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Symmetry and Self-Duality in Categories of Probabilistic
Models

Alexander Wilce

This note adds to the recent spate of derivations of the probabilistic apparatus of finite-dimensional
quantum theory from various axiomatic packages. We offer two different axiomatic packages that
lead easily to the Jordan algebraic structure of finite-dimensional quantum theory. The derivation
relies on the Koecher-Vinberg Theorem, which sets up an equivalence between order-unit spaces
having homogeneous, self-dual cones, and formally real Jordan algebras.

1 Introduction and Overview

The last several years have seen a spate of derivations of the probabilistic apparatus of finite-dimensional
quantum theory from various axiomatic packages, many having an information-theoretic motivation [7,
8, 10, 12, 13]. This note (which in part echoes, but greatly improves upon [19]) adds to the flow. I
offer two different, though overlapping, axiomatic packages, both stressing symmetry principles, that
lead quickly and easily to the Jordan algebraic structure of finite-dimensional quantum theory. Quickly
and easily, at any rate, if one is familiar with the Koecher-Vinberg Theorem [11, 15], which sets up an
equivalence between order-unit spaces having homogeneous, self-dual cones, and formally real Jordan
algebras.

A probabilistic system can be described, in a standard way, in terms of an order-unit space A, the
positive elements of which are scalar multiples of “effects”. The strategy, then, is to show that certain
strong, but not unreasonable, assumptions force the positive cone A+ to be homogeneous and self-dual,
and hence, isomorphic to the cone of squares of such a Jordan algebra. In [3], several conditions are
adduced that lead to a homogeneous and weakly self-dual cone — that is, a homogeneous cone that is
order-isomorphic to its dual cone in A∗. However, proper self-duality is a much more stringent condition,
requiring that the isomorphism be mediated by an inner product.

The line of attack here is to assume that systems individually have a great deal of symmetry, and
collectively, can be organized into a symmetric monoidal category [1, 2, 14]. Here is a sketch. Further
details can be found in the longer paper [20].

2 Probabilistic Models

A test space [16] is a pair (X ,A) where X is a set of outcomes and A is a covering of X by non-empty (for
our purposes here, finite) subsets called tests, each understood as the set of possible outcomes of some
measurement, experiment, etc. Two outcomes x,y ∈ X are distinguishable iff they belong to a common
test. In this case, I write x⊥ y. Notice that there is, as yet, no linear structure in view, let alone an inner
product; so this notation is promissory.

A state on a test space (X ,A) is a function α : X → [0,1], summing independently to unity on each
test. A symmetry of (X ,A) is a mapping g : X → X such that g(E),g−1(E) ∈ A for every E ∈ A. By a
probabilistic model, I mean a structure (X ,A,Ω,G) where (X ,A) is a test space, Ω is a compact convex
set of states on (X ,A), and G is a group acting on (X ,A) by symmetries, and leaving Ω invariant.
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For illustration, if H is a finite-dimensional Hilbert space (real or Complex), the corresponding quan-
tum model is (X(H),A(H),Ω(H),U(H)), where X = X(H) is the set of rank-one projection operators on
H, A = A(H) is set of (projective) frames, i.e., maximal pairwise orthogonal sets of projections, Ω(H)
is the convex set of density operators on H, and U(H) is the group of unitary operators on H, acting on
X(H) by conjugation.

Categories of Models. I will be interested in categories of models. A morphism from a model (X ,A,Ω,G)
to a model (Y,B,Γ,H) is a pair (φ ,ψ), where

(i) φ : X → Y with φ(A)⊆B, φ ∗(Γ)⊆Ω

(ii) ψ ∈ Hom(G,H);

(iii) φ(gx) = ψ(g)φ(x) for all x ∈ X ,g ∈ G.

In what follows, C is a symmetric monoidal category of probabilistic models A=(X(A),A(A),Ω(A),G(A)),
with morphisms as above. I shall make two further assumptions:

(1) For every A ∈ C , G(A)⊆ C (A,A).

