Bohrification of local nets

Joost Nuiten
(Universiteit Utrecht)

Recent results by Spitters et. al. suggest that quantum phase space can usefully be regarded as a ringed topos via a process called Bohrification. They show that quantum kinematics can then be interpreted as classical kinematics, internal to this ringed topos.

We extend these ideas from quantum mechanics to algebraic quantum field theory: from a net of observables we construct a presheaf of quantum phase spaces. We can then naturally express the causal locality of the net as a descent condition on the corresponding presheaf of ringed toposes: we show that the net of observables is local, precisely when the presheaf of ringed toposes satisfies descent by a local geometric morphism.

In Bart Jacobs, Peter Selinger and Bas Spitters: Proceedings 8th International Workshop on Quantum Physics and Logic (QPL 2011), Nijmegen, Netherlands, October 27-29, 2011, Electronic Proceedings in Theoretical Computer Science 95, pp. 211–218.
Published: 1st October 2012.

ArXived at: bibtex PDF
References in reconstructed bibtex, XML and HTML format (approximated).
Comments and questions to:
For website issues: