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At the heart of the Conway-Kochen Free Will Theorem and Kociied Specker’s argument against
non-contextual hidden variable theories is the existefigeKnchen-Specker (KS) system: a set of
points on the sphere that has {@ 1}-coloring such that at most one of two orthogonal points are
colored 1 and of three pairwise orthogonal points exactlyismolored 1. In public lectures, Conway
encouraged the search for small KS systems. At the time oifngrithe smallest known KS system
has 31 vectors.

Arends, Ouaknine and Wampler have shown that a KS system least18 vectors, by reducing
the problem to the existence of graphs with a topologicaleadability and non-colorability prop-
erty. The bottleneck in their search proved to be the shembeuof graphs on more than 17 vertices
and deciding embeddability.

Continuing their effort, we prove a restriction on the claggraphs we need to consider and
develop a more practical decision procedure for embedtiatulimprove the lower bound to 22.

1 Introduction

1.1 The experiment

Consider the following experiment. Shoot a deuterium atonatother neutral spin 1 particle) through
a certain fixed inhomogeneous magnetic field, such as thaei8tern-Gerlach experiment. The particle
will then move undisturbed or deviate. What we have done asuie the spin componmf the particle
along a certain direction. This direction depends on theifips of the field and the movement of the
particle.

Quantum Mechanics only predicts the probability, givendinection, whether the particle will devi-
ate. Its probabilistic prediction has been thoroughlyeig@sOne wonders: is theredaterministictheory
predicting the outcome of this experiment?

Kochen and Specker have shown that such a non-contextuahdeistic theory must be odd: it
cannot satisfy the plausible SPIN axiom, that is:

SPIN Axiom [5]. Given three pairwise orthogonal directions. In exactly ofghe directions, the
particle will not deviate.

Their argument is based on the existence of a Kochen-Speg&tm.

*This is a condensed version of the article to be publishechim§ha-Springer's New Generation Computing. One can find
a preprint of the full version &tttp://westerbaan.name/~bas/math/ks.pdf
1As we are only interested in whether the particle deviatemgnwe actually only consider the square of the spin compbne

B. Coecke, |. Hasuo & P. Panangaden (Eds.): © Uijlen & Westerbaan
Quantum Physics and Logic 2014 (QPL 2014). This work is licensed under the
EPTCS 172, 2014, pp. 194=164, d0i:10.4204/EPTCS.172.11 Creative Commoris Attribution License.


http://dx.doi.org/10.4204/EPTCS.172.11
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://westerbaan.name/~bas/math/ks.pdf

Uijlen & Westerbaan 155

Definition 1. A Kochen-Specker (KS) systenis a finite set of points on the spt@rfer which each pair
is not antipodal and there is ©d0-coloring A 010-coloring is &0, 1}-coloring of the points such tifht

1. no pair of orthogonal points are both colored 1 and

2. of three pairwise orthogonal points exactly one is caldrgor alternatively: they are colored 0, 1
and 0 in some order.

A point on the sphere obviously corresponds to a directispace. Because of this, the term point,
vector and direction can be used interchangeably. Antippoiats correspond to opposite vectors and
these span the same direction in space.

Suppose there is a KS system and a non-contextual detetiminis
theory satisfying the SPIN Axiom. Then we color a point ofthis-
tem 0, whenever this theory predicts that the particle vellidte if the
spin is measured in the direction corresponding to thattpaird 1 oth-
erwise. Given two orthogonal points of the system, we canditturd
point orthogonal to both of them. The SPIN axiom implies déyaane
of them is colored 1, so they cannot both be colored 1. Silpjlgiven
three pairwise orthogonal vectors in the system, the SPidhaimplies
exactly one of them is colored 1. Hence there would be a OldFing
of the KS system, quod non. Therefore a deterministic nariextual
theory cannot satisfy the SPIN Axiom.