(2) The model A⊗B ∈ C is a composite of the models A,B ∈ C , in the sense of [5]. This means, in
particular, that there are canonical injections⊗ : X(A)×X(B)→X(A⊗B) and⊗ : Ω(A)×Ω(B)→
Ω(A⊗B), with

E⊗F = {x⊗ y|x ∈ E,y ∈ F} ∈ A(A⊗B)

for every E ∈ A(A),F ∈ A(B), and

(α⊗β )(x⊗ y) = α(x)β (y)

for all α ∈Ω(A),β ∈Ω(B), x∈ X(A) and y∈ X(B). A bipartite state between A,B∈C is a state ω

in Ω(A⊗B). It is also part of the definition that the un-normalized conditional state ω̂(x) :=ω(x, ·)
belong to Ω(B) for every x ∈ X , and similarly with A and B reversed.

Models Linearized. Every model A = (X(A),A(A),Ω(A),G(A)) ∈ C generates, in a standard and
quite canonical way, an order-unit space E(A). To be precise, E(A) is the span in RΩ of the evaluation
functionals associated with measurement outcomes x ∈ X .) In the case of a quantum model A(H) =
(X(H),A(H),Ω(H),U(H)), one has E(A) ' L (H), the space of Hermitian operators on H, with the
usual ordering and uA = 1H.

The construction A 7→ E(A) is functorial, so we obtain from C a category E(C ) of order-unit spaces
and positive linear mappings. It is natural to enlarge this to a category E in which each hom-set E (A,B)
is an ordered linear space, and in which, e.g., E (I,A) ' E(A). In what follows, I assume that such a
“linearized” category E has been fixed.

3 Bi-Symmetric Models

To tighten this structure further, I now ask that every A ∈ C enjoy a property I call bi-symmetry.

Definition. A model A ∈ C is bi-symmetric iff

(i) G(A) acts transitively on the pure states (that is, extreme points) of Ω(A),

(ii) G(A) acts transitively on A, and on pairs (x,y) of outcomes with x⊥ y.
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If, in place of (ii), we require that arbitrary bijections f : E→ F , E,F ∈A, extend to elements of G, then
A is fully bi-symmetric.

If A is bi-symmetric, then G acts transitively. Clearly, the quantum model discussed above is fully
bi-symmetric. Bi-symmetry and full bi-symmetry, are very natural conditions. (See [17] for further
discussion and motivation of the latter.)

Definition. A SPIN form1 for the model A is a real bilinear form B on E(A) that is symmetric, positive
in the sense that B(a,b) ≥ 0 for all a,b ∈ E(A)+, invariant, in the sense that B(ga,gb) = B(a,b) for all
g∈G(A), and normalized, in the sense that B(uA,uA) = 1. A SPIN form is orthogonalizing iff B(x,y) = 0
for all distinguishable measurement outcomes x,y ∈ X(A).

An example is the usual tracial inner product on L (H). Call E(A) irreducible iff (with respect to
any SPIN form B), the subspace u⊥ = {a ∈ E(A)|B(a,u) = 0} (this is independent of B) is irreducible
under the group G(A). Quantum models are irreducible in this sense.

Theorem 1. If E(A) is irreducible, it supports at most one orthogonalizing SPIN form, which — if it
exists — is an inner product.

4 Conjugates and Daggers

At this point, the aim is to find sufficient conditions for the existence of an orthogonalizing SPIN form
on E(A). I shall provide two.

Definition. By a conjugate for a model A, I mean a structure (A,γA,ηA), where γA : A 7→ A is an isomor-
phism of models, and ηA is a bipartite state on A×A such that η(x,γA(x)) = 1/n (where n is the rank of
A) for every x ∈ X(A).

In the case of a quantum-mechanical model A = A(H) associated with a Hilbert space H, the obvious
conjugate model is just that associated with the conjugate Hilbert space H, with γA taking the rank-one
projection x to the corresponding projection x on H, and with ηA the pure state associated with the unit
vector 1√

n ∑i ei⊗ ei, {ei} any basis for H (note that this is basis-independent).
Returning to the general case, note that by averaging over G(A), we can choose ηA to be invariant,

in the sense that ηA(gx,γA(gy)) = ηA(gx,gy) for all g ∈ G(A). This gives us an invariant SPIN form on
E(A), defined on outcomes by B(x,y) := η(x,γA(y)). Applying Theorem 1, we have

Theorem 2. Let E(A) be irreducible, and suppose A has a conjugate. Then E(A) carries a canonical
orthogonalizing inner product.

