Symmetry and Self-Duality in Categories of Probabilistic Models

Abstract

Alexander Wilce

This note adds to the recent spate of derivations of the probabilistic apparatus of finite-dimensional quantum theory from various axiomatic packages. We offer two different axiomatic packages that lead easily to the Jordan algebraic structure of finite-dimensional quantum theory. The derivation relies on the Koecher-Vinberg Theorem, which sets up an equivalence between order-unit spaces having homogeneous, self-dual cones, and formally real Jordan algebras.

1 Introduction and Overview

The last several years have seen a spate of derivations of the probabilistic apparatus of finite-dimensional quantum theory from various axiomatic packages, many having an information-theoretic motivation [7] 8, 10, 12, 13]. This note (which in part echoes, but greatly improves upon [19]) adds to the flow. I offer two different, though overlapping, axiomatic packages, both stressing symmetry principles, that lead quickly and easily to the Jordan algebraic structure of finite-dimensional quantum theory. Quickly and easily, at any rate, if one is familiar with the Koecher-Vinberg Theorem [11, 15], which sets up an equivalence between order-unit spaces having homogeneous, self-dual cones, and formally real Jordan algebras.

A probabilistic system can be described, in a standard way, in terms of an order-unit space A, the positive elements of which are scalar multiples of "effects". The strategy, then, is to show that certain strong, but not unreasonable, assumptions force the positive cone A_{+}to be homogeneous and self-dual, and hence, isomorphic to the cone of squares of such a Jordan algebra. In [3], several conditions are adduced that lead to a homogeneous and weakly self-dual cone - that is, a homogeneous cone that is order-isomorphic to its dual cone in A^{*}. However, proper self-duality is a much more stringent condition, requiring that the isomorphism be mediated by an inner product.

The line of attack here is to assume that systems individually have a great deal of symmetry, and collectively, can be organized into a symmetric monoidal category [1, 2, 14]. Here is a sketch. Further details can be found in the longer paper [20].

2 Probabilistic Models

A test space [16] is a pair (X, \mathfrak{A}) where X is a set of outcomes and \mathfrak{A} is a covering of X by non-empty (for our purposes here, finite) subsets called tests, each understood as the set of possible outcomes of some measurement, experiment, etc. Two outcomes $x, y \in X$ are distinguishable iff they belong to a common test. In this case, I write $x \perp y$. Notice that there is, as yet, no linear structure in view, let alone an inner product; so this notation is promissory.

A state on a test space (X, \mathfrak{A}) is a function $\alpha: X \rightarrow[0,1]$, summing independently to unity on each test. A symmetry of (X, \mathfrak{A}) is a mapping $g: X \rightarrow X$ such that $g(E), g^{-1}(E) \in \mathfrak{A}$ for every $E \in \mathfrak{A}$. By a probabilistic model, I mean a structure $(X, \mathfrak{A}, \Omega, G)$ where (X, \mathfrak{A}) is a test space, Ω is a compact convex set of states on (X, \mathfrak{A}), and G is a group acting on (X, \mathfrak{A}) by symmetries, and leaving Ω invariant.

For illustration, if \mathbf{H} is a finite-dimensional Hilbert space (real or Complex), the corresponding quantum model is $(X(\mathbf{H}), \mathfrak{A}(\mathbf{H}), \Omega(\mathbf{H}), U(\mathbf{H}))$, where $X=X(\mathbf{H})$ is the set of rank-one projection operators on $\mathbf{H}, \mathscr{A}=\mathfrak{A}(\mathbf{H})$ is set of (projective) frames, i.e., maximal pairwise orthogonal sets of projections, $\Omega(\mathbf{H})$ is the convex set of density operators on \mathbf{H}, and $U(\mathbf{H})$ is the group of unitary operators on \mathbf{H}, acting on $X(\mathbf{H})$ by conjugation.