The KS system proposed by Kochen and Specker contained
points[7]. Penrose and Peries[10] independently found demsgstem
of 33 points. The current record is the 31 point system of Gy,
p. 197]. As pointed out by [3,2], finding small KS systems idoth theoretical and practical interest.
In public lectures, Conway himself, stressed the searchrf@il KS systems.[9]

7
Ij—'ljgure 1. Conway’s 31 vector
Kochen-Specker system

1.2 Overview

In [2] Arends, Ouaknine and Wampler (AOW) give a computeedigroof that a KS system must have
at least 18 vectors. We improve their lower bound and showahéS system must have at least 22
vectors.

First, in Subsectioph_113, we repeat a part of AOW's work, irtipalar the reduction of KS systems
to graphs. The bottleneck of their search was the sheer nushigeaphs and the deciding whether such
graphs are embeddable. In Secfibn 2, we improve upon thkictien, to cut down the number of graphs
to consider drastically, and state the results of our mampdation. Finally, in Sectionl 3, we describe
our practical embeddability test.

The software and results of the various computations paedrfor this paper, can be found hére[15].

1.3 Kochen-Specker graphs

We follow [2] and reduce the search for Kochen-Specker syst® the search of a certain class of
graphs. First note that in a Kochen-Specker system we mégceep point with its antipodal point. They

2 We define KS systems to be three dimensional, as in the originaf of Kochen and Specker. Later, higher dimensional
systems have been studied. See, for instdnde [11, p. 201].

3 In other papers, liké 2], the 0 and 1 are swapped; they cendifl1-colorings. These colorings are of course equivalent
and the difference arises from considering either squapiEdrseasurements?, or 1— .
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are both orthogonal to the same points and hence the nordatability is preserved. Therefore, we
may assume antipodal points are identified on the spherd. ig.ha Kochen-Specker system is a finite
subset of the projective plane that is not 010-colorable.

Definition 2. Given a finite subse®of the projective plane (or equivalently, a finite subsetefriorthern
hemisphere without equaﬂ)r Define itsorthogonality graph G(S) as follows. The vertices are the
points ofS. Two vertices are joined by an edge, if their correspondioigts are orthogonal.

Definition 3. A graphG is calledembeddable if it occurs as a subgraph of an orthogonality graph. That
is: if there is a finite subse& of the projective plane, such th@t< G(S).

Definition 4. A graph is called)10-colorableif there is a{0, 1}-coloring of the vertices, such that
1. for each triangle there is exactly one vertex that is ealdr and

2. adjacent vertices are not both colored 1.

Definition 5. A Kochen-Specker graphis a embeddable graph that is not 010-colorable.

It is an easy, but important, consequence of the definitioat t
Fact 6. A finite subset S of the projective plane is a Kochen-Spegkeam, if and only if its orthogonality
graph G S) is Kochen-Specker.

To prove there is no Kochen-Specker system on 17 points, uldMoe sufficient to enumerate all
graphs on 17 vertices and check these are not 010-coloralsiet @mbeddable. However, this is in-
feasible as there are alreaey10?® non-isomorphic graphs on 17 points.[12] Luckily, we cartries
ourselves to certain classes of graphs.

Proposition 7 ([2]). An embeddable graph is squarefree. That is: it does not dotite square as a
subgrapfﬁ

Proof. Given two non antipodal points=# w. See the figure on the right. Consider the
points orthogonal te@. This is a great circle. The points orthogonaMtas a different
great circle. They intersect in precisely two antipodahp®i Hence, it andd are both

orthogonal tov andw, thenc andd are equivalent. Therefore, an embeddable gra
cannot contain a square. O

\W

The squarefreeness is a considerable restriction. Themnir~10'° non-isomorphic
squarefree graphs on 17 verticesl[13] Next, we show we cnateourselves to connected graphs.

Proposition 8 ([2]). A minimal Kochen-Specker graph is connected.

Proof. SupposeG is a non-connected Kochen-Specker graph. Then one of itpaoemts is not 010-
colorable. As a subgraph of an embeddable graph, is emblegtlasie component is embeddable as well.
Hence it is a smaller connected Kochen-Specker graph. O

The gain, however, is small. There are orl§0° non-isomorphic squarefree graphs
on 17 vertices that are not connected. In our computatidre;king for connectedness required more
time than would be gained by reducing the number of graphs.