Under some mild auxiliary hypotheses, the existence of a conjugate for every A ∈ C (with γA and ηA

appropriately belonging to C ) can be used to construct a dagger on the category E ⊇ E(C ) discussed
above. In fact, however, the mere existence of a reasonable dagger-monoidal structure on E is enough to
obtain much the same result.

Theorem 3. Suppose E supports a dagger-monoidal structure, such that for every g ∈ G(A), g† = g−1

(i.e., g ∈ G(A) is “unitary”). If E(A) is irreducible, then it carries an orthogonalizing inner product.

In order to obtain the self-duality of E(A)+ for an irreducible model A, it now suffices to assume
either of two simple further conditions:

Theorem 4. Suppose that either

1This is probably not the best choice of terminology.
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(a) In the context of Theorem 2, A has a conjugate such that the state ηA is an isomorphism state or

(b) In the context of Theorem 3, A is sharp, meaning that every outcome has probability one in a
unique state on E(A).

Then E(A)+ is self-dual.

The homogeneity of E(A)+ can now be enforced by any of several conditions discussed in [4, 19].
Applying the Koecher-Vinberg Theorem, we can conclude that E(A) carries a unique Jordan product
making it a formally real Jordan algebra.

One of these conditions is so simple it’s worth pausing to describe it. Any bipartite state ω between
A,B∈C gives rise to a natural positive linear mapping ω̂ : E(A)→E(B)∗, uniquely defined by ω̂(x)(y)=
ω(x,y). Where ω̂ is an order-isomorphism — that is, where ω̂ is an order-isomorphism (that is, invertible
and having a positive inverse), we call ω an isomorphism state. A basic observation from [4], translated
into the present context, is that if every state in the interior of Ω(B) is the marginal of an isomorphism
state, then the cone in E(B) generated by Ω(B) is homogeneous.

5 Image-Closure

In order to extend these results to possibly reducible systems, I impose one further constraint on C .
Call a morphism (φ ,ψ) : (X ,A,Ω,G)→ (Y,B,Γ,H) is surjective iff φ(X) = Y , B⊆ φ(A), H = ψ(G),
and Γ = {β ∈ Ω(Y,B)|φ ∗(β ) ∈ Ω}. In this case, we call (Y,B,Γ,H) the image of (X ,A,Ω,G) under
(φ ,ψ). Call C image-closed iff, for any A∈C and any surjective morphism (φ ,ψ) : (XA,AA,ΩA,GA)→
(Y,B,Γ,H), (i) the model B := (Y,B,Γ,H) belongs to C , and (ii) (φ ,ψ) ∈ C (A,B). in C , again belong
to C .

Theorem 5. Let C be an image-closed category of bi-symmetric probabilistic models, and let E be the
corresponding linearized category as discussed in Section 1. If either

(a) every A ∈ C has a conjugate A ∈ C , with ηA an isomorphism state, or

(b) E has a dagger-monoidal structure making every g∈G(A) unitary for all A∈C , and every A∈C
is sharp, then for every A ∈ C , E(A)+ is self-dual.

Again, adding any of the sufficient conditions for homogeneity from [4, 17] — or simply assuming
it outright — will yield a category of formally real Jordan algebras.

Operationally, it is reasonable to suppose that any image φ(A) of a model A ∈ C can be simulated
by means of the model A. Hence, if we wish to think of C as closed under operationally reasonable
constructions, it is not far-fetched that φ(A) should belong to C . In fact, the image of a bi-symmetric
model is 2-symmetric, so one can simply “close up” C without sacrificing this assumption. (To suppose
that this closure continues to support, e.g., a symmetric-monoidal structure, or conjugate systems, is a
sharper constraint, of course.) Categories of finite-dimensional quantum models turn out to be image-
closed for the simple reason that a quantum model has no non-trivial images.

6 Conclusion

These results raise any number of interesting questions. For one thing, it is possible that the assumptions
are stronger than advertised, singling out a narrower class than formally real Jordan algebras. It is
noteworthy that I have not had to assume that C ’s monoidal product is locally tomographic. In fact, in
a forthcoming paper with Howard Barnum [6], we show (using a result of Hanche-Olsen) that if C is
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a dagger-monoidal category of finite-dimensional order-unit spaces with homogeneous self-dual cones,
then local tomography, plus the existence in C of a system having the structure of a qubit, implies that
every A ∈ C is isomorphic to the Hermitian part of a finite-dimensional complex C∗ algebra.
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