Categories of Models. I will be interested in categories of models. A morphism from a model ($X, \mathfrak{A}, \Omega, G$) to a model $(Y, \mathfrak{B}, \Gamma, H)$ is a pair (ϕ, ψ), where
(i) $\phi: X \rightarrow Y$ with $\phi(\mathfrak{A}) \subseteq \mathfrak{B}, \phi^{*}(\Gamma) \subseteq \Omega$
(ii) $\psi \in \operatorname{Hom}(G, H)$;
(iii) $\phi(g x)=\psi(g) \phi(x)$ for all $x \in X, g \in G$.

In what follows, \mathscr{C} is a symmetric monoidal category of probabilistic models $A=(X(A), \mathfrak{A}(A), \Omega(A), G(A))$, with morphisms as above. I shall make two further assumptions:
(1) For every $A \in \mathscr{C}, G(A) \subseteq \mathscr{C}(A, A)$.
(2) The model $A \otimes B \in \mathscr{C}$ is a composite of the models $A, B \in \mathscr{C}$, in the sense of [5]. This means, in particular, that there are canonical injections $\otimes: X(A) \times X(B) \rightarrow X(A \otimes B)$ and $\otimes: \Omega(A) \times \Omega(B) \rightarrow$ $\Omega(A \otimes B)$, with

$$
E \otimes F=\{x \otimes y \mid x \in E, y \in F\} \in \mathfrak{A}(A \otimes B)
$$

for every $E \in \mathfrak{A}(A), F \in \mathfrak{A}(B)$, and

$$
(\alpha \otimes \beta)(x \otimes y)=\alpha(x) \beta(y)
$$

for all $\alpha \in \Omega(A), \beta \in \Omega(B), x \in X(A)$ and $y \in X(B)$. A bipartite state between $A, B \in \mathscr{C}$ is a state ω in $\Omega(A \otimes B)$. It is also part of the definition that the un-normalized conditional state $\hat{\omega}(x):=\omega(x, \cdot)$ belong to $\Omega(B)$ for every $x \in X$, and similarly with A and B reversed.

Models Linearized. Every model $A=(X(A), \mathfrak{A}(A), \Omega(A), G(A)) \in \mathscr{C}$ generates, in a standard and quite canonical way, an order-unit space $\mathbf{E}(A)$. To be precise, $\mathbf{E}(A)$ is the span in \mathbb{R}^{Ω} of the evaluation functionals associated with measurement outcomes $x \in X$.) In the case of a quantum model $A(\mathbf{H})=$ $(X(\mathbf{H}), \mathfrak{A}(\mathbf{H}), \Omega(\mathbf{H}), U(\mathbf{H}))$, one has $\mathbf{E}(A) \simeq \mathscr{L}(\mathbf{H})$, the space of Hermitian operators on \mathbf{H}, with the usual ordering and $u_{A}=\mathbf{1}_{\mathbf{H}}$.

The construction $A \mapsto \mathbf{E}(A)$ is functorial, so we obtain from \mathscr{C} a category $\mathbf{E}(\mathscr{C})$ of order-unit spaces and positive linear mappings. It is natural to enlarge this to a category \mathscr{E} in which each hom-set $\mathscr{E}(A, B)$ is an ordered linear space, and in which, e.g., $\mathscr{E}(I, A) \simeq \mathbf{E}(A)$. In what follows, I assume that such a "linearized" category \mathscr{E} has been fixed.

3 Bi-Symmetric Models

To tighten this structure further, I now ask that every $A \in \mathscr{C}$ enjoy a property I call bi-symmetry.
Definition. A model $A \in \mathscr{C}$ is bi-symmetric iff
(i) $G(A)$ acts transitively on the pure states (that is, extreme points) of $\Omega(A)$,
(ii) $G(A)$ acts transitively on \mathfrak{A}, and on pairs (x, y) of outcomes with $x \perp y$.

If, in place of (ii), we require that arbitrary bijections $f: E \rightarrow F, E, F \in \mathfrak{A}$, extend to elements of G, then A is fully bi-symmetric.

If A is bi-symmetric, then G acts transitively. Clearly, the quantum model discussed above is fully bi-symmetric. Bi-symmetry and full bi-symmetry, are very natural conditions. (See [17] for further discussion and motivation of the latter.)