We have verified the main result of [2]:

4A subset of the projective plane can be identified with a subithe closed northern hemisphere. For a finite subset we
can always rotate in such a way that no points lie on the equato

5Some authors call a graph squarefree if it does not contaisdbare as induced subgraph. For them the complete graph
on four vertices is squarefree. We follow Weisstein[16] &oane[13] and call a graph squarefree if it does not cortben
square as subgraph. For us the complete graph on four \®isicet squarefree.
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Computation 9. There is a unique non-010-colorable squarefree conneataohgonl7 or less vertices:

It is not embeddable, as the graph in Figlie 2 is an unembdddalbgraph. For our proof, see Propo-
sition[22. Hence a Kochen-Specker system has at least 1&poin

2 Animproved lower bound

Continuing the effort of Arends, Ouaknine and Wambler, wesitder another restriction.

Proposition 10. A minimal Kochen-Specker graph has minimal vertex-ordexethThat is: every vertex
is adjacent to at least three other vertices.

Proof. Given a minimal Kochen-Specker gra@h Suppose is a vertex with order less than or equal 2.
Let G’ beG with vremoved. Clearly’ is embeddable. Suppo&is 010-colorable. Then we can extend
the coloring to a coloring o6 as follows. Ifvis adjacent to only one or no vertex, then we can culor
with 0. Suppose is adjacent to two vertices, sayandw'. If one ofw or w is colored 1, we can color
with 0. If bothw andw’ are colored 0, we can colemwith 1. This would implyG is 010-colorable, quod
non. Therefores' is a smaller Kochen-Specker graph, which contradicts tmennaility of G. O

There are only~10’ squarefree non-isomorphic graphs on 17 vertices with nahirartex order 3.
Even though Arends, Ouaknine and Wampler note this rastmicince, surprisingly, they did not restrict
their graph enumeration to graphs with minimal vertex ofler

We continue with a strengthening of Propositidn 8.

Proposition 11. A minimal Kochen-Specker graph is edge-biconnected. Bhatmoving any single
edge leaves the graph connected.

We need some preparation, before we can prove this Prapasiti

Definition 12. Given a graphG and a vertex of G. We say,v has fixed colorc (in G), if Gis 010-
colorable and for every 010-coloring &, the vertexv is assigned coloc.

We are interested in these graphs because of the followisgredtion.

Lemma 13. If there is an embeddable graph G on n vertices with a vertéx ied colorl, then there
is a Kochen-Specker graph @n vertices.

Proof. Let G be a graph and a vertex ofG with fixed color 1. Consider two copies of the gra@h
Connect the two instances wivith an edge. Call this grap@'. Clearly,G’ is not 010-colorable.

We need to show’ is embeddable. Given an embeddi®gf G. We may assume that the point$n
corresponding tw is the north pole. Furthermore, we may assume that there [®imb on thex-axis,
by rotating points along the north pole. L8tbe Srotated 90 degrees along tii@xis. Some points



158 A Kochen-Specker system has at least 22 vectors (extendget)

of SandS might overlap. That is: there might be a pogih Sands in S that are equal or antipodal.
Observe that if no points & andSoverlap, therSU S is an embedding of'.

Suppose there are points $1and Sthat overlap. Note that the north pole (and south pole) is not
in S. LetS’ be S rotated along the north pole at some angleThere are finitely many angles such that
there are overlapping points. Thus there is an angle su¢tisthg’ is an embedding of'. O

Unfortunately, these graphs are not small.
Computation 14. There are no embeddable graphs with fixed cdlon less than 17 verticés.

We are ready to prove that a minimal Kochen-Specker graptige-eiconnected.

Proof of Propositio_IIL.Given a minimal Kochen-Specker gragh

Recall it must be connected. Suppose it is not edge-bicoetecrhen © ©

there must be an edda, b) in G, which removal disconnects. ThusG de-
composes into two connected grapghandB such that€ A, b € Band(a,b) A B
is the only edge betweehandB. ClearlyA andB are embeddable.

