intermediate rank, i.e.,2. Therefore, there is an ISCFA that
does not exist in qubits.

We demonstrated the correspondence between CFAs and some tripartite qutrits. However, an infinite
number of SLOCC classes are possible that do not have graphical representations reflecting their entan-
glement properties. The success of Frobenius states implies the algebraic structure of tripartite qutrits.
Another algebra is needed to express other SLOCC classes graphically to specify their features. Many
classes are not symmetric; in such cases, commutative properties are not needed for the algebras.

In higher-dimensional tripartite systems, Frobenius classes may exist. Considering the rank of,
more classifications may be possible for higher dimensions.However, the number of these classifications
may remain finite, even though SLOCC classes are infinite. Furthermore, an ISCFA may or may not exist
at higher dimensions. If it does, research into the normal forms of CFAs with ticks and knurls such as
those described in [14] would be helpful.
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