Definition. A SPIN form ${ }^{1}$ for the model A is a real bilinear form B on $\mathbf{E}(A)$ that is symmetric, positive in the sense that $B(a, b) \geq 0$ for all $a, b \in \mathbf{E}(A)_{+}$, invariant, in the sense that $B(g a, g b)=B(a, b)$ for all $g \in G(A)$, and normalized, in the sense that $B\left(u_{A}, u_{A}\right)=1$. A SPIN form is orthogonalizing iff $B(x, y)=0$ for all distinguishable measurement outcomes $x, y \in X(A)$.

An example is the usual tracial inner product on $\mathscr{L}(\mathbf{H})$. Call $\mathbf{E}(A)$ irreducible iff (with respect to any SPIN form B), the subspace $u^{\perp}=\{a \in \mathbf{E}(A) \mid B(a, u)=0\}$ (this is independent of B) is irreducible under the group $G(A)$. Quantum models are irreducible in this sense.

Theorem 1. If $\mathbf{E}(A)$ is irreducible, it supports at most one orthogonalizing SPIN form, which - if it exists - is an inner product.

4 Conjugates and Daggers

At this point, the aim is to find sufficient conditions for the existence of an orthogonalizing SPIN form on $\mathbf{E}(A)$. I shall provide two.
Definition. By a conjugate for a model A, I mean a structure $\left(\bar{A}, \gamma_{A}, \eta_{A}\right)$, where $\gamma_{A}: A \mapsto \bar{A}$ is an isomorphism of models, and η_{A} is a bipartite state on $A \times \bar{A}$ such that $\eta\left(x, \gamma_{A}(x)\right)=1 / n$ (where n is the rank of $A)$ for every $x \in X(A)$.

In the case of a quantum-mechanical model $A=A(\mathbf{H})$ associated with a Hilbert space \mathbf{H}, the obvious conjugate model is just that associated with the conjugate Hilbert space $\overline{\mathbf{H}}$, with γ_{A} taking the rank-one projection x to the corresponding projection \bar{x} on $\overline{\mathbf{H}}$, and with η_{A} the pure state associated with the unit vector $\frac{1}{\sqrt{n}} \sum_{i} e_{i} \otimes \bar{e}_{i},\left\{e_{i}\right\}$ any basis for \mathbf{H} (note that this is basis-independent).

Returning to the general case, note that by averaging over $G(A)$, we can choose η_{A} to be invariant, in the sense that $\eta_{A}\left(g x, \gamma_{A}(g y)\right)=\eta_{A}(g x, g y)$ for all $g \in G(A)$. This gives us an invariant SPIN form on $\mathbf{E}(A)$, defined on outcomes by $B(x, y):=\eta\left(x, \gamma_{A}(y)\right)$. Applying Theorem 1 , we have
Theorem 2. Let $\mathbf{E}(A)$ be irreducible, and suppose A has a conjugate. Then $\mathbf{E}(A)$ carries a canonical orthogonalizing inner product.

Under some mild auxiliary hypotheses, the existence of a conjugate for every $A \in \mathscr{C}$ (with γ_{A} and η_{A} appropriately belonging to \mathscr{C}) can be used to construct a dagger on the category $\mathscr{E} \supseteq \mathbf{E}(\mathscr{C})$ discussed above. In fact, however, the mere existence of a reasonable dagger-monoidal structure on \mathscr{E} is enough to obtain much the same result.
Theorem 3. Suppose \mathscr{E} supports a dagger-monoidal structure, such that for every $g \in G(A), g^{\dagger}=g^{-1}$ (i.e., $g \in G(A)$ is "unitary"). If $\mathbf{E}(A)$ is irreducible, then it carries an orthogonalizing inner product.

In order to obtain the self-duality of $\mathbf{E}(A)_{+}$for an irreducible model A, it now suffices to assume either of two simple further conditions:

Theorem 4. Suppose that either

[^0](a) In the context of Theorem 2 A has a conjugate such that the state η_{A} is an isomorphism state or
(b) In the context of Theorem [3] A is sharp, meaning that every outcome has probability one in a unique state on $\mathbf{E}(A)$.
Then $\mathbf{E}(A)_{+}$is self-dual.
The homogeneity of $\mathbf{E}(A)_{+}$can now be enforced by any of several conditions discussed in [4, 19]. Applying the Koecher-Vinberg Theorem, we can conclude that $\mathbf{E}(A)$ carries a unique Jordan product making it a formally real Jordan algebra.