Note thatA must be 010-colorable, for if it were not 010-colorable ntAas a Kochen-Specker graph,
in contradiction withG’s minimality. Similarly B is 010-colorable. Suppose there is a 010-coloring of
in which a is colored 0. Then we can extend this coloring with any 0lle+oay of B to a 010-coloring
of G, which is absurd. Thua must have fixed color 1 ih. Similarly b must have fixed color 1 iB.
Thus by Computation 14, we havA# 17 and 8 > 17. Consequently& > 34. Contradiction witlG’s
minimality. O

We can go one step further.

Proposition 15. A minimal Kochen-Specker graph is edge-triconnected. Thatemoving any two
edges keeps the graph connected.

Again, we need some preparation for the proof. First, we igdize the notion of fixed color.

Definition 16. Given a graplG together with selected vertices, ...,vy € G. LetC(G) denote the set
of 010-colorings ofG. Thetypet of (v1,...,v,) (in G) is the set of all possible waya,...,v,} can be
colored. Thatist = {(c(v1),...,¢(vn)); c€ C(G)}. A type ofn vertices is called an-type.

Example 17. e The triangle has 3-typg(1,0,0),(0,1,0),(0,0,1)}.
e Every vertex in a Kochen-Specker graph has type 0.
e Avertexv has the 1-typd (1)} in G if and only if it has fixed color 1 irG.

Just as verteces with fixed color are rare, we are interestggés, because most types do not occur
in small graphs.

Computation 18. We have enumerated all embeddable graphs of less iffawertices and deter-
mined a lower bound at which a particuldr or 2-type occurs, omitting the trivial typeg0), (1)}
and{(0,0),(0,1),(1,0),(2,2)} /7

8Source code atode/comp5 . py of [15].
“Source code atode/comp5 . py of [15].
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1/2-type #G
{(0,0),(1,0),(0,1)} non-trivially > 10
{(0,0),(1,0),(2,1)} >10
{(0,0),(0,1),(2,1)} >10
{(0,0),(0,1))} =15
{(0,0),(1,0))} =15

{(0)} >15
{(0,1),(1,0)} > 16

other > 17

The type{(0,0),(1,0),(0,1)} occurs in the embeddable two-vertex grapfo. Because the two vertices
are adjacent, this occurance of the type is called trivial.

Proof of Propositio Ib.Given a minimal Kochen-Specker grag@h

Suppose itis not edge-triconnected. Then it splits intogvaphsA andB
together with vertecea;,a, € Aandb;, b, € B such that(a;,b;) and(az,by)
are the only edges betwedrandB. Note thatA andB must be 010-colorable,
for otherwiseG would not be a minimal Kochen-Specker graph.

1. Suppos@; = a; andb; = b,. ThenG is not edge-biconnected. Contradiction with Propositi@in 1

2. Suppose # a; andb; = by. Supposdy; = b, does not have a fixed color B Then any coloring
of A can be extended with some coloringdo a coloring ofG. Contradiction. Apparentlip; = b,
has a fixed color irB.

(2) Supposd; = b, has fixed color 1 iB. Note #8 > 17 by Computation 18.
Suppose there is a coloring &fin which botha; anda, have color 0. Then, regardless
whethera; anda, are adjacent or not, this coloring can be extended with aricgi@f B (in
which by = b, must be colored 1) to a coloring. Contradiction.
Thus the type ofa;,a) in A cannot contain0,0). Thus, by Computation 18,A#> 17.
Consequently @ > 34. Contradiction with minimality.

(b) Apparentlyb; = b, has fixed color 0 iB. Hence, by Computatidn 18B#> 15.
Supposer; is not adjacent t@,. Then any coloring ofA can be extended with a coloring
of B to a coloring ofG. Contradiction.
Apparentlya; is adjacent t@,.
The type of(a;,a2) in A cannot contairi1,0) or (0,1) for otherwiseG can be colored. It also
cannot contair{1,1) asa; anday are adjacent. Thus bot anday, have fixed color O irA.
Hence #A > 17 by Computatioh 18. Consequentlg# 32. Contradiction with minimality.