One of these conditions is so simple it's worth pausing to describe it. Any bipartite state ω between $A, B \in \mathscr{C}$ gives rise to a natural positive linear mapping $\hat{\omega}: \mathbf{E}(A) \rightarrow \mathbf{E}(B)^{*}$, uniquely defined by $\hat{\omega}(x)(y)=$ $\omega(x, y)$. Where $\hat{\omega}$ is an order-isomorphism - that is, where $\hat{\omega}$ is an order-isomorphism (that is, invertible and having a positive inverse), we call ω an isomorphism state. A basic observation from [4], translated into the present context, is that if every state in the interior of $\Omega(B)$ is the marginal of an isomorphism state, then the cone in $\mathbf{E}(B)$ generated by $\Omega(B)$ is homogeneous.

5 Image-Closure

In order to extend these results to possibly reducible systems, I impose one further constraint on \mathscr{C}. Call a morphism $(\phi, \psi):(X, \mathfrak{A}, \Omega, G) \rightarrow(Y, \mathfrak{B}, \Gamma, H)$ is surjective iff $\phi(X)=Y, \mathfrak{B} \subseteq \phi(\mathfrak{A}), H=\psi(G)$, and $\Gamma=\left\{\beta \in \Omega(Y, \mathfrak{B}) \mid \phi^{*}(\beta) \in \Omega\right\}$. In this case, we call $(Y, \mathfrak{B}, \Gamma, H)$ the image of $(X, \mathfrak{A}, \Omega, G)$ under (ϕ, ψ). Call \mathscr{C} image-closed iff, for any $A \in \mathscr{C}$ and any surjective morphism $(\phi, \psi):\left(X_{A}, \mathfrak{A}_{A}, \Omega_{A}, G_{A}\right) \rightarrow$ $(Y, \mathfrak{B}, \Gamma, H)$, (i) the model $B:=(Y, \mathfrak{B}, \Gamma, H)$ belongs to \mathscr{C}, and (ii) $(\phi, \psi) \in \mathscr{C}(A, B)$. in \mathscr{C}, again belong to \mathscr{C}.

Theorem 5. Let \mathscr{C} be an image-closed category of bi-symmetric probabilistic models, and let \mathscr{E} be the corresponding linearized category as discussed in Section 1. If either
(a) every $A \in \mathscr{C}$ has a conjugate $\bar{A} \in \mathscr{C}$, with η_{A} an isomorphism state, or
(b) \mathscr{E} has a dagger-monoidal structure making every $g \in G(A)$ unitary for all $A \in \mathscr{C}$, and every $A \in \mathscr{C}$ is sharp, then for every $A \in \mathscr{C}, \mathbf{E}(A)_{+}$is self-dual.

Again, adding any of the sufficient conditions for homogeneity from [4, 17] - or simply assuming it outright - will yield a category of formally real Jordan algebras.

Operationally, it is reasonable to suppose that any image $\phi(A)$ of a model $A \in \mathscr{C}$ can be simulated by means of the model A. Hence, if we wish to think of \mathscr{C} as closed under operationally reasonable constructions, it is not far-fetched that $\phi(A)$ should belong to \mathscr{C}. In fact, the image of a bi-symmetric model is 2 -symmetric, so one can simply "close up" \mathscr{C} without sacrificing this assumption. (To suppose that this closure continues to support, e.g., a symmetric-monoidal structure, or conjugate systems, is a sharper constraint, of course.) Categories of finite-dimensional quantum models turn out to be imageclosed for the simple reason that a quantum model has no non-trivial images.

6 Conclusion

These results raise any number of interesting questions. For one thing, it is possible that the assumptions are stronger than advertised, singling out a narrower class than formally real Jordan algebras. It is noteworthy that I have not had to assume that \mathscr{C} 's monoidal product is locally tomographic. In fact, in a forthcoming paper with Howard Barnum [6], we show (using a result of Hanche-Olsen) that if \mathscr{C} is
a dagger-monoidal category of finite-dimensional order-unit spaces with homogeneous self-dual cones, then local tomography, plus the existence in \mathscr{C} of a system having the structure of a qubit, implies that every $A \in \mathscr{C}$ is isomorphic to the Hermitian part of a finite-dimensional complex C^{*} algebra.

References

[1] S. Abramsky and B. Coecke, A categorical semantics of quantum protocols. Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS'04). IEEE Computer Science Press (2004). doi 10.1109 /LICS. 2004.1319636
[2] J. Baez, Quantum quandaries: a category-theoretic perspective. arXiv quant-ph/0404040 (2004).
[3] H. Barnum, R. Duncan and A. Wilce, Symmetry, compact closure, and dagger-compactness for categories of convex operational models. arXiv:1004.2920 (2010), to appear in J. Phil. Logic.
[4] H. Barnum, P. Gaebler and A. Wilce, Ensemble Steering, weak self-duality and the structure of probabilistic theories. arXiv:0912.5532v2 (2009).
[5] H. Barnum and A. Wilce, Information processing in convex operational theories. ENTCS 270 (2011), 3-15. doi $10.1016 / \mathrm{j}$.entcs.2011.01.002
[6] H. Barnum and A. Wilce, Local tomography, homogeneous self-dual cones, and the structure of quantum theory. To appear.
[7] G. Chiribella, G. M. D'Ariano, and P. Perinotti, Probabilistic theories with purification. Phys. Rev. A. 81 (2010), arXiv:0908.1583v5 (2009), and Informational derivation of quantum theory, arXiv 1011.6451 (2010).
[8] B. Dakic and C. Brukner, Quantum theory and beyond: is entanglement special? arXiv:0911.0695(2009).
[9] J. Faraut and A. Koranyi, Analysis on Symmetric Cones. Oxford, 1994.
[10] L. Hardy, Quantum theory from five reasonable axioms. arXiv quant-ph/0101012] (2001)
[11] M. Koecher, Die Geodätischen von Positivitätsbereichen. Math. Ann. 135 (1958), 384-432. doi 10.1007/BF01351796.
[12] L. Masanes, M. Müller, A derivation of quantum theory from physical requirements. New J. Phys., 13 (2011). doi 10.1088/1367-2630/13/6/063001 arXiv 1004.1483, 2011.
[13] J. Rau, On quantum vs. classical probability. Annals of Physics 324 (2009), 2622-2637. doi $10.1016 / j$.aop.2009.09.013, arXiv $0710.2119,2007$.
[14] P. Selinger, Dagger compact closed categories and completely positive maps. ENTCS 2007. doi $10.1016 / \mathrm{j}$.entcs.2006.12.018
[15] E. Vinberg, Homogeneous cones. Sov. Math. Dokl. 1 (1960), 787-790.
[16] A. Wilce, Test Spaces. In D. Gabbay, K. Engesser and D. Lehman (eds.), The Handbook of Quantum Logic, volume II, North-Holland, 2010.
[17] A. Wilce, Symmetry and composition in probabilistic theories. ENTCS 270 (2011), 191-207. doi:10.1016/j.entcs.2011.01.031 arXiv:0910.1527, 2009.
[18] A. Wilce, Formalism and interpretation in quantum theory. Foundations of Physics 40(4): 434-462, 2010. doi $10.1007 / \mathrm{s} 10701-010-9410-\mathrm{x}$ philsci $3794,2008$.
[19] A. Wilce, Four and a half axioms for finite-dimensional quantum theory. arXiv:0912.5530 (2009), to appear in a volume in memory of Itamar Pitowsky.
[20] A. Wilce, Symmetry, Self-Duality and the Jordan Structure of Quantum Mechanics. arXiv 1110.6607 v 1 (2011).

[^0]: ${ }^{1}$ This is probably not the best choice of terminology.