3. Supposey = a; andb; # by. This leads to a contradication in the same way as in[dase 2.

4. Apparentlya; # ap andb; # by. The type of(a;,a2) in A cannot contair{0, 0), for otherwiseG is
colorable. Similarly, the type dbs,b,) in B cannot contairf0,0). Thus both#A > 17 and 8> 17.
Hence # > 34. Contradiction with minimality. O

Although these restrictions are theoretically pleasimgytseem to be of little use as a practical
restriction. Concerning excluding unconnected graphs:

Computation 19. There are five non-isomorphic minimal squarefree connegtaphs with minimal
vertex order 3 and they have 10 vertices.
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Corollary 20. Any unconnected squarefree graph with minimal vertex o&deas at least 20 vertices,
for it has two connected components, each with at least lticesr With 20 vertices, there are exactly
25 of these.

This justifies, at this stage, not checking for connectesin8gnilarly, we believe there are very few
connected but not edge-biconnected graphs.
Now we can state our main computation.

Computation 21. Let G, denote the number of non-010 colorable squarefree graptisminimal vertex
order 3 on n nodes. Théh:

n | <16 17 18 19 20 21
Cn|O 1 2 19 441 11876

All these 12339 graphs are not embeddable. See Compufia&ion 2

The computation was distributed on approximately 300 CRidscand took roughly three months. It
was executed as follows. We enumerated all squarefree griph minimal vertex order 3 on less than
or equal 21 vertices, using tleng util of the nauty software package, which uses the isomerptiree
exhaustive generation method of McKay[8]. The outpugaig, we passed through a custom heuristic
backtracker written in C++ to decide 010-colorability oétle graphs.

3 Embeddability

Our computation has yielded over nine-thousand non-Ol@radole graphs. If we show one of them is
embeddable, we have found a new KS system. If we demonsitaiethem are not embeddable, we
have proven a lower bound on the size of a minimal KS system.

In [2], Arends, Wampler and Ouaknine discuss several coaemaitied methods to test embeddability
of a graph. None of these methods could decide for all graphsidered, whether they were embeddable
or not.

We propose a new method, which for all graphs we considered,
could decide whether they were embeddable or not. First we ai
pen-and-paper example.

Proposition 22. The graph in Figuré2 is not embeddable.

Proof. Suppose it is embeddable. Consiget It is orthogonal to
botha andv. Sincea andv are not collinearp; must be collinear
tov x a, the cross-product ofanda. Similarly, p, is collinear tov x
p1 = Vv x (v x a). Continuing in this fashion, we see that

: . Figure 2: One of the two mini-
ais collinear tox x (xx (Wx (Wx (vx (vxa))))). 1) mal non-embeddable graphs
Now, we may assume that= (0,0,1) andx = (1,0,0). Thus:v =

(V1,V2,0); W= (W, W,,0) anda = (0,a,ag) for some—1 < vi,Vp, Wy, Wy, 82,83 < 1, With V2 + V3 = 1;
w2 +w3 = 1 anda3 + a4 = 1. Now, [1) becomes:

0 0
a, | is collinear to —apVIWo (ViW1 + VoWo)
ag —ag(VIWE + VEW3 -+ V3W] + V3ws3)

8Source code atode/comp6 of [15].
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Consequently
VIWo (VW 4 VaWa ) = VAWE + VAWS + VW2 + VW3
= (V)W + (V+V5)W5
= Wi +Ww3

Sincev andw are not collinear, we have by Cauchy-Schwigkzw) | < 1. Now we find the contradiction:
1> [viwo (VW) | = [ViWa(ViWg + Vowp)| = 1. O

In the previous proof, we fixed, without loss of generalitye position of a few vertices. Then we
derived cross-product expressions for the remainingoestiFinally, we find an equation relating some
of the cross-product expressions and show it is unsatisfiddé can automate this reasoning as follows.

while there are unassigned verticds

pick an unassigned vertex

assignv(v) =v

markyv as free

5: while there are unassigned vertices adjacent to two differergreess verticesio

pick such a vertexv adjacent to the assigned; andw,

assignVv (w) =V (wy) x V(ws)

mark edgegv,w;) and(v,w») as accounted for
end while
10: end while
for each pair of verticesvy,v,) do
if (v1,v2) is not an edgéhen

\ record requirement:Vf(v1) is not collinear to/ (vz)”
end if
15: end for
for each edgévy,Vv,) not accounted fodo
record requirement:\f(vy) is orthogonal to/ (v»)”

end for

At two points in the algorithm, there is a choice which vertexpick. Depending on the vertices
chosen, the number of recorded requirements and free puagssignificantly vary. By considering all
possible choices, one can find the one with least free points.

The requirements can be mechanically converted to a forargkace in the language of the real
numbers. This sentence is true if and only if the graph is elt@lele. Famously, Tarski proved[14]
that such sentences are decidable. His decision procedsrarhimpractical complexity. However, its
practical value has been improved by, for instance, the odatiicylindrical algebraic decomposition[4].
We have used the redlog[6] package of the reduce algebrensysthich implements a variant of Tarski’s
quantifier eliminatio

Different assignments give different sentences. In ouste®me assignments would yield sentences
that were decided within milliseconds, whereas anothdgmasgnt with less free vertices would yield

9The reader can find the reduce script generated mechanicatlye graph in FigurE]2 heraittp: //kochen-specker.
info/smallGraphs/49743£49514769444f . html.


http://kochen-specker.info/smallGraphs/49743f49514769444f.html
http://kochen-specker.info/smallGraphs/49743f49514769444f.html

162 A Kochen-Specker system has at least 22 vectors (extendget)

a sentence that could not be decided (directly). Therefahen determining embeddability of a graph,
we try several assignments in parallel.

In this way, there were still a few (010-colorable) graphsvhfch we could not decide embeddabil-
ity. With some guessing, we determined embeddings for tgegehs by hand. Once we knew the
troublesome graphs were embeddable, we adapted the higpas to guess for some assignments the
position of one of the vectors. If the corresponding seregg¢nms out false, we know nothing. However,
if the sentence is true, we know the graph is embeddable.

With this method, we have decided in a day the embeddabilgyery squarefree graph with minimal
vertex order three of less than 15, except for|ghin particular:

Computation 23. Every squarefree graph of minimal vertex order three thatds 010-colorable of
order less than or equal to 20 contains, as a subgraph, onkeofdllowing three graphs:

These three graphs are unembeddable. The left and middphgne the only minimal unembeddable
squarefree graph. For the first graph, we have proven digettiht it is unembeddable. See Proposi-
tion[22. For the second graph, we also have a similar direciofir The third graph is shown to not be
embeddable using our algorithm.

Every squarefree graph of minimal vertex order three thaias010-colorable of order 21 contains
an unembeddable subgra@m

4 Conclusion and future research

Arends, Ouaknine and Wampler struggled with two problemsun@erating candidate graphs of less
than 31 vertices and testing their embeddability. We havidie® most of their computations. Then
we enumerated all candidate graphs up to and including Zicesr Furthermore, we have proposed
a new decision procedure, which was able to decide embditgdbi all candidate graphs we found.
Therefore, we demonstrate: a Kochen-Specker system muestlhéeast 22 poin

Enumerating all candidate graphs of less than 31 verticesrnigutationally infeasable. To bridge
the enormous the gap between 22 and 31, requires a new insighinstance: another restriction on
which graphs to consider.

The Reader, interested in pursuing this line of resear@méesuraged to read the master thesis[1] of
Arends, in which he discusses in detail several other ptigsathat a minimal KS system must enjoy, as
well as some failed attempts.

10 A list of all squarefree graphs with minimal vertex orderiaof less than 15 vertices together with their embeddgpliin
be found herehttp://kochen-specker. info/smallGraphs/. The graph for which we could not determine embeddability
can be found heréittp: //kochen-specker. info/smallGraphs/4d4b3f4b3f603f47414641654953625f3f . html.

1A list of these graphs together with their unembeddable siits, can be found herettp: //kochen-specker . info/
candidates/. The source code for this computation can be founebat/comp2. py of [15].

12The authors have a wager whether there is a minimal KS systésssthan 25 vertices.
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